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Abstract: The complexity of the internal components of dental air turbine handpieces has been
increasing over time. To make operations reliable and ensure patients’ safety, this study established
long short-term memory (LSTM) prediction models with the functions of learning, storing, and
transmitting memory for monitoring the health and degradation of dental air turbine handpieces.
A handpiece was used to cut a glass porcelain block back and forth. An accelerometer was used
to obtain vibration signals during the free running of the handpiece to identify the characteristic
frequency of these vibrations in the frequency domain. This information was used to establish a
health index (HI) for developing prediction models. The many-to-one and many-to-many LSTM
frameworks were used for machine learning to establish prediction models for the HI and degradation
trajectory. The results indicate that, in terms of HI predicted for the testing dataset, the mean square
error of the many-to-one LSTM framework was lower than that that of a logistic regression model,
which did not have a memory framework. Nevertheless, high accuracies were achieved with both of
the two aforementioned approaches. In general, the degradation trajectory prediction model could
accurately predict the degradation trend of the dental handpiece; thus, this model can be a useful
tool for predicting the degradation trajectory of real dental handpieces in the future.

Keywords: dental air turbine handpiece; long short-term memory; logistic regression; remaining
useful life

1. Introduction

Dental air turbine handpieces are the most common medical equipment used by den-
tists for treating teeth. The main mechanical mechanism of the aforementioned equipment
involves the introduction of high-pressure air into the head to rotate microturbine blades for
driving bearings to rotate a tooth drill. Before or during treatment, a dentist cannot identify
the state of health (SOH) of and the presence of any damage in the internal components
of a dental handpiece. Because a dental handpiece has a high rotation speed, its internal
bearing gradually degrades and becomes damaged after it has been used for a long time.
Consequently, ceramic balls cannot operate stably along the designated track, which results
in increased internal friction in the shell of the machine head and in increased temperature.
Heat is transferred to the bur through the rotor, which increases the temperature of the bur.
When the temperature of the bur at the milling contact surface is higher than 42.5 ◦C [1],
it may cause irreversible damage to teeth. When the temperature reaches 52 ◦C, it may
cause pulp necrosis. The vibrations of the bur make the patient uncomfortable and cause
the tooth to have an uneven surface.

The authors of [2] used an accelerometer and a laser Doppler vibrometer to measure
vibration signals during the operation of a dental handpiece. By comparing the spectro-
grams of the handpiece without loading (free running) and with loading (milling teeth),
the aforementioned authors discovered that the vibration frequency decreased during
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milling. The two measurement results did not exhibit significant differences. The authors
of [3,4] used different operating conditions of dental air turbine handpieces to generate
an experimental group and a control group. Dental handpieces were used according to
pre-established testing procedures until their bearing failed, through which they analyzed
factors affecting the service life of the bearing. The authors of [4] mentioned that the failure
of the ball bearing was typically caused by faults in the cage (the nonmetal part of the
bearing). When the bearing fails, the cage experiences substantial damage due to the
running of the instrument under load and the occurrence of corrosion in high-pressure
sterilization. Although it cannot be determined whether the wear and fracture of the
cage directly leads to bearing faults, damage to the cage unavoidably hinders the stable
operation of the ball in the raceways, which is sufficient to cause damage to the ball and
raceways under relatively few rotations. Therefore, frictional heat is generated, which
causes the formation of a heat-affected zone. When a dentist uses the handpiece, this heat
is unavoidably conducted to the tooth drill.

Therefore, establishing a prediction model for the health index (HI) of dental hand-
pieces is critical. Such a model can be used to monitor the SOH of a dental handpiece and
predict its remaining useful life (RUL) in real time, which can allow dentists to identify the
timing of potential equipment faults on the basis of comprehensive factors such as internal
bearing damage, cage fracture, or loss of original dynamic balance by the rotor. Moreover,
a dentist can use the aforementioned information to determine the time for replacing parts
of the dental handpiece, such as the bearing, in the next usage cycle so that the handpiece
does not suddenly malfunction during treatment and injure the patient.

