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Abstract: In this paper a Bayesian method is proposed to estimate dynamic origin–destination (O–
D) demand. The proposed method can synthesize multiple sources of data collected by various
sensors, including link counts, turning movements at intersections, flows, and travel times on partial
paths. Time-dependent demand for each O–D pair at each departure time is assumed to satisfy the
normal distribution. The connections among multiple sources of field data and O–D demands for all
departure times are established by their variance-covariance matrices. Given the prior distribution
of dynamic O–D demands, the posterior distribution is developed by updating the traffic count
information. Then, based on the posterior distribution, both point estimation and the corresponding
confidence intervals of O–D demand variables are estimated. Further, a stepwise algorithm that
can avoid matrix inversion, in which traffic counts are updated one by one, is proposed. Finally, a
numerical example is conducted on Nguyen–Dupuis network to demonstrate the effectiveness of
the proposed Bayesian method and solution algorithm. Results show that the total O–D variance
is decreasing with each added traffic count, implying that updating traffic counts reduces O–D
demand uncertainty. Using the proposed method, both total error and source-specific errors between
estimated and observed traffic counts decrease by iteration. Specifically, using 52 multiple sources of
traffic counts, the relative errors of almost 50% traffic counts are less than 5%, the relative errors of
85% traffic counts are less than 10%, the total error between the estimated and “true” O–D demands
is relatively small, and the O–D demand estimation accuracy can be improved by using more traffic
counts. It concludes that the proposed Bayesian method can effectively synthesize multiple sources
of data and estimate dynamic O–D demands with fine accuracy.

Keywords: dynamic O–D estimation; Bayesian statistic; synthesizing data; stepwise algorithm

1. Introduction

Intelligent transportation systems (ITS) have been vigorously implemented in many
cities around the world. The effectiveness of real-time traffic management strategies
of ITS normally depends on reliable dynamic (i.e., time-dependent) origin–destination
(O–D) demand estimation. In general, O–D demand matrices can be obtained either
from household surveys or/and estimated by traffic counts. O–D demand obtained by
household surveys is not only costly but also vulnerable to become outdated. Thus, the
use of traffic counts to estimate O–D demand becomes attractive because it is cheap and
easy to collect data and to implement.

There is a rich body of literature estimating static or dynamic O–D demand using
link counts. In real applications, the number of links is usually far less than the number of
O–D pairs, thus the O–D demand estimation problem based on link counts becomes an
underspecified (or degenerate) problem that has no unique solution. Therefore, additional
information is required to acquire a unique solution. In ITS, various types of sensors (GPS,
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blue tooth, video, automatic vehicle identification (AVI), plate scanning, etc.) are adopted
to collect traffic data and to predict traffic state. By these sensors, link counts, intersection
turning movements, flows, and travel time on links and partial paths can be collected.

According to the type of traffic data collected, sensors in this paper are categorized as
follows. (a) Counting sensors: these sensors include inductive loop detectors, magnetic
detectors, etc. Using these sensors, traffic characteristics such as speed, density, occu-
pancy, and flow rates on a single lane or a set of lanes in the network can be measured.
(b) Image/video sensors: based on these sensors, moving flows at an intersection or a
link can be collected by taking images or videos. (c) Vehicle-ID sensors: these sensors
include license plate readers, GPS, etc. By these sensors, vehicle IDs in the network can
be identified, thus full or partial path-related information of vehicle can be inferred. For
instance, GPS can be deployed on vehicles to track their route.

Although various sources of data can be used in O–D demand estimation, most
studies tend to use just one source of data or combine it with link counts; very few studies
synthesize multiple sources of data to estimate O–D demand. Synthesizing multiple sources
of data is difficult because they are correlative and complementary to each other and thus
cannot be simply combined together. Hence, the statistical correlations among them should
be analyzed. Moreover, most studies do not make use of travel times (travel times on links
or partial paths) in O–D estimation. This is because the connections between travel time
and O–D demand cannot be measured directly. However, travel time data can often be
collected much more easily (e.g., by vehicle-ID sensors) than the volume data (especially
along a path or a partial path). For example, travel time of a path or a partial path can be
derived by tracking the departure time and arrival time of several GPS-equipped vehicles.
However, it is hard to get path traffic volume data since all the vehicles using the same
path are difficult to track synchronously. Therefore, it is worthwhile to consider the travel
time data in O–D demand estimation.

To bridge the gap above, this paper tries to synthesize multiple sources of data
together, mainly including link counts, time-varying flows and travel time along partial
observed paths, and turning movements at intersections, to estimate dynamic O–D demand.
Specifically, we treat O–D demands as random variables satisfying multivariate normal
distribution, and propose a Bayesian statistical model to estimate dynamic O–D demand
by synthesizing these multiple sources of data. By solving the dynamic user equilibrium
(DUE) problem based on an assumed prior O–D demand, the prior distribution (including
a vector of expected values and a variance-covariance matrix) of all considered variables
is estimated. The relationships among all variables are analyzed by variance-covariance
matrices. By updating the assumed prior distribution of all variables using traffic counts,
we establish the posterior distributions of all variables, based on which point estimation
and probability confidence intervals are inferred to measure the intrinsic uncertainty. In
the proposed Bayesian statistical model, we convert the observed sub-path travel time
to several sub-path flows so as to incorporate sub-path travel time information in O–D
estimation. Specifically, for a sub-path with a given departure time, we sample the normal
distributed sub-path travel time to get arrival time for each user, and the mean of all the
normal distributed sub-path travel times is equal to the observed sub-path travel time. By
this sampling method we convert the sub-path travel time information to sub-path flows
which is more appropriately analyzed in O–D estimation.

One challenge in solving the Bayesian statistical model is to update the traffic counts
and calculate the posterior distribution of all variables, since it involves many matrix
inversions during the calculation, especially on large-scale networks. To simplify the
calculation, a stepwise algorithm that avoids matrix inversions is introduced to solve
the proposed Bayesian statistical model. In this algorithm, the posterior distribution
is estimated by sequentially updating traffic count one by one. In this process, matrix
inversions are not needed since all matrices in the model degenerate to vectors or scalars.

