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Abstract: In an end-to-end authentication (E2EA) scheme, the physician, patient, and sensor nodes
authenticate each other through the healthcare service provider in three phases: the long-term
authentication phase (LAP), short-term authentication phase (SAP), and sensor authentication phase
(WAP). Once the LAP is executed between all communication nodes, the SAP is executed (m) times
between the physician and patient by deriving a new key from the PSij key generated by healthcare
service provider during the LAP. In addition, the WAP is executed between the connected sensor
and patient (m + 1) times without going back to the service provider. Thus, it is critical to determine
an appropriate (m) value to maintain a specific security level and to minimize the cost of E2EA.
Therefore, we proposed an analytic model in which the authentication signaling traffic is represented
by a Poisson process to derive an authentication signaling traffic cost function for the (m) value.
wherein the residence time of authentication has three distributions: gamma, hypo-exponential, and
exponential. Finally, using the numerical analysis of the derived cost function, an optimal value (m)
that minimizes the authentication signaling traffic cost of the E2EA scheme was determined.

Keywords: E2EA scheme; healthcare IoT system; WMSN; mutual authentication; Poisson process;
probability distribution

1. Introduction

Today, the Internet of Things (IoT) healthcare system is in common use around the
world. Its essential goal is to monitor a patient’s vital signs while a physician delivers
treatment and medical advice remotely; moreover, it can reduce the number of the health-
care centers and bring expert medical care to remote areas where there is a shortage of
them [1–6].

A wireless medical sensor network (WMSN) collects data from sensors that register
temperature, blood pressure, blood sugar levels, etc. [1–5]. Then, the data are transmitted
to the healthcare provider, which sends them to physicians electronically [1,2,7]. In such a
system, data security is the main concern because an unauthorized party could access a
patient’s sensor nodes to reveal the secrecy and privacy of his or her health status [1,2,8].
Furthermore, the unauthorized party could compromise the integrity of the patient safety
by falsifying the doctor’s instructions or advice or by changing a dose from the electronic
insulin pumps [1]. Therefore, the healthcare IoT system is susceptible to numerous types of
attacks such as smartcard loss, sensor spoofing, desynchronization, impersonation, replay,
insider, intrusion, and man-in-the-middle attacks [1,2,9–11].

Several authentication schemes have been proposed to deal with sensor deficien-
cies, but they did not adequately consider performance and authentication costs [12–25].
To reduce authentication overhead, communication has been made more practical. Many
schemes now generate a preset number of parameters to execute more authentication
sessions between system nodes without having to refer back to the authentication center or
the service provider’s server, thus reducing delays. However, this technique could have
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adverse results if some of the authentication parameters have to be changed because of, for
example, a difference in the request rate. Therefore, authentication schemes need to use a
cost function that estimates the number of the authentication sessions and the quantity of
authentication parameters to be generated.

The first author has proposed an authentication scheme called end-to-end authentica-
tion (E2EA) [1], which can support various security and performance features such that
mutual authentication, anonymity, and perfect forwarding services are satisfied. Further-
more, E2EA can protect against the abovementioned attacks using low-cost storage space,
computations, and communications.

Therefore, in this paper we proposed an analytical cost function model to examine
the effect of the number of authentication parameters that will be generated during the
execution of E2EA on the signaling traffic cost. Thus, the healthcare service provider can
estimate in advance the number authentication sessions to be executed for a specific patient;
then, according to this cost estimate, set the number of parameters to be generated and
transmit them to the nodes when the E2EA scheme is executed.

1.1. Background

In E2EA, the communication nodes of the IoT architecture are the gateway node
(GWN), representing the healthcare service provider, the physician’s monitoring device
(Pi), the patient’s smart device (SDj), and the nodes (Sk) as illustrated in Figure 1. The Sk
sensor nodes collect the patient’s vital signs and send them as an on-demand report to the
SDj; the Sk actuator nodes receive medical orders from the Pi through the SDj to perform a
specific action such as turning on the insulin pumps [1–6]. Communication between the
SDj and Sk nodes is accomplished via the WMSN [1–6,12].
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Figure 1. Healthcare IoT system architecture of E2EA.

