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Abstract: As technology evolves, more components are integrated into printed circuit boards (PCBs)
and the PCB layout increases. Because small defects on signal trace can cause significant damage to
the system, PCB surface inspection is one of the most important quality control processes. Owing to
the limitations of manual inspection, significant efforts have been made to automate the inspection by
utilizing high resolution CCD or CMOS sensors. Despite the advanced sensor technology, setting the
pass/fail criteria based on small failure samples has always been challenging in traditional machine
vision approaches. To overcome these problems, we propose an advanced PCB inspection system
based on a skip-connected convolutional autoencoder. The deep autoencoder model was trained
to decode the original non-defect images from the defect images. The decoded images were then
compared with the input image to identify the defect location. To overcome the small and imbalanced
dataset in the early manufacturing stage, we applied appropriate image augmentation to improve the
model training performance. The experimental results reveal that a simple unsupervised autoencoder
model delivers promising performance, with a detection rate of up to 98% and a false pass rate below
1.7% for the test data, containing 3900 defect and non-defect images.

Keywords: deep learning; autoencoder; detect detection; PCB defeat detection; printed circuit
board manufacturing

1. Introduction

A printed circuit board (PCB) mechanically supports the connection of electronic
components via conductive tracks, pads, and soldering. PCB defects can cause malfunction
and degrade the performance of the connected electronic components, which have a crucial
impact on the performance of the entire system. Recently, in the mobile era, as the small
mobile electronic product market has rapidly grown, more diverse and complicated PCB
designs are required. This, in turn, produces PCB defect patterns that are difficult to detect
by the human eye.

In general, PCB defect detection can be classified into two categories: direct inspection
by a human operator and camera-based machine vision methods. Operator-based inspec-
tion allows operators to easily perform visual checks using simple instructions. However,
operators can easily become fatigued by repetitive work and the detection results from each
operator are not consistent. This is a fundamental limitation of human-based judgment
and is the leading cause of defective products leaving the factory. To overcome these limi-
tations, researchers have studied machine vision-based defect inspection, which consists of
a camera, light source, and operation system. The main purpose of this approach is quality
control using an automated optical inspection (AOI) system. The AOI system detects
defects by acquiring high-quality images using an industrial camera such as Radiant vision
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camera [1], equipped with a charge-couples device (CCD) or complementary metal-oxide-
semiconductor (CMOS) image sensor. In the past, CCD was more used due to the fixed
pattern noise (FPN) of the CMOS sensor. However recently, CMOS sensors have been
widely used because of their improved performance and lower price compared to CCD.
There are three frequently used AOI approaches in PCB inspection: reference comparison,
non-reference verification, and hybrid approaches [2]. The reference comparison method
compares the images to be detected with the template images to obtain defect areas. It is
intuitive and easy to understand but requires high alignment accuracy and is sensitive
to the light environment of the photographing process. The non-reference comparison
method checks whether the traces and layout of the circuit board to be tested are reasonable
according to the design rules; however, this method can easily miss large defects and
distortion characteristics. The hybrid comparison method considers both advantages, but
it is difficult to implement and has a large amount of computational complexity.

Not only the methods from the abovementioned literature studies but also a wide
range of machine vision and image processing algorithms are available for developers to
utilize [3]. Ideally, an almost perfect AOI system can be developed if all the defect types
are reported and studied in advance. However, one cannot guarantee that the system
will encounter only preregistered defects. In a real production environment, new types of
defects are always likely to be encountered and a typical machine vision-based detection
system will not detect these correctly. In this case, the defect inspection system must be
recalibrated using new sample data whenever the manufacturing conditions change [4].
This can be a major disadvantage of traditional machine vision-based inspection systems
because process changes occur every year in recent manufacturing environments.