The remainder of the paper is organized as follows. In Section 2, the related literature
of O–D demand estimation methods are reviewed. Then, the Bayesian statistical method is
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briefly explained in Section 3. Section 4 proposes a Bayesian statistical model for dynamic
O–D estimation, followed by a stepwise algorithm for solving the Bayesian model in
Section 5. Numerical examples are provided in Section 6 to illustrate the proposed models
and algorithm. Finally, some conclusions are given in Section 7.

2. Literature Review
2.1. Static O–D Demand Estimation

O–D demand estimation was studied extensively for static case. These methods can
be classified as:

(1) Least squares [1,2] and generalized least squares (GLS) [3–5] methods. These
methods are usually bi-level problems. The upper level is to minimize the weighted
distances between the target and estimated O–D demands, and/or between the traffic
counts and estimated traffic volumes; the lower level model is a static user equilibrium
problem.

(2) Entropy concept-based methods [6]. The entropy concept measures the reasonable-
ness and closeness to reality of an estimated O–D demand matrix. Subject to the prior O–D
matrix, the probability distribution of O–D demand which best represents the current state
of knowledge is the one with the maximum entropy.

(3) Maximum likelihood methods [7]. Assuming the elements of the prior O–D
demand matrix are obtained from random variables with given probability distribution,
these methods maximize the likelihood of the traffic counts conditional on the estimated
O–D demand matrix and the prior O–D demand matrix.

(4) Bayesian inference and Bayesian network methods [8–14]. These methods treat
traffic flow as random variables. Using observed traffic counts to update the assumed prior
distribution, the posterior distribution of all variables is built based on Bayes’ theorem.

Overall, in order to obtain a unique solution, these methods usually use a prior matrix
(or seed matrix). Since the accuracy of the O–D demand estimation is affected significantly
by the prior matrix, some researchers proposed methods based on traffic counts only to
estimate O–D demand [15,16].

2.2. Dynamic O–D Demand Estimation

Estimating dynamic O–D demand is more complicated than the static O–D case
due to its time-varying characteristic. Some studies straightforwardly extend methods
for static case to the dynamic case using time-dependent link counts. For example, to
estimate dynamic O–D demand, Cascetta et al. [17] proposed a GLS method based on a
simplified assignment model. Following Cascetta et al. [16], several researchers extended
CLS methods for dynamic O–D demand estimation [18–20]. For example, Guo et al. [20]
proposed a least square method to estimate dynamic O–D matrix using radio frequency
identification data. In addition, state space models are also frequently used based on the
state vector indicating the unknown O–D demand [21–23].

Note that most existing methods for dynamic O–D demand estimation problem
are characterized by a bi-level optimization structure. The upper-level problem is to
minimize two deviation functions: (1) the distances between observed and estimated time-
dependent traffic counts and (2) the distances between the prior and estimated dynamic
O–D demand matrices. The lower-level problem is the dynamic user equilibrium (DUE)
problem. To solve such a bi-level optimization problem, researchers proposed various
algorithms/methods, such as advanced parallel evolutionary algorithm [24], gradient
approximation method [25,26], guided genetic algorithm [27], cluster-wise simultaneous
perturbation stochastic approximation algorithm [28], etc.

Meanwhile, single-level formulations have also been proposed for the dynamic O–D
demand estimation problem. For instance, based on variational inequalities (VI), Nie
and Zhang [29] formulated a single-level formulation utilizing the dynamic link-path
incidence relationships in a generic projection-based VI solution framework. Lundgren and
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Peterson [30] proposed a heuristic algorithm by adapting the projected gradient method
based on a single level reformulation.

2.3. O–D Demand Estimation Using Multiple Sources of Data

Due to the development in real-time sensing technologies, a variety of sensors can be
used to collect different types of traffic data, including time-dependent link flows, turning
movements at intersections, and full or partial path flows and path travel time.

Turning movements at intersections are normally detected by image/video sensors.
Intersection turning movements provide more information on users’ travel behavior and
usage of network topologies than link counts. Several studies estimate O–D demand by
using turning movements at intersections. For instance, Yang et al. [31] proposed a neural
network approach to estimate dynamic O–D demand using node-based traffic counts.
Using both turning movements and link counts, Alibabai and Mahmassani [32] presented
a bi-level optimization method for dynamic O–D demand estimation, and Lu et al. [33]
proposed a Kalman filter approach to estimate dynamic O–D demand.

To estimate O–D demand, path-based information is more desirable because it can
fully reflect users’ route choice behavior and network topology. However, path information
cannot be fully detected, so researchers normally make use of observed flows or data on
partial path, which can be captured by GPS, mobile phone, plate scanning, AVI, etc. [34–39].
For instance, to estimate static O–D demand, Hu et al. [35] proposed link-based and path-
based models to estimate O–D demand based on traffic counts by vehicle detector sensors
and license plate recognition. In the dynamic case, Yang et al. [37] proposed two GLS
models formulated as single-level optimization problems based on both probe vehicle
trajectories and link counts. Krishnakumari et al. [38] proposed a method without dynamic
network loading using measured flows and speeds. Cao et al. [39] estimated day-to-day
dynamic O–D demand based on connected vehicle trajectories and automatic vehicle
identification data.

In real application, observing partial path or sub-path flow could be difficult and costly.
However, path-based travel time can be observed much more easily and thus can be used
in O–D estimation. For example, Dixon and Rilett [40] applied the GLS method proposed
by Cascetta et al. [17] to estimate the link-flow proportions based on the observed travel
time. Based on local link marginal travel time evaluation by adapting the method proposed
by Ghali and Smith [41], Qian and Zhang [42] extended the single-level O–D demand
estimation framework proposed by Nie and Zhang [3] to utilize travel time measurements.

Except for the above measurements, O–D demand is also estimated by using other
types of traffic information. For instance, since speed and density provide the best rep-
resentation of traffic congestion, some researchers made use of these traffic measures to
estimate dynamic O–D demand [43–45]. Recently, mobile phone data are used by some
researchers to infer O–D trips [46–48].