In [5], the diagnostic results of a free-running of an air turbine dental handpiece
(ATDH) with three rotor statuses by applying fast Fourier transform (FFT), Hilbert–Huang
transform (HHT), and multiscale entropy (MSE) processes was studied. Our previously
proposed method was tested under conditions of additional axial preload on the rotor and
ceramic bearings with a damaged outer race supporting the rotor. Using a laser-Doppler
vibrometer, condenser microphone, and portable MEMS system microphone were used to
acquire the signals when the ATDH rotor features were changed. The results show that
changes in preload or malfunctioning ball bearings can be discriminated and abstracted
using FFT and HHT to analyze the vibration frequencies with three different sensing
devices. However, no study has investigated the RUL of dental handpieces. Therefore,
the current study used a long short-term memory (LSTM) network to establish an HI
prediction model. Because an LSTM network can transfer memory and learn time-series
data, this network is suitable for fault prediction and prognostic and health management,
such as monitoring the system status and performing predictive maintenance.

Several studies have used different methods to construct an RUL system. The authors
of [6,7] predicted the RUL of the bearing by using the moving-average cross-correlation
based on power spectral density, a deep autoencoder, and a deep neural network. The
authors of [8] used different RUL models for friction systems under different operation
conditions. By using the signal trend and predefined threshold values, the aforementioned
authors identified which model to use and estimated the RUL, thereby increasing the
accuracy of the estimation. With advances in machine learning, studies have applied
logistic regression (LR) to assess the degradation of machines. In [9], the wavelet packet
decomposition technique was used to obtain features from data, such as current and
vibration data, select critical features, and enter these features into the LR model for
assessing machine performance and identifying possible failure models. With increases in
the calculation speed of computers, deep learning has been applied practically in fields such
as medicine and engineering. Numerous studies have adopted deep learning in prognostics
and health management, including fault diagnosis and RUL prediction. In [10,11], the
SOH and RUL of Li batteries were assessed. In [10], features were obtained from the
incremental capacity curve to analyze the correlation between the features and the battery
capacity. This analysis was conducted to select features with high correlations as the input
for artificial neural network (ANN) assessment models. Moreover, the percentages of the
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current capacity and initial capacity were used as standards to train assessment models to
determine the SOH of lithium-ion batteries. Finally, the testing results of the validation
dataset indicated that the ANN assessment models had high accuracy. Convolutional
neural networks (CNNs) and recurrent neural networks (RNNs), which are two types of
deep learning algorithms, have been widely used in various fields. CNNs are commonly
used for handling classification problems such as image recognition and bearing fault
diagnosis [12]. By contrast, RNNs are commonly used for handling time series problems.
Because RNNs use the output from the hidden layer for the previous moment as the
input of the hidden layer for the next moment, the output of each moment is associated
with the input of the previous moment. Thus, RNNs can learn from and memorize time
series. However, RNNs face the exploding gradient and vanishing gradient problems [13],
rendering them difficult to train. LSTM networks can solve the vanishing gradient problem
because, unlike in RNNs, in which the memory of each instance is replaced by a new
memory, the previous memory is added to the new memory in LSTM networks. In [14], an
LSTM model was used to predict oil prices. In [15,16], LSTM models were used in time-
series-related research, such as RUL assessment. In [16], RUL indicators of turbofan engines
were generated using LSTM models. Data obtained from sensors that exhibited relatively
stable changes with the degradation of the engine were used in the aforementioned study.
These data were subjected to processing procedures, such as filtration and normalization.
Compared with linear decreasing, the physical signals obtained from the sensors could
more accurately reflect the actual degradation of engines. Because the real SOH and RUL of
a system are generally unknown, a piece-wise linear decreasing function was used in [17] to
determine the RUL. For a healthy system, degradation is not obvious; therefore, the authors
of [17] assumed that the RUL is initially constant and then decreases linearly. This study
used an accelerometer to obtain the vibration signals of dental handpieces for analyzing
the signal trends and features generated as the rotor of the dental handpieces gradually
degraded with time. The identified trends and features were used as a critical degradation
index to develop an HI model for assessing the SOH and RUL of dental handpieces.