The SDj supports the registration process with the GWN and connects with a new
sensor node. The SDj should be able to save the vital signs collected by specific sensor
node, then forward them to the Pi indirectly through GWN or directly during emergencies.
Communication between the SDj, GWN, and Pi is conducted over the Internet [1,12–16].

The GWN is the core node of the E2EA scheme because it supports registration with
the Pi and SDj. The GWN observes the authentication and key agreement (AKA) execution
to coordinate authentication between the Pi and SDj.

The Pi can collect vital signs from the SDj and transmit medical orders to the actuator
sensors for treatment through the SDj.
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In E2EA, authentication is exercised for every monitoring and treatment event between
the GWN, Pi, SDj and Sk through three authentications phases: the long-term authentication
phase (LAP), short-term authentication phase (SAP), and WMSN authentication phase
(WAP) as shown in Figures 2–4, respectively.
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As shown in Figure 2, the LAP supports full mutual authentication, i.e., authentication
of the Pi by the GWN and authentication of the GWN by the Pi through the exchange of
authentication messages M1, M4 and M5. Furthermore, authentication of the GWN by
the SDj and authentication of the SDj by the GWN through exchanging the authentication
messages M2 and M3.
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The LAP performs a set of a symmetric cryptographic functions using the authenti-
cation keys that were generated during the registration phases of the Pi and SDj with the
GWN. Besides, one-way hash functions are used to generate the verification values of the
authentication parameters for all authentication messages. This phase also establishes a
new subsequent key PSij generated by the GWN to be used when the Pi and SDj execute
the SAP to authenticate each other directly.

M1 is a request authentication message that the Pi generates to prove itself to the GWN
and has the values IDi, CTi0 and Vi0: IDi represents the Pi’s identity; CTi0 is an encrypted
value of the Pi’s timestamp and a random number with the identity of the patient; and Vi0
is a hash value used on the GWN side to verify the CTi0 value. M4 is a response message
that the GWN generates to prove itself to the Pi and has the values CTi1 and Vi1: CTi1 is
an encryption of the concatenation value of the timestamp, random number, and PSij key
that are generated by the GWN, and Vi1 is a hash value used on the Pi side to verify the
CTi1 value. M5 is a confirmation message the Pi sends to the GWN to complete the mutual
authentication. This message includes the hash value (Vxi), which is used as a confirmation
value to the GWN.

On the other side, M2 is a request authentication message that the GWN generates to
prove itself to the SDj and has the values C0j, CTj0, and Vj0: C0j is an incremental counter
of the authentication session; CTj0 is an encrypted value of the timestamp, random number,
the PSij key of the GWN’s; and Vj0 is a hash value used on the SDj side to verify the CTj0
value. Finally, M3 is a response message that the SDj generates to prove itself to the GWN
and has the values IDjs, CTj1, and Vj1: IDjs is the SDj’s identity; CTj1 is an encrypted value
of the SDj’s timestamp and random number; and Vj1 is a hash value used on the GWN
side to verify the CTj1 value.

In the SAP, as illustrated in Figure 3, mutual authentication is achieved between the
Pi and SDj through the direct exchange of authentication messages M1 and M2. The PSij
that was received by both sides during the LAP will be used to encrypt the authentication
parameters. In this phase, both authentication sides maintained a session counter (C0ij) to
determine how many times the PSij value will derive a new key for the next direct mutual
authentication session without going back to execute the LAP for a new PSij key. M1 is a
request authentication message generated by the Pi to prove itself to the SDj and has the
values C0ij, CTi2, and Vi3: C0ij is a session counter as mentioned; CTj2 is an encrypted
value of the Pi’s timestamp and random number with C0ij using the derived subsequent
key (PSij); and Vi3 is a hash value used on the SDj side to verify the CTi2 value. On other
hand, the M2 message is a response message that the SDj generates to prove itself to the Pi.
In the same manner, M2 comprises ID1ij, CTj2, and Vj3: ID1ij represents the pseudonym for
SDj generated by the Pi to derive a new value of the PSij key for the current authentication
session, and Vj3 is a hash value on the Pi side that verifies the CTj2 value.