Recently, the advent of deep learning techniques has enabled developers to obtain
more generalized computer and machine vision solutions. In particular, convolutional
neural networks (CNNs) have yielded significant improvements in the image recognition
and detection field [5]. A CNN can learn image features automatically and is advantageous
in that it can operate without conjugating techniques for extracting features [6]. AlexNet,
a competitor in ImageNet LSVRC-2012 and one of the most popular CNN structures,
won with an error rate 10% lower than that of the computer vision model that won in
the previous year [7]. In addition, the performances of CNNs appear to approach the
levels of humans in recognition tasks [8]. Autoencoders [9,10] are another line of neural
network structures that compress the input data into a low-dimensional representation
and expand it to reproduce the original input data [11]. It is known that an autoencoder
learns the structure of the image and reconstructs the original image from the corrupted
input image. This motivated us to investigate the autoencoder as a PCB defect detection
application. Herein, we propose a CNN-based autoencoder model that can effectively
detect PCB defects by capturing images of the PCB with an industrial camera equipped
with an image sensor such as a CMOS sensor without any prior knowledge of the defects
or of the expert engineers’ normal/defect assessments.

2. Materials and Methods
2.1. Data

Huang and Wei created a dataset for PCB defects [12]. To verify our PCB defect
detection method, we applied their open PCB defect dataset to our experiment. Ten
reference PCBs were selected to create this dataset, each of which was captured by a 16-
megapixel HD industrial camera equipped with a CMOS sensor. The resolution of the
original image was 4608 × 3456 pixels and was adjusted according to the size of each PCB.
The reference PCB images are presented in Figure 1.

After capturing the reference PCB images, we created artificial defects on the PCB
images using Photoshop, a graphics editor published by Adobe Systems. There are six
types of defects defined in this process: missing hole, mouse bite, open circuit, short, spur,
and spurious copper. The images containing defects are labeled as defect classes, and each
defect-labeled image has three to five defects of the same category in different places. The
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overall PCB dataset configuration is listed in Table 1. The dataset contains 693 PCB defect
images, with 2953 defects that have been correctly labeled. The region including these
defects was cropped to a fixed size of 400 × 400, and the entire cropped images consisted
of 2953 images. Samples of the cropped defect images are shown in Figure 2.

Figure 1. The 400 × 400 PCB images are cropped from Huang and Wei’s PCB dataset [12]. The number below each PCB
image is the name of the reference PCB. The numbers below the cropped images are the name of the reference image files.

Table 1. Overall PCB dataset configuration. The adjusted size is the size adjusted from the original 4608 × 3456 resolution to
the size of each reference PCB. The number in parentheses of the total refers to the number of artificially generated defects.

Reference
PCB Name

Adjusted Size
Defect Type

Missing Hole Mouse Bite Open Circuit Short Spur Spurious
Copper

1 3034 × 1586 20 20 20 20 20 20
4 3056 × 2464 20 20 20 20 20 20
5 2544 × 2156 10 10 10 10 10 10
6 2868 × 2316 10 10 10 10 10 10
7 2904 × 1921 10 10 10 10 10 10
8 2759 × 2154 10 10 10 10 10 10
9 2775 × 2159 10 10 10 10 10 10
10 2240 × 2016 10 10 10 10 10 10
11 2282 × 2248 10 10 10 10 10 10
12 2529 × 2530 10 10 10 10 10 10

Total image (total number
of defects)

115 (497) 115 (492) 116 (482) 116 (491) 115 (488) 116 (503)
693 (2593)

Figure 2. Examples of PCB defects.
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2.2. Overall System Configuration

The pipeline of the entire PCB defect detection system proposed in this study is shown
in Figure 3. In the preprocessing step, the original PCB dataset is processed by image
contrast enhancement and noise rejection to improve the image quality. In the last step of
the preprocessing, the PCB images are segmented into patch images of size 400× 400 pixels,
and these patch images including the defects are grouped separately for data augmentation.
In the data augmentation block, defect patch data are augmented by random rotation,
random flip, and random Gaussian to overcome the limitation resulting from a lack of data
and an imbalance of data classes. Then, the augmented patch images, including the defects,
are used to train the skip-connected convolutional autoencoder models [2] to predict the
non-defect patch images of the input. Once the trained model predicts a high-quality PCB
image from the defective PCB images, the defect detection map is generated by subtracting
the infrared image from the defective input image. Critical defects can be highlighted by
applying the appropriate threshold to the detection map images.