2. Method
2.1. Many to One and Many to Many LSTM Structures for RUL and Degradation Assessment

An LSTM possesses a memory structure that contains memory cells. It adds and
memorizes information as the time series progresses, thereby solving the vanishing gradient
problem. Figure 1 illustrates the basic structure of an LSTM network. The cell state can
be used to store and transmit memory; thus, the information in this state can only be
written or deleted. Without external influence, the aforementioned information remains
unchanged. The parameter xt represents the input data at time t, and ht−1 is the hidden
state at time t− 1. The cell state at time t− 1 is denoted as Ct−1, which is modified to the
present cell state Ct in the hidden layer at time t.
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The hidden layer of an LSTM network contains an input node (at) and three controlled
gates ( ft, it, and ot). The variables at, ft, it, and ot are calculated using (1)–(4), respec-
tively. The input node at is used for updating the cell state, whereas the controlled gates
are used to determine whether to allow information to pass through them. The controlled
gates are the forget gate, input gate, and output gate. The forget gate ( ft) determines
which cell states’ (ct−1) information may pass through it. The input gate (it) determines
which input nodes’ information (at) may pass through it. The vectors (information) passing
through the input gate are used for updating the cell state and are subjected to element-wise
addition with the vectors (information) passing through the forget gate to generate the cell
state at time t (ct). The calculation in the aforementioned process is expressed in (5). The
output gate determines which cell states’ (ct) information may pass through it. The vectors
(information) passing through the output gate are in the hidden state at time t (ht), and
they are the output vectors of the current hidden layer. The calculation method for ht is
presented in (6). In addition, the cell state and hidden state obtained at time t, namely (ct)
and (ht), respectively, are transmitted to the hidden layer at time (t + 1). This process that
progresses with the time series is used for the transmission and learning of memory.

at = tanh(Waxt + Haht−1 + ba) (1)

ft = σ
(

W f xt + H f ht−1 + b f

)
(2)

it = σ(Wixt + Hiht−1 + bi) (3)

ot = σ(Woxt + Hoht−1 + bo) (4)

ct = ( ft � ct−1)⊕ (it � at) (5)

ht = ot � tanh(ct) (6)

where W and H represent the weight, b denotes the bias, and ⊕ is the symbol for element-
wise addition,� is the symbol for element-wise multiplication, tanh denotes the hyperbolic
tangent, and σ represents the sigmoid function. The parameters tanh and σ represent
activation functions.

The current study adopted the many-to-one and many-to-many LSTM structures.
These structures were used to develop different prediction models. When the current state
was known, a model based on the many-to-one LSTM structure was used to predict the
SOH of the next unknown cycle for the early assessment of the SOH of a dental handpiece.
Consider the example of ten time steps. SOH data of the current known cycle and the nine
cycles before it, namelexample of ten time steps. SOH data of the current known cycle and
the nine cycles before it, namely [x(t−9), x(t−8), x(t−7), . . . , x(t)], are entered into the LSTM
model, which then outputs the SOH of the next unknown cycle, namely [y′

(t+1)]. Figure 2
illustrates an LSTM model with the many-to-one structure.
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The many-to-many structure is used to predict the degradation trajectory of dental
handpieces. Consider the example of ten time steps. The SOHs of the current known
cycle and the nine cycles before it, namely [y(t−9), y(t−8), y(t−7), . . . , y(t)], are input into
the LSTM model, which then output the SOHs of the next ten unknown cycles, namely
[y′

(t+1), y′
(t+2), y′

(t+3), . . . , y′
(t+10)]. Subsequently, the output results are used as the model

input. The aforementioned model then outputs the SOHs of the next ten unknown cycles,
namely [y′

(t+11), y′
(t+12), y′

(t+13), . . . , y′
(t+20)]. This method is repeated for iteration to predict

the degradation trajectory of a dental handpiece. Figure 3 shows an LSTM model with the
many-to-many structure. In the many-to-one structure, in each time step, the model can
accept multidimensional input data. By contrast, in the many-to-many structure, in each
time step, input data must be unidimensional to enable the model to continue iterating.
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2.2. Logistic Regression Prediction Model for Many to One Structure

In Equation (7), the sigmoid function is used for predicting the output of LR with
the inputs features x1–xn in Equation (8) using model parameters θ0–θn. A conventional
run-to-failure LR sets y as a constant to 1 for the initial healthy status, to 0 for failure, and
to 0–1 for the rest of the work asset’s lifetime. To build the RUL model accurately with a
LR, the difference between the predicted hθ(x) and y is minimized. Therefore, the model
parameters for each θ0–θn are trained based on Equation (7) to predict the actual CV, y, of
the machine’s health. The model parameters for θ0–θn can be derived using the Bernoulli
distribution, maximum likelihood estimation (MLE), a loss function, and the method of
gradient descent.