As shown in Figure 4, the exchange of M1 and M2 achieves mutual authentication
between the SDj and Sk in the WAP. The SDj generates a secret key (SKk) to calculate the
authentication parameters of the request message by performing a set of one-way hash
functions, and the Sk derives the same SKk value to calculate the authentication parameters
of the response message using the same hash functions that used on the SDj side. In this
phase, both of the authentication sides maintain a pair of sequence numbers, SSk0 and SSk1,
to maintain mutual synchronization.

M1 is a request authentication message that is the SDj generates to prove itself to the
connected Sk and has the values CTk, Vk0 and SSk0: CTk hides the hash value of the SKk
and the authentication session number; Vk0 is a hash value on the Sk side that verifies CTk;
and SSk0 is a sequence number on the SDj side. Finally, M2 is a response massage that the
Sk generates to prove itself to the SDj and consists of IDk and Vk2: IDk is a pseudonym for
the Sk generated by the SDj to identify the Sk, and Vk2 value is a hash value used on the
SDj side to verify the connected Sk.

From the aforementioned discussion, the main execution points of the E2EA scheme
can be summarized as follows:
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(1) The Pi executes the LAP by sending an authentication request message to the GWN
and delegates the GWN to perform mutual authentication with the SDj, wherein both
of the Pi and SDj obtain the seed value of the PSij key;

(2) The Pi and SDj can execute the SAP to authenticate each other a maximum of m times
directly without going back to execute the LAP. In each SAP execution, the Pi and SDj
derive a new value from the PSij key to encrypt the authentication parameters of the
messages exchanged between them;

(3) The WAP can be executed between the SDj and connected Sk after either the LAP or
SAP execution to exchange either the vital signs or the medical orders of the patient.
Therefore, the WAP can execute a maximum of m + 1 times without going back to the
LAP execution.

For further clarification of the relationship among the three phases, consider the
timeline diagram in Figure 5. Suppose that the Pi sends a new authentication request to the
GWN at time τ1,1. Then, the LAP is executed and a new PSij key is created by the GWN.
So, both of the Pi and SDj obtained the first value of the PSij0 key. Mutual authentication is
performed between the SDj and Sk by executing WAP using the first value of SKk1.
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After τ1,1, the second authentication request event occurs at time τ1,2. The Pi initiates
the first SAP using the (PSij0) key and the SDj initiates the second WAP with Sk using the
second derived value of (SKk2).

At time τ1,m+1, the last allowable derived key value (PSijm−1) for the PSij key was
used for the SAP at the m-th authentication event. (Cij is at the maximum value of m − 1).
Moreover, based on the new value of SSk0 and SSk1, the last allowable derived value of
SKkm was used for WAP at the (m+1)-th authentication event. So, at time τ1,m+1, both
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the Pi and SDj used a set of derived subsequent keys {PSij0, PSij1, PSij2 . . . ., PSijm−1} to
authenticate each other by executing m-SAPs directly.

After τ1,m+1, the next authentication event occurred at τ2,1. The Pi realized that the
value of Cij had reached maximum (Cij = m − 1), which executed the second LAP to
obtain the next PSij key from the GWN, after which Pi and SDj performed the m-SAPs and
m+1-WAPs, respectively. For next authentication events, the LAPs, SAPs, and WAPs were
performed accordingly as descried above.

After τn,m+1, the Pi and SDj used the N-th PSij values that was created by GWN via
all executed LAPs. It is worth mentioning that, the first WAP execution in each of the LAPs
were not considered since it was not included in min Cij–max Cij. Thus, during the period
τ1,1–τn,m+1, the authentication sessions number is (N − 1 LAPs, (N − 1) × m SAPs and
(N − 1) × m WAPs).

1.2. Related Work

A few researchers have proposed an analytical model for the traffic signaling of
authentication schemes. In 2003, Lin and Chen [26] proposed an analytical model base
on the Poisson process to reduce authentication signaling traffic in a third-generation
mobile network. This model was proposed to investigate the impact of the number of
authentication vectors (AVs) generated by the serving network on the signaling traffic
during the execution of the authentication scheme. This model was also used to develop
an automatic K-selection mechanism that selected the size of the AV array dynamically
to reduce network signaling cost. In 2009, Hen et al. [27] evaluated the signaling loads
in the third-generation mobile network via an analytical model based on the renewal
process theory. This model was used to study the effect of the call arrival rate, mobility,
subscribers’ preference and operational policy during execution of the scheme. In 2017,
Al-Saraireh [28] proposed an analytic model based on the Poisson process to reduce
authentication signaling traffic in the long term evolution (LTE) mobile network. This
model was proposed to determine the impact of the size of authentication vector (AV) array
generated by the serving network on the signaling traffic during the execution. In 2021,
the authors [29] proposed an analytical model to reduce the overhead message cost of the
secure anonymity authentication key and key agreement scheme (SAK–AKA) for 4G/5G
mobile networks. In this analytical model, the authentication messages were represented
by a Poisson process, wherein the residence time of the user request for authentication had
an exponential distribution to determine the number of authentication vectors (AVs) to be
generated by the serving network to authenticate the user’s mobile.