In the literature, although various sources of data can be used in O–D demand estima-
tion, as shown in Table 1, most studies tend to use just one source of data, or combine it
with link counts; very few studies synthesize multiple sources of data together to estimate
O–D demand. In addition, travel times (travel times on links or partial paths) are rarely
used in O–D estimation. Statistical methods which have been frequently used in static O–D
estimation are also rarely adopted in dynamic case. Providing variability information of
the traffic flow estimation is the most important advantage of statistical methods. Normally,
other methods give only the particular values of the O–D and link flows, while statistical
methods could also provide the corresponding probability intervals. Although variability
information is important in real applications, it is difficult to capture this information in
dynamic O–D demand estimation due to the time-varying characteristic. In Zhu et al. [49],
heterogeneous sensor deployment strategies were proposed for dynamic O–D demand
estimation. Based on the Bayesian method adopted in Zhu et al. [49], this paper tries
to synthesize multiple sources of data, mainly including link counts, time-varying flows
and travel time along partial observed paths, and turning movements at intersections, to
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estimate dynamic O–D demand. Variability information of the traffic flow estimation can
also be provided by using the proposed Bayesian method.

Table 1. Studies on O–D demand estimation using multiple sources of data.

References Case
Traffic Counts

Variability
InformationLink Flow Node Turning

Movements
Partial Path

Flow
Link Travel

Time
Path Travel

Time

[31] Dynamic ×
√

× × × ×
[32,33] Dynamic

√ √
× × × ×

[34] Static
√

×
√

× ×
√

[35] Static
√

×
√

× × ×
[36–39] Dynamic

√
×

√
× × ×

[40] Dynamic
√

× ×
√

× ×
[42] Dynamic

√
× × ×

√
×

This paper Dynamic
√ √ √

×
√ √

3. Bayesian Statistical Method

In this section, some background of Bayesian statistical method are illustrated and
how the information can be updated using the Bayesian statistical method is described.

The Bayesian statistical method is a suitable method for combining prior (historical)
information and sample information. Bayesian inference and Bayesian network methods
have been used frequently to solve a wide variety of practical problems [50–55]. These meth-
ods have also been applied widely to solve the O–D demand estimation problem [8–14,16].
In a Bayesian statistical method, variables are not fixed; rather, they are random vari-
ables satisfying given probability distributions. A Bayesian statistical method usually
updates the prior distribution by using sample information in order to obtain the posterior
distribution p(θ |X ), based on Bayes theorem as follows:

p(θ |X ) =
f (X |θ )p(θ)∫
f (X |θ )p(θ)dθ

(1)

where p(θ) specifies the prior probability density function of parameter θ. In this paper θ
refers to a set of random variables, including dynamic O–D demand, time-dependent path
and sub-path flows, turning movements at intersections and link flows. In Equation (1),
f (X |θ ) is the likelihood of observation X, including partial observed time-varying sub-
path flows, turning movements at intersection, and link counts;

∫
f (X |θ )p(θ)dθ is simply

the marginal density of X, which does not depend on the value of θ.
Once p(θ |X ) is identified, we can obtain the point estimation θ̃ by solving the follow-

ing maximum posterior density planning:

θ̃ = arg max
θ

p(θ |X ) (2)

In a transportation network with modest size, it is difficult to calculate the posterior
distribution due to the multidimensional integral over the feasibility domain. Normally,
Metropolis–Hastings algorithms are used to calculate the posterior distribution [10,12].
These algorithms normally need a large number of samples and are heuristic methods.

Because traffic flows are treated as random variables in the Bayesian statistical method,
we make the following assumption on their distributions:

Assumption. The time-dependent traffic demands between all O–D pairs are assumed to
follow multivariate normal (MVN) distributions.

Previous studies [56,57] made similar assumptions. Note that a normal distribution
for traffic flows is reasonable, because their probabilities can be treated as success rate
among repeating a large number of independent Bernoulli experiments in which the
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users randomly make travel decisions. Moreover, the prior and posterior distributions are
conjugate in the case of multivariate normal distribution. If the posterior distribution is in
the same family as the prior probability distribution, they are called conjugate distributions.
A Bayesian statistical method often works with conjugate priors such that their associated
posteriors belong to the same families. It is noteworthy that the normal distribution allows
negative travel demands in theory, which is not realistic. However, such an issue could be
mitigated if the model is calibrated carefully to fit the observed data well.

Specifically, if θ is normally distributed with mean µθ and variance-covariance Σθ,
calculating the posterior distribution p(θ |X ) is to calculate the posterior mean µθ|X=x
and variance-covariance Σθ|X=x, which can be obtained by using the following updating
equations [8,14]:

µθ|X=x = µθ + ΣθXΣ−1
XX(x− µX) (3)

ΣYZ|X=x = ΣYZ − ΣYXΣ−1
XXΣXZ (4)

where Y and Z both refer to the components of θ; µX and ΣXX are the mean vector and
variance-covariance matrix of observation X; ΣθX is the variance-covariance matrix of θ
and X; ΣYZ is the variance-covariance matrix of Y and Z; ΣYX is the variance-covariance
matrix of Y and X; ΣXZ is the variance-covariance matrix of X and Z; and x is the actual
observed value of X. Note that the posterior mean µθ|X=x depends on x, but the posterior
variance-covariance ΣYZ|X=x does not.

In addition, in case of multivariate normal distribution, the posterior mean µθ|X=x is

equal to the optimal
~
θ of the maximum posterior density planning (2); that is, we can take

the posterior mean µθ|X=x as the point estimation of θ.

4. Model Formulation

In this section, we derive the formulation of the Bayesian statistical model for the
dynamic O–D estimation. Since multiple sources of data are considered, we first analyze
relationships among traffic flows between different sources of data.

4.1. Relationships among Time-Dependent Traffic Flows
4.1.1. O–D Demand and Path Flow

Denote di,t as the flow of O–D pair i at departure time t, fi,k,t as the number of users
between O–D pair i choosing path k at departure time t, and pi,k,t as the proportion of users
between O–D pair i at departure time t choosing path k.

According to the conservation law, fi,k,t can be obtained by:

fi,k,t = pi,k,tdi,t (5)

Define vectors D, Fi, F as follow:

D = [d1,1, d1,2, . . . , d1,t, . . . , di,1, di,2 . . . , di,t . . .︸ ︷︷ ︸
time-dependent demand of O–D i

, . . .]T (6)

Fi = [ fi,1,1, fi,1,2, . . . , fi,1,t, . . . , fi,k,1, fi,k,2, . . . , fi,k,t . . .︸ ︷︷ ︸
time-dependent flow of path k from O–D i

, . . .]T (7)

F = [FT
1 , FT

2 , . . . , FT
i , . . .]