hθ(x) =
1

1 + e−θT x
(7)

θTx = θ0 + θ1x1 + θ2x2 + θ3x3 + . . . + θnxn (8)

The probability by Bernoulli distribution is given by Equation (9).

p(y|x) = hθ(x)y(1− hθ(x))1−y =

{
hθ(x) i f y = 1
1− hθ(x) i f y = 0

(9)

The MLE function is applied by multiplying each probability in Equation (9) after the
most likely real outputs y are obtained from the inputs X1–Xm and the model parameters
θ0–θm. Thus, Equation (10) provides a likelihood estimation function based on m known
samples and the loss function in Equation (11). Iterations of the gradient descent method
with the learning rate (α) to find the value of each model parameter θj are performed
according to Equations (12) and (13).

L(θ) =
m

∏
i=1

p(y(i)
∣∣∣x(i); θ ) =

m

∏
i=1

hθ(x(i))
y(i)

(1− hθ

(
x(i)
)
)

1−y(i)
(10)
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J(θ) = − log L(θ) =
m

∑
i=1

(log
(

1 + expθT x(i)
)
− y(i)θTx(i)) (11)

∂J(θ)
∂θj

=
∂ ∑m

i=1

(
log
(

1 + expθT x(i)
)
− y(i)θTx(i)

)
∂θj

=
m

∑
i=1

(hθ(x(i))− y(i))x(i)j (12)

θj = θj − α
m

∑
i=1

(hθ(x(i))− y(i))x(i)j (13)

The LR structure is used to predict the SOH of the next unknown cycle on the basis
of the current known state; thus, the LR structure can achieve the early assessment of the
SOH of a dental handpiece. Because the LR structure does not possess the cell state of the
LSTM network for storing and transmitting memories, the LR structure directly transmits
the known state into the model. Consider the example of ten time steps. SOH data of
the current state and the nine cycles before it, namely [y(t−9), y(t−8), y(t−7), . . . , y(t)], are
input simultaneously into the LR model, which then outputs the SOH of the next unknown
cycle, namely [y′

(t+1)]. The structure of the LR model is displayed in Figure 4. The current
study compared the LSTM model, which possesses the memory storage and transmission
functions, with the LR model, which does not possess these functions, and analyzed their
prediction results.
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2.3. Kalman Filter

A Kalman filter (KF) combines the least square method and state-space representation
in the recursive solution of linear filtering for a dynamic system. The KF is one of the
optimal recursive algorithms in data processing, particularly in the field of navigation,
communication, and satellite and flight control, where high tolerance to noise is crucial.
Contrary to the ordinary concept of low-pass, high-pass, and band-pass filters, the KF is
an estimation and prediction approach based on a probability density function. The KF,
with the optimal recursive data processing algorithm, can estimate the present state by
estimating the previous step and observing the current state. Therefore, without adopting
previous observations and estimation data, less memory space is used, and a shorter system
response time can be obtained. Furthermore, the KF outperforms its low- and high-pass
counterparts in handling probabilistic noises.

During execution, operations of the KF can be divided into two parts, namely predic-
tion and correction. In the recursive process, the following notations are employed [18]:

x̃k: posteriori estimate vector at time step k
Ak: state transition matrix at time step k, A ∈ Rn×n

Bk: input control matrix at time step k, B ∈ Rn×1

zk: measurement vector at time step k
Hk: measurement matrix at time step k
vk: measurement noise at time step k
Qk: process noise covariance matrix
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Rk: measurement noise covariance matrix
Qk and Rk are the influences of the external disturbance noise and measurement noise,

respectively, on the system. The recursive process of the KF can be explained as follows:

I. Prediction

State prediction:
x̃−k = Ak x̃k−1 + Bkuk−1 (14)

Error covariance matrix prediction:

P−k = AkPk−1 AT
k + Qk (15)

II. Correction

State correction:
Kk = P−k HT

k (HkP−k HT
k + Rk)

−1
(16)

X̃k = x̃−k + Kk(zk − Hk x̃−k ) (17)

Pk = (1− Kk Hk)P−k (18)

In the aforementioned procedure, estimation and prediction using the previous time
step can be employed for estimating and predicting the subsequent time step; that is, the
previous state is used to determine the subsequent state. In this study, the state transition
matrix is performed as a single variable at a time for filtering.