In none of the aforementioned research papers was there a proposal for an analytical
model to analyze and minimize the authentication signaling traffic cost of a healthcare
systems authentication scheme.

1.3. Motivations and Contributions

In an E2EA scheme, LAP operations carry high communication costs. Therefore, we
sought to increase the maximum limit of Cij to reduce the number of LAPs performed when
the Pi sends an authentication request to the GWN. On the other hand, if there is a large
number of m, the level of security may be degraded. Thus, an appropriate (m) value need to
be found that can maintain a specific level of security while minimizing the authentication
signaling traffic costs. The main contributions of this paper can be summarized as follows:

(1) Introduced the E2EA scheme by explaining the relationship between its authentication
phases.

(2) Introduced the residence timeline of authentication events in E2EA scheme.
(3) Proposed an analytic model to represent E2EA signaling traffic according to Poisson

process, wherein the residence authentication time has three types of distribution:
gamma, hypo-exponential, and exponential.

(4) Derived a signaling traffic cost function for the (m) value effect on the communication
lines between the authentication nodes.
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(5) Analyzed the derived signaling traffic cost function numerically using the Newton–
Raphson method to determine the optimal value of (m) to minimize the cost of E2EA
scheme.

1.4. Organization of This Paper

In Section 2, an analytic model is proposed to derive an authentication signaling traffic
cost function for the E2EA scheme by representing the signaling traffic according to the
Poisson process using three types of distributions. Section 3 discusses the analysis of the
proposed analytical model to show the impact of the (m) value on the signaling traffic costs
of the authentication events. In Section 4, the Newton–Raphson method is used to derive
the optimal value of (m) numerically. Finally, we provide our conclusions in Section 5.

2. Proposed Analytic Model of E2EAScheme

Let N be the total number of LAP authentication events performed by the Pi. For each
LAP event, the Pi and SDj execute m-SAPs, where the WAPs are a consequence of the SAP
times. Suppose that the aggregate incoming/outgoing Pi authentication messages form a
Poisson process with rate (λ), {N(t): t≥ 0}, where t is the residence time that the Pi sends an
authentication request to the GWN. Let Ψ (n, m, t) be the probability that there are n-LAPs
for residence period t; this means that the process does not reach the (n+1)-th LAP and
the authentications were n-LAPs; that is, m(n − 1)-SAPs and i-SAPs before time τ n,m+1,
where 0 ≤ i ≤ m − 1. Thus, the total number of performed authentication events of the Pi
at time t = (τn,m+1–τ1,1) is (m(n − 1) + i). Therefore, according the probability function of
the Poisson distribution [30], we have:

Ψ(n, m, t) =
m−1

∑
i=0

(λt)(n−1)m+i

[(n− 1)m + i]!
e−λt (1)

let Ψ (n, m) be the probability function that there are n-LAPs during the residence time and
m is the performed SAPs for each LAP so that:

Ψ(n, m) =

∞∫
0

P{N = n|T = t} f (t)dt =
∞∫

0

Ψ(n, m, t) f (t)dt (2)

where T is a non-negative random variable representing the residence time of the Pi.
The expected number of authentication events through the residence time is given as:

E(N) =
∞

∑
n=1

n×Ψ(n, m) (3)

if C(m) is considered to be the total cost of transmitted messages in the E2EA scheme
through the residence time when the Pi requests authentication to monitor a specific SDj,
then the total cost of all authentication phases is the expected number of authentication
events multiplied by the cost of each event (i.e., the LAPs, SAPs, and WAPs phases), which
can be expressed as:

C(m) = E(N)× [5α + 2(α + β)m] (4)

where α and β represent the overhead transmission cost of the authentication messages
through the internet and WMSN connections. In the following subsections, the Ψ (n, m),
E(N), and C(m) are computed, wherein the residence time T has gamma, hypo-exponential,
and exponential distributions, respectively.
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2.1. T Has an Exponential Distribution with Mean µ−1

Equation (2) becomes:

Ψ(n, m) =
m−1

∑
i=0

∞∫
0

µ
λ(n−1)m+i

[(n− 1)m + i]!
e−(λ+µ)tdt =

m−1

∑
i=0

(
µ

λ + µ

)(
λ

λ + µ

)(n−1)m+i

Using the geometric series formula:

Ψ(n, m) =

(
λ

λ + µ

)(n−1)m[
1−

(
λ

λ + µ

)m]
(5)

if γ = λ
λ+µ , and p = 1− γm; then Equation (5) becomes:

Ψ(n, m) = p(1− p)n−1 n = 1, 2, . . . (6)

Equation (6) explains that Ψ (n, m) has the geometric probability function with mean
p−1. This is a reasonable and consistent result since a LAP should be executed first and
then m-SAPs with probability γm. In general, N has a geometric distribution expectation,
so (3) and (4) can be rewritten as (7) and (8), respectively:

E(N) =
∞

∑
n=1

n×Ψ(n, m) =
1
p
=

1
1− γm (7)

C(m) =
5α + 2(α + β)m

1− γm (8)

2.2. T Has Hypo-Exponential Distribution

Actually, the hypo-exponential distribution was used for modeling multiple exponen-
tial phases in series, which is a suitable for an IoT system since the Pi executes two types
of authentication phases (LAP and SAP). WLOG, assume that T has hypo-exponential
distribution with mean µ−1

1 + µ−1
2 such that µ1 6= µ2, then from Equation (2) we have:

Ψ(n, m) =
m−1

∑
i=0

∞∫
0

λ(n−1)m+i

[(n− 1)m + i]!
e−λt µ1µ2

µ2 − µ1

(
e−µ1t − e−µ2t)dt

Ψ(n, m) =
m−1

∑
i=0

[(
µ2

µ2 − µ1

)
(1− γ1)γ1

(n−1)m+i −
(

µ1

µ2 − µ1

)
(1− γ2)γ2

(n−1)m+i
]

If pj = 1− γm
j , j = 1, 2, then the geometric series formula gives:

Ψ(n, m) =

(
µ2

µ2 − µ1

)
p1

(n−1)[1− p1]−
(

µ1

µ2 − µ1

)
p2

(n−1)[1− p2] : n = 1, 2, . . . (9)

Note that the Ψ(n, m) is a linear combination of two probability density functions of
the geometric distribution with means 1

p1
and 1

p2
, respectively; therefore:

E(N) =
µ2 p2 − µ1 p1

(µ2 − µ1)p1 p2
=

µ2(1− γm
2 )− µ1

(
1− γm

1
)

(µ2 − µ1)
(
1− γm

1
)(

1− γm
2
) (10)

C(m) =
[µ2 p2 − µ1 p1][5α + 2(α + β)m]

(µ2 − µ1)p1 p2
(11)
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2.3. T Has a Gamma Distribution

Assuming that T has a gamma distribution with the shape parameter κ > 0 and that θ
is the scale parameter (with mean µ−1, and variance ν), then from Equation (2) we have:

Ψ(n, m) =

∞∫
0

m−1

∑
i=0

(λt)(n−1)m+i

((n− 1)m + i)!
e−λt θκtκ−1e−θt

Γ(κ)
dt =

m−1

∑
i=0

Γ[(n− 1)m + i + κ + 1]
Γ((n− 1)m + i)Γ(κ)

(1− γ)(n−1)m+iγκ (12)

where γ = θ
λ+θ .

Ψ (n, m) is the cumulative distribution function of the negative binomial distribution
regarding the number of executed m-SAPS (sometimes called mixture of a family of Poisson
distributions with Gamma mixing weights) with parameter (κ) and (γ). To find the relation
between the probability function Ψ (n, m) and the mean of the residence time, substitute
κθ−1 = µ−1 and ν = κθ−2 into Equation (12):

Ψ(n, m) =
m−1

∑
i=0

(λµν)(n−1)m+i

[(n− 1)m + i]!