T
(8)

where D is the vector consists of all considered time-dependent O–D demand, Fi is the
vector consists of all time-dependent path flows between O–D pair i, and F is the vector
consists of all time-dependent path flows.
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Define a m× s matrix Pi,t, where m refers to the number of paths for O–D pair i at
departure time t, s equals the dimension of D, then the (k, j) element Pi,t(k, j) of Pi,t is
defined by:

Pi,t(k, j) =

{
pi,k,t, i f j = (i− 1) ∗ |T|+ t

0, otherwise
(9)

where |T| denotes the number of time intervals.
Define matrix P as follows:

P = [PT
1,1, PT

1,2, . . . , PT
2,1, PT

2,2, . . . , PT
i,1, PT

i,2, . . .]
T

(10)

Then the time-dependent path flows satisfy the following flow conservation condition:

F = PD (11)

4.1.2. O–D Demand, Path Flow, and Sub-Path Flow

Define fsub,j,τa ,τd
as the flow along sub-path j with departure time τd at the start node

and arrival time τa at the tail node, ϕi,k,t,j,τa ,τd
as the proportion of users between path k of

O–D pair i with departure time t choosing sub-path j with arrival time τa and departure
time τd.

The time-dependent sub-path flow can be derived from the time-dependent path flow
as follows:

fsub,j,τa ,τd
= ∑

i
∑
k

∑
t

ϕi,k,t,j,τa ,τd
fi,k,t (12)

Define vectors ϕi,j,τa ,τd ϕj,τa ,τd , ϕ and Fsub as follows:

Fsub = [ fsub,1,1,1, fsub,1,2,1, . . . , fsub,j,1,1, fsub,j,2,1, . . . fsub,j,τa ,τd
. . .︸ ︷︷ ︸

time-dependent flow of sub-path j

, . . .]T (13)

ϕi,j,τa ,τd =
[

ϕi,1,1,j,τa ,τd , ϕi,1,2,j,τa ,τd , . . . , ϕi,k,1,j,τa ,τd
, ϕi,k,2,j,τa ,τd

, . . . , ϕi,k,t,j,τa ,τd
, . . .

]
(14)

ϕj,τa ,τd =
[
ϕ1,j,τa ,τd ,ϕ2,j,τa ,τd , . . . ,ϕi,j,τa ,τd , . . .

]
(15)

ϕ = [ϕT
1,1,1,ϕT

1,2,1, . . . ,ϕT
j,1,1,ϕT

j,2,1, . . .]
T

(16)

where Fsub is the vector consists of all considered time-dependent sub-path flow and ϕ is
the corresponding proportion vector. ϕi,j,τa ,τd is the vector consists of the proportions of
users between all time-dependent paths of O–D pair i choosing sub-path j with arrival time
τa and departure time τd. ϕj,τa ,τd is the vector consists of the proportions of users between
all time-dependent paths of all O–D pairs choosing sub-path j with arrival time τa and
departure time τd.

Then consider the error term; a linear relationship between the O–D demand vector
D, the path flow vector F and the sub-path flow vector Fsub is assumed to be:

Fsub = ϕF + ε = ϕPD + ε (17)

where ε = (ε1, ε2, . . .) are mutually independent random variables with zero mean.
However, sometimes we can only observe the time-dependent sub-path travel time

rather than the sub-path flow. In order to make use of the observed sub-path travel time,
we convert these observed travel times to time-dependent sub-path flows.

Denote tj,τd as the observed mean travel time of sub-path j with departure time τd at
the start node. Then for sub-path j with departure time τd, the random travel time tj,τd is
expressed as:

tj,τd = tj,τd + γj,τd (18)
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where γj,τd is the random term and is assumed to be normal distributed with zero mean
and variance λtj,τd , where λ is the coefficient of variation.

Since we cannot obtain the true time-dependent sub-path flow, we assume that the
total flow of sub-path j with departure time τd is equal to the prior (or historical) flow,
which can be obtained by solving the dynamic user equilibrium problem based on the
prior time-dependent O–D demand. For each user, since the travel time is random, it can
be obtained by random sampling from the normal distribution N

(
tj,τd , λtj,τd

)
. Finally, by

sorting out the travel time of all users, we can derive the flows of sub-path j with different
arrival time, which can be treated as the observed time-dependent sub-path flows.

4.1.3. O–D Demand, Path Flow, and Intersection Turning Movements

Each node (intersection) turning movement can be treated as a sub-path with three
nodes: the upstream node, the intersection node, and the downstream node. The arrival
time and departure time at the upstream and downstream nodes cannot be observed. The
departure time at the considered intersection can be inferred as follows.

Define sja,b ,τ as the number of users traveling from upstream node a to downstream
node b connected by node j with departure time τ at node j, and φi,k,t,ja,b ,τ as the proportion
of users between path k of O–D pair i with departure time t at the origin node of O–D pair
i traveling from upstream node a to downstream node b connected by node j at time τ,
where a ∈ Nu and b ∈ Nd, Nu is the set of upstream nodes of node j and Nd is the set of
downstream nodes of node j.

The time-dependent turning movement can be derived from the time-dependent path
flow as follows:

sja,b ,τ = ∑
i

∑
k

∑
t

φi,k,t,ja,b ,τ fi,k,t (19)

Define a column vector Sj,τ as the set of turning movements at node j with departure
time τ and a row vectorφi,k,t,j,τ as the set of the proportions of users between path k with
departure time t of O–D pair i choosing the corresponding turning movement at node j
with departure time τ. Then vectorsφi,j,τ ,φj,τ ,φ and S are expressed as follows:

S = [S1,1, S1,2, . . . Sj,1, Sj,2, . . . , Sj,τ , . . .︸ ︷︷ ︸
time-dependent turning movements at node j

, . . .]T (20)

φi,j,τ =
[
φi,1,1,j,τ ,φi,1,2,j,τ , . . . ,φi,k,1,j,τ ,φi,k,2,j,τ , . . .φi,k,t,j,τ . . . , . . .

]
(21)

φj,τ =
[
φ1,j,τ ,φ2,j,τ , . . . ,φi,j,τ , . . .

]
(22)

φ = [φT
1,1,φT

1,2, . . . ,φT
j,1,φT

j,2 . . . ,φT
j,τ , . . . , . . .]