3. Experiments
3.1. Experimental Setup and Milling

The experimental instruments consisted of a dental device platform and a den-
tal air turbine handpiece (Figure 5). The dental air turbine handpiece (Tiger101-3T4,
300 × 103–360 × 103 rpm, Thunder, Tiger group, Taichung, Taiwan) contained a machine
head, hand grip, and handpiece connector. The adopted carbide bur (FG 558) had a
diameter of 1.0 mm and a total length of 19 mm. This study used an Alicat PC-Series
proportional–integral–derivative (PID) single-valve pressure controller to control the drive
air pressure (Figure 6). An RS-232 signal line was connected to the Flow Vision SC soft-
ware program on a personal computer. On the computer, various parameters related to
the pressure control valve were adjusted to determine the location of this valve and the
input voltage. The input voltage was adjusted to control the set point. A triaxial desk-
top computer numerical control (CNC) machine (mini-CNC P RX 1510, Original Mind
Co., Nagano, Japan) was used to simulate the motions of humans operating the dental
handpiece. This machine was used to move the dental handpiece and a glass ceramic
block to conduct a cutting experiment. The material used for cutting was glass ceramic
tempered with IPS e.max CAD. A triaxial accelerometer (sensitivity: 1000 mV/g) was
glued to a jig. The NI cDAQ-9174 and NI 9230 instruments were used to measure and
capture the vibration signals of the handpiece during free running. The collected data
were transferred to and stored in LabVIEW. The sampling frequency was set at 12.8 kHz.
The overall experimental setup is illustrated in Figure 6. The cutting conditions were as
follows: feed rate = 100 mm/min, air pressure = 50 psi, and cutting depth = 0.1 mm. The
cutting process involved linear back-and-forth milling (up- and down-milling; Figure 7).
The cutting width was 0.2 mm until the glass ceramic was cut to a depth of 0.1 mm, which
was the cutting path of a cycle, as illustrated in Figure 8. After completing the cutting path
of a cycle, the vibration signals of the dental handpiece during free running were obtained
during the cycle. In this manner, free-running vibration signals were obtained for different
cycles. In each cycle, a volume of approximately 17.87 mm3 was removed. Each cycle
lasted approximately 20 min. Excluding the factor of mill wear, a new tooth drill (based on
several experimental experiences) could generally be used for 20 cycles. Then, according to
the visual inspection results, the tooth drill was replaced.
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Two new dental handpieces were used in the experiment. After dental handpiece
No. 1 completed 250 cycles (5000 min) of the cutting experiment, it did not reflect clear
degradation characteristics in the time- or frequency-domain analyses. Considering the
reliability factors of handpiece production, the cutting experiment was continued. To
quicken the degradation of the aforementioned dental handpiece, after approximately
300 cycles, the conditions of the cutting experiment were altered. The cutting feed rate
was reduced to 30 mm/min; the air pressure was decreased to 45 psi; the cutting depth
was increased from 0.1 to 0.2 mm; the cutting width was 0.3 mm; and the cutting process
involved only down-milling. The reason why the cutting depth and width were increased
was that incomplete cutting was observed in cycles 250–300 during the up-milling process.
After confirming the cutting conditions and paths, for each cycle starting from the 300th
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cycle, the removed volume increased to 35.74 mm3. Moreover, the time required for the
completion of each of these cycles was approximately 47 min. As the cutting experiment
progressed, in some cycles, the dental handpiece exhibited the phenomenon of a sudden
drop in rotation speed. Although the handpiece appeared to be stable, after approximately
375 cycles, the dental handpiece could not conduct more than 20 cycles of the cutting
experiment after a new tooth drill was attached to it. A new tooth drill can typically be
used for more than 20 cycles. Therefore, it could be inferred that the dental handpiece
had degraded. The cutting experiment of dental handpiece No. 1 was stopped at this
moment. This handpiece conducted 416 (250 + 166) cycles of the cutting experiment. The
conditions of the cutting experiment for dental handpiece No. 2 were as follows: cutting
feed rate = 100 mm/min, air pressure = 50 psi, and cutting depth = 0.1 mm. The cutting
process involved linear back-and-forth milling (Figure 7). The cutting width was 0.2 mm
until the glass ceramic block was cut to a depth of 0.1 mm. After 250 cycles of the cutting
experiment, vibration signals with characteristic frequencies that were not observed under
normal conditions gradually appeared; thus, the cutting experiment was terminated.
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3.2. Free-Running Vibration Signals