(
(n−1)m+i

∏
j=1

[(
µ2ν
)−1

+ 1
])

(λµν + 1)−[(µ
2ν)
−1

+(n−1)m+i] (13)

Thus, the expectation E(N) and the cost function C(m) in Equations (3) and (4) will be:

E(N) =
∞

∑
n=1

n×
(

m−1

∑
i=0

(λµν)(n−1)m+i

[(n− 1)m + i]!

(
(n−1)m+i

∏
j=1

((
µ2ν
)−1

+ 1
))

(λµν + 1)−[(µ
2ν)
−1

+(n−1)m+i]

)
(14)

C(m) = [5α + 2(α + β)m]×[
∞
∑

n=1
n×

(
m−1
∑

i=0

(λµν)(n−1)m+i(λµν+1)−[(µ
2ν)
−1

+(n−1)m+i]

[(n−1)m+i]!

(n−1)m+i
∏
j=1

((
µ2ν
)−1

+ 1
))] (15)

3. Analysis of the Proposed Analytical Model

This section describes the impact of (m) values on the E(N) according to Equations (7),
(10) and (14), and the cost function C(m) according to Equations (8), (11) and (15).

Figure 6a–c plot the relation between the E(N) versus the value of m for the multiple
arrival rate (λ), where the residence time is distributed (exponential, hypo exponential and
gamma) with means µ−1, µ1

−1 + µ2
−1, and µ−1, respectively. It is obvious the E(N) is a

decreasing function of m and the plotted points are closed to each other. After a while m ≥
10, E(N) is insignificantly reduced by increasing the value of m.
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On the other hand, the function Ψ (n, m) had a different behavior with respect to m,
for the fixed ratio γ. Figure 7a–f plot the probability density function Ψ (n, m) when the
number of SAPs was 5 ≤ m ≤ 20, for various residence-time distributions. Notice that the
behavior of Ψ (n, m) was similar after a specified number of n; for n ≥ 6, the plotted points
were closed to each other. This observation was consistent with Figure 6, i.e., the E(N)
value was the same for the large (m) value, and the increasing value of m did not improve
the E(N) value.
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Figure 7. With different residence/request time distributions as in (a–e). (a) Exponentially distributed
residence time, mean µ−1, when λ = 10µ. (b) Hypo-exponential distributed residence time,
when λ = 2µ1 = 20µ2. (c) Hypo-exponential distributed residence time, when λ = 10µ1 = 2µ2.
(d) Gamma-distributed residence time is when κ = 1, and λ = 10µ. (e) Gamma-distributed residence
time, when κ = 2, and λ = 20µ. (f) Gamma-distributed residence time, when κ = 3, and λ = 30µ.

Figure 8a–c show the effect of m values on the trend of the cost function C(m) for fixed
α, β, and λ. The trend of the plots is the same for various residence time distribution, all
plots obviously show that there is a critical value (m), which is minimizing the cost function,
and after this point, the C(m) is rapidly increased. Also, the C(m) values are significantly
increased with the increasing of the (λ) values. These results are proportionate with goal of
the direct authentication between the Pi and SDj, that if there are more SAPs, then more
authentication keys (PSij) should be derived by the Pi and SDj.
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Figures 6–8 show that applying various distributions (gamma, hypo-exponential
and exponential) as residence times did not change the trend of Ψ (n, m), E(N) or C(m)
significantly. Therefore, studying the extent of the influence of one of these probability
distributions was sufficient. Where the exponential distribution was good in the mean
and dealt with all the trends was a special case of the gamma and hypo-exponential
distributions.

Figure 9a–c represent the relation of the C(m) function when the residence time is
exponentially distributed (with mean µ−1, where λ = µ) versus m-SAP values to illustrate
the effect of the overhead transmissions of the authentication messages α and β during the
SAP and WAP execution under different conditions (1 ≤ β ≤ α =10, α = 5 ≤ β ≤ 20, and
in c, 1 ≤ β ≤ 8 and 1 ≤ α ≤ 10). All figures show that there is an optimal value X* that
minimizes the cost function C(m), and it increased rapidly after this point. X* = dXe can be
obtained by differentiating C(m) in Equation (8), where X can be approximated by:

γ−X = 1−
[

5α(ln γ)

2(α + β)

]
+ (ln γ)X (16)
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Figure 9. The C(m) values when the residence time is exponentially distributed with mean µ−1.
(a) The C(m) values when α = 10, β ≤ α. (b) The C(m) values when α = 5, β ≥ α. (c) The C(m) values
when α = 5, 10, β ≤ α.