T
(23)

where S is the vector consists of all considered time-dependent turning movements andφ
is the corresponding proportion vector. φi,j,τ is the vector consists of the proportions of
users between all time-dependent paths of O–D pair i related to the turning movements at
node j with departure time τ. φj,τ is the vector consists of the proportions of users between
all time-dependent paths of all O–D pairs related to the turning movements at node j with
departure time τ.

Considering the error term, similarly, a linear relationship between the O–D demand
vector D, the path flow vector F, and the turning movement vector S is assumed to be:

S = φF + η = φPD + η (24)

where η = (η1, η2, , . . .) are mutually independent random variables with zero mean.
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4.1.4. O–D Demand, Path Flow, and Link Flow

Define vj,τ as the flow of link j at time τ, and Ψi,k,t,j,τ as the proportion of users between
path k of O–D pair i with departure time t choosing link j at time τ.

The time-dependent link flow can be derived from the time-dependent path flow
as follows:

vj,τ = ∑
i

∑
k

∑
t

Ψi,k,t,j,τ fi,k,t (25)

Define vectors Ψi,j,τ , Ψj,τ , Ψ and V as follows:

V = [v1,1, v1,2, . . . vj,1, vj,2, . . . , vj,τ , . . .︸ ︷︷ ︸
time-dependent flow of link j

, . . .]T (26)

Ψi,j,τ =
[
Ψi,1,1,j,τ , Ψi,1,2,j,τ , . . . Ψi,k,1,j,τ , Ψi,k,2,j,τ , . . . , Ψi,k,t,j,τ , . . . , . . .

]
(27)

Ψj,τ =
[
Ψ1,j,τ , Ψ2,j,τ , . . . , Ψi,j,τ , . . .

]
(28)

Ψ = [ΨT
1,1, ΨT

1,2, . . . , ΨT
j,1, ΨT

j,2, . . . , Ψj,τ , . . . , . . .]
T

(29)

where V is the vector consists of all considered time-dependent link flows and Ψ is the
corresponding proportion vector. Ψi,j,τ is the vector consists of the proportions of users
between all time-dependent paths of O–D pair i choosing link j with departure time τ. Ψj,τ
is the vector consists of the proportions of users between all time-dependent paths of all
O–D pairs choosing link j with departure time τ.

Considering the error term, a linear relationship between the O–D demand vector D,
the path flow vector F, and the sub-path flow vector V is assumed to be:

V = ΨF + ξ = ΨPD + ξ (30)

where ξ = (ξ1, ξ2, . . .) are mutually independent random variables with zero mean.

4.2. Updating Observed Information

According to Equations (11), (17), (24), and (30), the whole set of random variables
considered in our model can be described by the linear expression:

D
F

Fsub
S
V

 =


I 0 0 0
P 0 0 0
ϕP I 0 0
φP 0 I 0
ΨP 0 0 I




D
ε

η

ξ

 (31)

Note that P, ϕ, φ, and Ψ can be obtained by solving the dynamic user equilibrium
(DUE) problem based on the prior O–D demand. According to assumptions introduced in
Section 2, if D are multivariate normal random variables with mean E(D) and variance
ΣD, the expected value (vector) of all random variables E(D, F, Fsub, S, V) is

E(D)
E(F)

E(Fsub)
E(S)
E(V)

 =


I 0 0 0
P 0 0 0
ϕP I 0 0
φP 0 I 0
ΨP 0 0 I




E(D)
E(ε)
E(η)
E(ξ)

 (32)

The variance-covariance matrix Σ(D,F,Fsub ,S,V) is:
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Σ(D,F,Fsub ,S,V) =


ΣD ΣDPT ΣD(ϕP)T

ΣD(φP)T
ΣD(ΨP)T

PΣD PΣDPT PΣD(ϕP)T PΣD(φP)T PΣD(ΨP)T

ϕPΣD ϕPΣDPT ϕPΣD(ϕP)T + Dε ϕPΣD(φP)T
ϕPΣD(ΨP)T

φPΣD φPΣDPT φPΣD(ϕP)T
φPΣD(φP)T + Dη φPΣD(ΨP)T

ΨPΣD ΨPΣDPT ΨPΣD(ϕP)T
ΨPΣD(φP)T

ΨPΣD(ΨP)T + Dξ

 (33)

where Dε, Dη, Dξ are the variance matrixes of ε, η and ξ respectively.
Given Equations (32) and (33), we can update the mean and the variance-covariance

matrix of variables based on multiple sources of traffic counts using Equations (3) and (4).
The observed variables include observed time-dependent O–D pair demand, path flows,
sub-path flows, intersection turning movements, and link counts.

5. A Stepwise Algorithm

In a real-sized transportation network, the numbers of links, paths, and O–D pairs are
usually very large, so the dimensions of some variance-covariance matrices in Equations (3)
and (4) could be very large, which makes the proposed model difficult to solve. Specifically,
if the matrix size is large, matrix inversion involved in Equations (3) and (4) is difficult to
compute, and sometimes the matrix may not be reversible at all. To simplify the model, we
propose to use a stepwise method to solve the Bayesian model as shown in Figure 1:
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Figure 1. The stepwise method to solve the Bayesian model. 

Step 1: Initialization. From historical data, we obtain the prior distribution of time-
dependent O–D demand with mean E(𝐃)  and variance 𝚺𝐃 . The variance 𝚺𝐃  is 𝑑𝑖𝑎𝑔(αE(𝐃)), where α is the coefficient of variation. Define n as the iteration number 
and set n = 0. 

Figure 1. The stepwise method to solve the Bayesian model.

Step 1: Initialization. From historical data, we obtain the prior distribution of
time-dependent O–D demand with mean E(D) and variance ΣD. The variance ΣD is
diag(αE(D)), where α is the coefficient of variation. Define n as the iteration number and
set n = 0.
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Step 2: Given the mean E(D) of time-dependent O–D demand, obtain the choice
proportion matrices P, ϕ,φ, and Ψ by solving the DUE problem.

Step 3: Calculate the mean and variance-covariance matrix of time-dependent O–D
demand, path flows, sub-path flows, intersection turning movements, and link counts
based on Equations (31) and (32).