In [5], a noncontact laser Doppler vibrometer, a condenser microphone, and a mobile
Micro Electro Mechanical System (MEMS) microphone were used to measure the vibration
signals of a dental handpiece under free running. Under the no-loading (free running)
condition, no significant differences were observed in the measurements of the aforemen-
tioned instruments. Under in vivo medical conditions, the mobile MEMS microphone
was the most suitable instrument for the diagnosis of the health of the handpiece [5].
The authors of [2] used an accelerometer and a laser Doppler vibrometer to measure the
vibration signals of a dental handpiece during its operation. The measurement results
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obtained with these two instruments were plotted into the frequency spectrum. Under the
no-loading (free running) condition, the measurement results of these two instruments did
not exhibit substantial differences. Therefore, the current study used the FFT to transform
the free-running vibration signals obtained from the accelerometer into frequency-domain
signals (Figure 9). Dental handpiece No. 1 and dental handpiece No. 2 operated under the
same conditions up to 250 cycles. After the 330th cycle, dental handpiece No. 1 began to
exhibit problems such as an unstable rotation speed and a sudden decrease in the rotation
speed. Moreover, the material removal was incomplete.
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Except for the slight decreases in approximately the 150th cycle, basic frequency
(BF) and ball pass frequency of the outer race of dental handpiece No. 2 exhibited no
substantial differences throughout the 250 cycles. Figure 9 illustrates the FFTs of the 10th
cycle (left) and 200th cycle (right). Figure 10 indicates that during the cutting experiment,
the characteristic frequency (CF) of the vibration exhibited two additional subcharacteristic
frequencies in each cycle (frequencies labeled 1 and 2 in the right part of Figure 10), and the
vibration amplitude gradually increased with the number of cycles. The main frequency
(in the left of Figure 10, 4 kHz) gradually decreased as the number of cycles increased.
The handpiece components were gradually damaged under a fixed drive energy (50 psi);
therefore, other vibration signals were transmitted.
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Figure 10. FFTs of the 10th cycle (left) and 200th cycle (right) for dental handpiece No. 2.

For the frequencies labeled 1 and 2 in Figure 10, CF(1)∼= 3200 Hz and CF(2)∼= 2500 Hz.
These frequencies were repetitive and noticeable. Therefore, the cycles with an unstable
frequency domain in Figure 11 were considered as outliers and removed to facilitate
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subsequent analysis. A total of 17 cycles were removed. The remaining 233 cycles were
used as experimental data to establish the HI and prediction models.
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Figure 12 illustrates the distribution of CF1, CF2, and the BF for each cycle. As shown
in Figure 13 The results indicate that CF1 and CF2 were approximately 78% (r1) and 60%
(r2) of the main frequency, respectively.
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To determine whether CF1 and CF2 changed with the progress of the cutting experi-
ment, the trends of these CFs were analyzed by calculating the amplitude ratios of these
CFs to the entire frequency domain. The relevant formula is expressed as follows:

R
(
rj
)
=

1
S

150

∑
i=−150

C
(

BF× rj + i
)
, j = 1, 2 (19)

S =
6400

∑
k=1

C(k) (20)

where C(x) is the amplitude of the x-section of the frequency distribution of 1–6400 Hz; x
is the xth section; r denotes the ration; r1 = 0.78 and r2 = 0.6 for CF1 and CF2, respectively;
S is the sum of the amplitude of the entire frequency domain; and R is the ratio of the sum
of the CF amplitude to the amplitude sum of the entire frequency domain. The sampling
frequency of the capture card adopted in this study was 12.8 kHz. After performing FFT,
the study could analyze a frequency of up to 6.4 kHz. Therefore, this study calculated the
sum of amplitudes of frequency up to 6.4 kHz. Because the air pressure tube providing air
pressure to the dental air turbine handpieces was an elastic plastic tube, the provided air
pressure was not completely consistent even under PID control, which resulted in some
fluctuation in the CF. Therefore, amplitudes in the frequency ranges of CF1 ± 150 Hz and
CF2 ± 150 Hz were summed and used as the CF amplitudes.