4. Optimal m-Value Selection

This section provides a numerical analysis to compute the optimal values (X*) that
minimizes the cost function C(m). Applying the Newton–Raphson formula [31] on the
derivative of Equation (8), the recursive equation is:

Xk+1 = Xk −
2(α + β) + γXk [(ln γ)[5α + 2(α + β)Xk]− 2(α + β)]

γXk(ln γ)2[5α + 2(α + β)Xk]
(17)
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where X0 = 1 and k = 0, 1,2, . . . .
In Table 1, the optimal values X* are given for different α, β, and γ, where λ = zµ,

and z = 1, 2, 3, 4, 5, 10, 20, and determined according to different combinations of α and
β values. We assumed that the values of (β) were {1, 2, 3, 4, 5, 10, 15, 20, 75, 100} and the
values of α were {1, 5, 10, 20, 100}. Clearly, the value of X* increased when the ratio (γ)
increased (i.e., λ increased), and X* increased slightly with the large increase in α values
for any specific fixed value of the request ratio (γ). On the other hand, X* decreased when
(β) increased. However, the results of Table 1 confirmed the consistency of the relation
between the optimal value C(m), α, β and γ that were previously deduced. In this context,
the main factors that increased the authentication requests were the medical status and the
number of the patient’s connected sensors.

Table 1. The optimized X* of the cost function C(m) for different values of (α) and (β) with respect to
a fixed ratio (γ) when λ = zµ, where z = 1, 2, 3, 4, 5, 10, and 20.

λ = µ 2µ 3µ 4µ 5µ 10µ 20µ

α β γ = 0.5 γ = 0.667 γ = 0.75 γ = 0.8 γ = 0.833 γ = 0.909 γ = 0.952

1

1 2 3 3 3 4 5 7
2 2 2 3 3 3 4 6
3 2 2 2 3 3 4 5
4 2 2 2 2 3 4 5
5 1 2 2 2 3 3 4

5
1 2 3 4 4 5 6 9
3 2 3 3 4 4 6 8
5 2 3 3 3 4 5 7

10

1 2 3 4 4 5 7 9
2 2 3 4 4 5 6 9
5 2 3 3 4 4 6 8
8 2 3 3 4 4 5 8
10 2 3 3 3 4 5 7

20

1 3 3 4 4 5 7 10
2 2 3 4 4 5 7 9
5 2 3 4 4 5 6 9
10 2 3 3 4 4 6 8
15 2 3 3 4 4 6 8
20 2 3 3 3 4 5 7

100

1 3 3 4 5 5 7 10
10 2 3 4 4 5 7 9
15 2 3 4 4 5 7 9
50 2 3 3 4 4 6 8
75 2 3 3 4 4 6 8

100 2 3 3 3 4 5 7

5. Conclusions

In the E2EA scheme, it is important to determine an appropriate m value that represent
how many times the SAPs and WAPs will be executed when the LAP is executed. This can
maintain a specific level of security and reduce the authentication signaling traffic cost.
In this paper, we proposed an analytical model based on the Poisson process for E2EA to
derive the authentication cost function and compute the optimal values of m according to
the overhead transmission of authentication messages that minimize the signaling traffic
cost. We observed from the numerical analysis of the proposed model that the optimal value
m increased when the value of the authentication request ratio γ increased. For any specific
γ value, the optimal m value decreased when the overhead of the authentication messages
α transmitted through the communication channels increased. Hence, the service provider
of the E2EA scheme-based healthcare IoT system should use an m-selection algorithm to
determine its optimal value dynamically according to the authentication request ratio of
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the physician when it executes the LAP and SAP for a specific patient to reduce the cost of
authentication signaling traffic. Therefore, investigating of our analytical model using a
complement simulation tool, and designing a dynamic algorithm to determine the optimal
values of (m) with variant authentication request ratio are our future works.
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