Step 4: If the time-dependent sub-path travel time is observed without knowing
sub-path flows, convert the observed sub-path travel time to time-dependent sub-path
flow as follows. Otherwise go to Step 5.

Step 4.1: If the observed mean travel time of sub-path j with departure time τd is tj,τd
and the prior total flow of sub-path j with departure time τd is fsub,j,τd

(obtained by Step
2), sample the normal distribution N

(
tj,τd , λtj,τd

)
for fsub,j,τd

iterations, and the sampled
fsub,j,τd

random numbers are treated as the travel time for each user.
Step 4.2: The departure time at the start node of the considered sub-path for each

user is the same since they are given, then by sorting out the sampled travel time for each
user with the same arrival time at the tail node of the considered sub-path, several time-
dependent sub-path flows can be derived and these flows can be treated as the observed
variables and go to Step 5.

Step 5: Update the mean and variance-covariance matrices of time-dependent O–D
demand, path flows, sub-path flows, intersection turning movements, and link counts
based on the observed data using Equations (3) and (4).

Step 6: Convergence test. Set n = n + 1. If n = nmax or ∑
i

∑
t
[E(di,t)− E

(
d∗i,t
)
]
2
< ω

then stop, where E
(

d∗i,t
)

is the updated mean flow of O–D pair i with departure time t, ω is
a small number to control convergence, and nmax is the maximum iteration number. Return
the updated mean and variance-covariance matrices of time-dependent O–D demand, path
flows, sub-path flows, intersection turning movements, and link flows, based on which the
point estimation and the corresponding probability intervals will be identified. Otherwise,
continue to Step 7.

Step 7: Update the mean and variance of time-dependent O–D demand:

E(di,t) = ρE
(
d∗i,t
)
+ (1− ρ)E(di,t) (34)

ΣD = diag(αE(D)) (35)

where ρ, 0 < ρ < 1 is a relaxation factor. Then go to Step 2.
In this algorithm, given a seed (prior) O–D demand matrix, an updated O–D demand

matrix can be obtained based on the Bayesian statistical method. In each iteration, the
choice proportion matrices P, ϕ,φ, and Ψ are fixed. Since these proportion matrices vary
with the O–D demand matrix, they will also be updated when an updated O–D demand
matrix is derived. The algorithm goes to the next iteration based on the updated O–D
demand matrix and choice proportion matrices. In Step 5, we update observed variables
one by one. In this case, according to Equations (3) and (4), we do not need to calculate
the inverse of a matrix because these matrices degenerates to column vectors or scalars.
Specifically, ΣθX, ΣYZ, ΣYX, ΣXZ are column vectors and ΣXX degenerates to a scalar. Then
the number of calculations needed in Step 5 is linear in the dimensions of E(D, F, Fsub, S, V)
and Σ(D,F,Fsub ,S,V). Because most calculations are involved in Step 5, the computational
time of the proposed algorithm in each iteration is linear in the size of number of links,
turning movements and sub-paths in the network.

6. Numerical Example

In this section, we demonstrate the proposed method and algorithm using Nguyen–
Dupuis network as shown in Figure 2, which has been frequently used in the literature to
verify methods related to transportation network modeling including the O–D demand
estimation problem [29,34]. It consists of 13 nodes and 38 bidirectional links. Six nodes
{12, 1, 4, 8, 2, 3} are terminal nodes, which could be either origins or destinations. Vehicles



Sensors 2021, 21, 4971 12 of 20

can travel from left to right (from origins {12, 1, 4} to destinations {8, 2, 3}) or from right
to left (from origins {8, 2, 3} to destinations {12, 1, 4}). Therefore, in total there are 18 O–D
pairs. The O–D matrix is time-dependent with 15-min intervals and the number of time
intervals is six. Demand for each O–D pair at each departure time is 30 in the seed matrix.
We suppose the “true” O–D demand matrix is known, which is generated from the seed
matrix randomly. The observed data are assumed to be collected by sensors in the network.
Specifically, we assign the “true” matrix in the network by DUE method and place sensors
in the network to obtain the sensor data, which collect travel time on 4 sub-paths, time-
dependent turning movements at 18 intersections and time-dependent link counts on
30 links. These sensor data, as tabulated in Tables 2–4, serve as our observed data. In such
a manner the observed data are consistent with the “true” matrix and assignment method
in the model. We then try to estimate time-dependent O–D demand reversely from the
observed data to match the “true” matrix. The DUE method is a standalone procedure in
the model, which can be solved by off-the-shelf traffic software. In this paper, we used a
dynamic assignment and simulation model—DYNASMART-P 1.3.0—to solve DUE.
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Table 2. Observed and estimated sub-path travel time.

Sub-Path Departure
Time Observed Estimated Relative

Error (%) Sub-Path Departure
Time Observed Estimated Relative

Error (%)

5-6-7-8 1 7.5 7.45 0.67 5-9-10-11 2 7.5 7.34 2.13
5-6-7-8 3 5 4.83 3.4 5-9-10-11 4 7 7.1 1.43

Table 3. Observed and estimated node turning movements.

Turning
Movement

Departure
Time Observed Estimated Relative

Error (%)
Turning

Movement
Departure

Time Observed Estimated Relative
Error (%)

2-11-10 0 63 68 8.00 7-6-5 3 36 27 25.00
10-6-12 1 41 51.21 24.90 7-6-12 4 40.72 44 8.06
3-11-10 1 91 82.07 9.81 7-6-5 4 127.26 120.02 5.69
2-11-10 1 124 132 6.45 2-11-7 4 57.92 63 8.77

7-6-5 2 39 40 2.56 2-11-10 4 73.42 74.34 1.25
7-11-3 2 50 47 6.00 7-6-12 5 70.86 75.7 6.83

3-11-10 2 35 32.67 6.66 7-6-5 5 108.25 105.87 2.20
2-11-10 2 138 141 2.17 2-11-10 5 52 53.66 3.19
10-6-12 3 35 36 2.86 7-6-12 6 34.63 32.75 5.43
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Table 4. Observed and estimated link flows.