Figure 14 depicts the R values of CF1 and CF2 obtained for each cycle after using (19)
and (20). The results indicate that as the experiment proceeded, R(r1) and R(r2) substantially
increased. These parameters represented CF amplitudes relative to overall amplitudes.
Under long-term milling, the amplitude of the CFs of the handpiece components increased;
thus, as the number of cycles increased, the dental handpieces were gradually damaged,
which resulted in the formation of CFs. Consequently, R(r1) and R(r2) are suitable for being
used to establish the HI of the dental handpieces.
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3.3. Building Health Index

The Kalman filter was applied to R(r1) and R(r2) to smooth out the curve in Figure 14
and obtain trend lines in Figure 15 with the coefficients of Q and R by 0.00001 and 0.0013,
respectively. The trend lines were normalized to between 0 and 1. All the values were
subtracted from the maximum value in the data, which resulted in a reversed trend line,
which is represented by (21). In (21), xi represents the data that required normalization,
xmax is the maximum value in the data, xmin is the minimum value in the data, and Xn is
the normalized data. The aforementioned normalization was conducted to generate an HI
in which 1 represented the initial healthy state and 0 represented the most damaged state.
The SOH of each cycle was between 0 and 1. Finally, because the two HIs generated from
the R values were critical indices for the health of the dental handpieces, these HIs were
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averaged in each cycle to obtain the final HI of the handpieces. Figure 15 illustrates the
complete process for generating the HI.

Xn =
xmax − xi

xmax − xmin
(21)
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4. Remaining Useful Life Prediction and Degradation Assessment
4.1. RUL Based on LSTM Many-to-One Structure

To train and test the LSTM model, odd and even cycles were used as the training and
testing datasets, respectively. Therefore, the training and testing datasets comprised 117
and 116 cycles, respectively. The data remained matched to the same cycles after the data
segmentation. The model parameters were as follows: the number of time steps was 10, the
number of epochs was 100, the loss function was the mean square error, and the number of
LSTM hidden layers was 2.

An LSTM network with a many-to-one structure was used to establish an assessment
model for the condition in which the state of a cycle is known to predict the SOH of the next
unknown cycle. This study used the two normalized values as the model input. The two
normalized values were from the definition of Equations (19) and (20) for R(r1) and R(r2),
respectively. The filtered, normalized and array by two of R(r1) and R(r2) data are treated
as x(t) for the LSTM’s manipulation. Therefore, the input data were [x(t−18), x(t−16), x(t−14),
. . . , x(t)], the model output was [y′

(t+2)], and the corresponded target HI was [y(t+2)]. After
the LSTM model was subjected to training with the training dataset, the mean square error
gradually reduced and converged (Figure 16). Figure 17 illustrates the prediction results of
the aforementioned model. This figure indicates that after training, the aforementioned
LSTM model accurately predicted the SOH even with a dataset unknown to it.
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4.2. LR Prediction Model

The LR prediction model was used to establish an assessment model for using known
cycle state to predict the SOH of the next unknown cycle. The input data of this model were
[y(t−18), y(t−16), y(t−14), . . . , y(t)], the model output was [y′

(t+2)], and the corresponding
target HI was [y(t+2)]. After conducting training with the training dataset, the prediction
results of the LR model were compared with those of the LSTM model with the many-
to-one structure (Figure 18). According to Figure 18, both these models had favorable
accuracies. Therefore, the mean square errors of their prediction results were analyzed.
As shown in Table 1, the mean square errors of the prediction results of the LSTM model
with the many-to-one structure had lower errors than those of the LR model for both the
training and testing data.
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Table 1. Mean square errors of the prediction results of the LR model and the LSTM models with the
many-to-one structure.

LSTM LR

Training dataset 0.000769 0.001359
Testing dataset 0.000820 0.001360

As previously mentioned, a conventional run-to-failure LR sets y as a constant to 1 for
the initial healthy status, to 0 for failure, and to 0–1 for the rest of the work asset’s lifetime.
Here, two feature extractions (CF1 and CF2) were fed into the LR model, and resulted in
good accuracy. However, the real SOH and RUL of a system were generally unknown in
advance, and were changed with time. Raw data for time-forcasting in LR may not apply.
In Section 4.1, the LSTM is able to work on the raw sensory data of machine’s condition.
The advantage of LSTM is to discover some unseen and hidden structure to improve
the general model. The LSTM many-to-one for RUL prediction can do the monitoring
job for RUL’s prediction based on few milling process cycles. In Section 4.3, the LSTM’s
many-to-many structure will be introduced for the SOH of the next unknown cycles. It is
used for the degradation assessment in practice. And it can be deployed whenever one
wants to set a threshold for a diagnostic issue or performs a prognostic diagnosis.

4.3. LSTM Many-to-Many Structure

An LSTM model with the many-to-many structure was established for predicting the
degradation trajectory of a dental handpiece. In the training stage, the SOH of the known cy-
cle was used as the model input data. Therefore, the input data were [y(t−18), y(t−16), y(t−14),
. . . , y(t)], the model output was [y′

(t+2), y′
(t+4), y′

(t+6), . . . , y′
(t+20)], and the corresponding

target HI was [y(t+2), y(t+4), y(t+6), . . . , y(t+20)]. During the testing stage, the predicted
output of the aforementioned model was used as the input for the next model prediction;
thus, iterations were executed for generating the degradation trajectory. After training
with the training dataset, the aforementioned LSTM model’s mean square error gradually
reduced and converged (Figure 19).
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In the testing stage, 30, 60, and 90 known cycles of SOHs were input into the LSTM
model with the many-to-many structure for predicting the subsequent degradation tra-
jectory. The results obtained with the aforementioned model for the training dataset are
displayed in Figure 20. A note is made here that the trajectories of known HI and real HI in
Figure 20 were all from the same conducted experimental results. According to the two
figures at the top of Figure 20, when the aforementioned LSTM model was used to predict
the degradation trajectory, it reflected a gradually declining SOH in the middle cycles; thus,
the aforementioned model achieved favorable prediction results with respect to the target
HI. However, in the later cycles, the predicted SOH did not decline; thus, the degradation
trajectory did not reflect the target HI well. Figure 21 shows the assessment of the testing
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dataset by the LSTM model with the many-to-many structure. Although this model was
not trained with the testing dataset, the predicted degradation trajectory was similar to that
presented by the training dataset. Table 2 indicates that when the number of known cycles
was 90, the prediction results for both the training and testing datasets exhibited the largest
mean square errors. This result was obtained because the aforementioned model could
not favorably predict the SOH in later cycles, which resulted in a large error. Additionally,
the two datasets were subsets of the same dataset; therefore, the mean square error of the
testing dataset was lower than that of the training dataset.
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Table 2. Mean square errors of the prediction results of the LSTM model with the many-to-many
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30 Known Cycles 60 Known Cycles 90 Known Cycles

Training dataset 0.006889 0.005170 0.009435
Testing dataset 0.005132 0.004260 0.007701
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5. Conclusions

The conclusions of this study are as follows:

1. This study used a triaxial accelerometer to measure the vibration signals of dental
handpieces under the free-running condition. The collected data were subjected
to the FFT, after which the frequency spectrum of the rotation speed was plotted.
Subsequently, the amplitudes of CFs and the main rotation speed frequency were
identified in the frequency domain and compared to obtain two critical CFs related to
the SOHs of the dental handpieces. These CFs were used as indices for predicting the
RUL and assessing the degradation of the handpiece.

2. This study established an LSTM model with the many-to-one structure that can
store and transfer memories and an LR prediction model that cannot store memories
to predict the SOHs of the dental handpieces. These models exhibited favorable
prediction results. However, the LSTM model had a lower mean square error than
the LR model did, which indicates that the LSTM model could monitor the SOH for
a long time. The aforementioned LSTM model can be used to predict the RULs of
clinical dental handpieces with high accuracy.

3. An LSTM model with the many-to-many structure was used to predict the SOHs
of unknown cycles. The obtained output was then used as the input for the next
unknown cycle; thus, iterations were executed. Although the aforementioned LSTM
model did not provide highly accurate results for the later cycles (with respect to
the real HI), the model could favorably reveal the gradual degradation of the dental
handpieces in the middle cycles.
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