Link Departure
Time Observed Estimated Relative

Error (%) Link Departure
Time Observed Estimated Relative

Error (%)

8-12 0 143.06 138.28 3.34 3-13 3 140.09 147.18 5.06
5-9 0 161 163.11 1.31 3-13 4 142.35 150.56 5.77

3-13 0 139 163.42 17.57 5-6 4 140 142 1.43
4-5 0 137 146.5 6.93 6-5 4 179.26 176.59 1.49

12-8 1 154.26 161.94 4.98 7-8 4 167.25 153 8.52
8-12 1 189.81 192.39 1.36 8-7 5 159.23 166.01 4.26
5-9 1 285 282.8 0.08 12-8 5 216.47 194.13 10.32
9-5 1 240 260.61 8.59 8-12 5 186.88 189.59 1.45

8-12 2 147.23 147.96 0.50 1-12 5 195.59 172.38 11.87
12-1 2 136 160.04 17.68 3-13 6 93.34 96.43 3.31
5-9 2 339.94 337.66 0.67 12-8 6 141.67 121.21 14.44
9-5 2 322.75 311.92 3.35 8-12 6 128.86 138.79 7.71

1-12 3 99.67 88.73 10.98 12-1 6 107.41 111.69 3.99
5-9 3 284.45 309.13 8.68 5-6 6 21 25 19.05
9-5 3 100.96 97.64 3.29 9-13 6 35.11 34 3.16

To measure the performance of the proposed Bayesian method and the algorithm,
three aggregate measures were used: the percentage root-mean-square error (%RMSE), the
mean absolute error (MAE) and Theil’s inequality coefficient U [58] for traffic counts, to
measure the fit between estimated and observed traffic counts:

RMSE =

√
1
N ∑N

n=1 (yest
n − yobs

n )
2

1
N ∑N

n=1 yobs
n

× 100% (36)

MAE =
1
N

N

∑
n=1

∣∣∣(yest
n − yobs

n

)∣∣∣ (37)

U =

√
1
N ∑N

n=1
(
yest

n − yobs
n
)2√

1
N ∑N

n=1(yest
n )2 +

√
1
N ∑N

n=1
(
yobs

n
)2

(38)

where N is the number of measurements, yest
n is the estimated measurement, and yobs

n is the
observed measurement. Note that the value of U is between zero and one. U = 0 implies a
perfect fit between the estimated and observed measurements, while U = 1 indicates the
worst possible fit.

Similarly, to measure the fit between estimated and “true” O–D demand, three mea-
sures were used as following:

OD_RMSE =

√
1
M ∑M

m=1 (dest
m − dobs

m )
2

1
M ∑M

m=1 dobs
m

× 100% (39)

MAE =
1
N

N

∑
n=1

∣∣∣(yest
n − yobs

n

)∣∣∣ (40)

U =

√
1
N ∑N

n=1
(
yest

n − yobs
n
)2√

1
N ∑N

n=1(yest
n )2 +

√
1
N ∑N

n=1
(
yobs

n
)2

(41)

where M is the number of O–D pairs, dest
m is the estimated O–D demand, and dobs

m is the
“true” O–D demand.

Starting from the seed matrix and the sensor data, the time-dependent O–D demand
is estimated by the procedure introduced in Section 5. The value of α in Step 1 is 0.5, λ in
Step 4.1 is 1.0, and ρ in Step 7 is 0.1.
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The total O–D variance is the sum of variance of each time dependent O–D demand.
Figure 3 shows how the total O–D variance changes within one iteration after the traffic
count is updated one by one. It shows that the total O–D variance is decreasing with
each added and updated traffic count. Smaller variance means lower uncertainty in
the estimation, so updating each traffic count can improve accuracy of O–D estimation.
Figure 3 also indicates that more traffic counts can lead to lower variance of the dynamic
O–D demand estimation, since more updated information can be used to improve the O–D
estimation. Because traffic counts are updated one by one in the proposed algorithm, when
new traffic data come in, there is no need to resolve the Bayesian statistical model from
scratch, there is just the need to continue to update the procedure with the additional traffic
data. In real-world applications, we can measure the quality of traffic data by analyzing
the resultant variance of the dynamic O–D demand estimation, so as to determine whether
to add additional traffic data in the procedure or not.
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Figure 3. Total O–D variance after updating each traffic count in one iteration.

Figure 4 illustrates how the measures of traffic count performance change at each
iteration. It shows that three measures of performance have similar trends and they are
all decreasing by iterations (although there are small fluctuations). This indicates that the
proposed method normally can identify a solution that reduces the total error of traffic
counts compared to that of last iteration. There are 30 iterations shown in Figure 4, till
which the three measures of performance become flat. Noticeably, after 30 iterations,
%RMSE has been reduced from around 36% to 6%, MAE has been reduced from around
51.00 to 7.00, and Theil’s inequality coefficient U has been reduced substantially from the
initial value 0.25 to 0.035. These results demonstrate the high quality of the proposed
Bayesian method for dynamic O–D demand estimation.

Tables 2–4 show the relative errors between the estimated and observed sub-path
travel time, node turning movements, and link flows respectively. Note that the relative
errors of almost 50% traffic counts are less than 5%, and the relative errors of 85% traffic
counts are less than 10%. Note that relative errors of traffic counts with high values are
small. Specifically, for the sub-path travel time, the relative errors are all small and less
than 5%. For the node turning movement, relative errors of about 80% estimation are
less than 10%. For the link counts, about 80% of the relative errors are less than 10% and
over 50% of them are less than 5%. These results indicate that not only is the total error
of the estimation obtained by the proposed Bayesian method reduced significantly (as
also shown by Figure 4), but also the errors for each type of traffic counts are small. This
demonstrates that the proposed Bayesian method can synthesize multiple sources of data
well and provide good estimation.

In the literature, some methods used to estimate dynamic O–D demand can also have
high estimation accuracy [36–38], and the accuracy is normally related to the error between
the “true” and estimated O–D demand. However, traffic flows including the “true” O–D
demand normally have high uncertainty in reality, and these methods cannot provide
estimation information related to the uncertainty. As a statistical method, the proposed
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method can provide not only the point estimates (i.e., expected values), but also the
variances, which represent the associated uncertainty for the corresponding O–D demand.
Based on the expected values and variances, we can obtain the posterior distribution of
the time-dependent O–D demand. According to the posterior distribution, the confidence
intervals for each O–D demand can be identified. In summary, the proposed Bayesian
statistical method can provide not only point estimates of dynamic O–D demand with high
accuracy, but also the corresponding statistical information to capture the uncertainty and
improve the reliability of the estimates.
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Figure 4. Measures of performance after each iteration.

Based on the posterior distribution of the time-dependent O–D demand, Figure 5
shows the 95% confidence intervals for each time-dependent O–D demand estimates. Note
that because most variances are small, the lengths of the 95% confidence intervals are also
small, which means low uncertainty involved in the estimated O–D demand. It can be seen
that the length of intervals for some O–D demand estimates are much smaller than lengths
of others. This is because according to the traffic assignment proportions of traffic counts
(i.e., ϕ,φ, and Ψ in Equation (31)), some O–D pairs have much more traffic counts related
to them. In such a case, the corresponding variance and length of confidence interval could
be small since there is more information to update them and reduce the variability. In
fact, if we have more observed traffic counts, the variances will be even smaller and the
resultant O–D demand estimates will have even lower uncertainty (as demonstrated by
Figure 3). This gives a hint to determine which links, nodes, and/or paths need to be
observed when estimating traffic flows by the Bayesian method; that is, the network sensor
location problem. We can locate sensors on a set of links, nodes, and/or paths which lead
to lower uncertainty of the dynamic O–D demand estimation [51].
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Table 5 shows the values of three measures (as shown in Equations (39)–(41)) related
to the performance of O–D demand estimates. According to the three measures, it can
be seen that the total error between the estimated and “true” O–D demands is relatively
small. For example, the resultant OD_U is around 0.1. It also can be seen that the errors
between the estimated and “true” O–D demands in some time intervals are larger than
errors in other time intervals. This is because in those time intervals with larger errors, only
a few traffic counts are related to the O–D pairs in the considered time intervals. Thus, the
precision of the O–D demand estimates is much lower.

Table 5. Comparison between estimated and true O–D demand.

Time Interval %OD_RMSE OD_MAE OD_U

0 22.17% 8.36 0.11
1 34.97% 13.00 0.18
2 31.42% 11.53 0.16
3 29.22% 11.77 0.15
4 15.07% 5.53 0.07
5 23.20% 9.29 0.11

Total 25.30% 9.42 0.12



Sensors 2021, 21, 4971 17 of 20

To further study the impact of the number of traffic counts on the precision of the
O–D demand estimates, take the O–D demand estimates in time interval 2 for example.
Table 6 compares performance of O–D demand estimates with different number of traffic
counts related to the considered time interval. For the purpose of comparison, only traffic
counts on links are considered in Table 6. When users from an O–D pair in time interval 2
use a link collecting traffic counts, traffic count on this link is treated as related to the O–D
pair in time interval 2. From Table 6, it can be seen that when the number of related traffic
counts increases, the error between the estimated and “true” O–D demands decreases,
as demonstrated by the changes of the three measures’ values. Thus, if we have more
observed traffic counts, the errors will be even smaller and the resultant O–D demand
estimates have even higher accuracy, as was highly expected. In summary, according to
Figure 5 and Table 6, more observed traffic counts can lead to lower uncertainty and higher
precision of O–D demand estimates.

Table 6. Performance of O–D demand estimates with different number of traffic counts (time interval
= 2).

Number of Related Traffic Counts %OD_RMSE OD_MAE OD_U

4 33.69% 12.87 0.18
8 31.55% 11.66 0.17

12 21.04% 8.09 0.11
16 18.95% 7.76 0.10

7. Conclusions

To estimate dynamic O–D demand, a Bayesian method was proposed in this paper.
The method can synthesize multiple sources of data, including link counts, turning move-
ments at intersections, sub-path flows, and/or sub-path travel time. Demand between
each O–D pair at each departure time is assumed to satisfy normal distribution. By solving
the DUE problem based on a prior O–D demand, the prior distribution of the considered
variables can be obtained, including a vector of expected values and variance-covariance
matrix. The relationships among all sources of data and all time dependent O–D demands
can be established by variance-covariance matrices. By updating traffic counts, the poste-
rior distribution of all variables can be built based on the prior distribution. According to
the posterior distribution, both point estimation and the corresponding confidence intervals
can be identified. The connection among link counts, turning movements at intersections,
sub-path flows, and O–D demand can be obtained by the corresponding traffic assignment
proportions. The connection between sub-path travel time and O–D demand cannot be
established directly, therefore we convert each observed sub-path travel time to several
sub-path flows to incorporate the travel time measurement in dynamic O–D estimation.

Updating the traffic count usually requires computing matrix inversion, which is rather
involved even on a network with a modest size. To avoid matrix inversion, a stepwise
algorithm is developed for solving the proposed Bayesian method. In this algorithm, the
traffic count is updated one by one in each iteration. Thus, matrix inversions are avoided
since matrices in the proposed Bayesian statistical model degenerate to column vectors or
even scalars. Moreover, since we update a traffic count at a time, when additional traffic
counts are observed, we just need to proceed to update the extra traffic counts and do not
need to resolve the Bayesian statistical model from the scratch.

The results of the numerical example based on the Nguyen–Dupuis network shows
that the total variability of O–D demand decreases with each added traffic count. More
traffic counts can lead to smaller variance of the dynamic O–D demand, which means
updating each traffic count can reduce the uncertainty in the O–D estimation. Using the
proposed algorithm, the total deviations between estimated and observed traffic counts
decreases at each iteration, as supported by three measures of performance. After a few
iterations, the three measures all decrease to small values and become flat, which implies
a good fit between estimated and observed traffic counts. Moreover, the source-specific
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deviations between estimated and observed traffic counts are small too. This demonstrates
the proposed Bayesian method can synthesize multiple sources of data well. It also implies
that more traffic counts lead to lower uncertainty of the O–D demand estimates, resulting
in a more accurate estimation.

Although normal distribution assumption of traffic flows is reasonable in some cases,
sometimes this assumption is not in accordance with reality, especially when the traffic
volume is low. Thus, in future research, it is worthwhile to relax the multivariate normal
distribution assumption for the prior time-dependent O–D demands. Moreover, in the
proposed Bayesian statistical model, the method of considering sub-path travel times is
an approximate method. Hence, it is worthwhile to further investigate a more effective
method in order to incorporate sub-path travel times in dynamic O–D demand estimation.
Last but not least, additional experiments can be performed to evaluate the performance of
the proposed model and algorithm in various larger or real transportation networks.
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