Figure 3. System overview of PCB defect detection (To enhance the quality of the data, we applied preprocessing to the PCB
dataset. The quantity of the data for training is fulfilled by the data augmentation step, and all the data are inputted into
our proposed autoencoder model. After the training, the trained model generates a non-defect image from the defect image,
and image subtraction between these two images enables us to find the exact defect shape and location).

2.3. Preprocessing

Data preprocessing involves making a dataset suitable for training, and the quality of
the training data determines the performance of the neural network models [13]. In this
study, the PCB defect datasets were preprocessed for two main purposes. The first was
to improve the quality of the images through clear contrast and noise filtering, and the
second was to extract the defect area.

A clear contrast of the data is obtained by histogram equalization. Histogram equaliza-
tion is a typical image enhancement method, and its operation is processed by remapping
the grayscale levels of the image on the basis of the probability distribution of the input
grayscale levels [14]. To remove the overall noise of the data, we apply a median filtering
method. A median filter is a rank selection filter that has shown excellent ability to denoise
salt and pepper noise [15]. The algorithm for the median filter is as follows:

Step 1. Select a two-dimensional window W of size 3 × 3. Assume that the pixel being
processed is Cx,y.

Step 2. Compute Wmed, the median of the pixel values in window W.
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Step 3. Replace Cx,y with Wmed.
Step 4. Repeat steps 1 to 3 until all the pixels in the entire image are processed.
High-resolution images are acquired by an industrial-grade camera, which requires

high computational power and results in a long processing time in training the deep neural
network model. Thus, preprocessing is designed to automatically obtain a specified patch
image of size 400 × 400 from the original image, as well as to perform image contrasting
and noise rejection.

2.4. Data Augmentation

Typically, training deep neural networks requires large-scale training data owing
to the significantly large hyperparameters. However, the frequency at which defective
products typically occur during the manufacturing process is bound to be small, and
the types of defects can also change during mass production. This data imbalance issue
can be a fundamental limitation of deep neural network-based defect inspection systems
because mass production requires an appropriate inspection system before the production
starts. Applying these unbalanced data to a deep neural network model can lead to several
problems such as overfitting and performance degradation [16]. To avoid these problems,
we applied data augmentation to supplement a small amount of defect data and improve
the model performance. Considering the redundancy of the augmented images, geometric
transformations and noise injection were applied. Geometric transformations are efficient
methods for positional biases of the training data using variations in the shape, orientation,
or location of the part features. Random rotation and random flip are applied to overcome
the positional biases of the PCB data. Noise injections are methods that involve adding or
multiplying a matrix of random values from a noise distribution, and a random Gaussian
noise function is applied to generate this noise to help neural network models learn more
robust features.

2.5. Skip-Connected Convolutional Autoencoder

An autoencoder is a network that aims to encode an input to a low-dimensional latent
space and then decode it [17]. It is an unsupervised learning algorithm that allows the
extraction of generally useful features from unlabeled data [18]. As shown in Figure 4,
an autoencoder consists of two parts: an encoder, which transforms the input data into
low-dimensional latent vectors, and a decoder, which expands the latent vectors to re-
produce the original input data. They are commonly used for data compression [19,20],
denoising [21–23], and anomaly detection [24–27].

Figure 4. Working process of an autoencoder: transforming input data to compressed latent vectors and then decoding it as
the data.

Because typical autoencoders, such as fully connected autoencoders, ignore the two-
dimensional (2D) image structure [28], an autoencoder consisting of convolutional layers
(Conv) is used for dealing with 2D image data. This is called a convolutional autoencoder.
Conv are core components of CNNs, which have been commonly applied to analyze visual
imagery, with each layer of parameters being composed of learnable filters. When the
input data pass through the Conv, the resistance between the filter and the input data is
calculated through a voltage operation at the width and height of the input volume, and a
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feature map is generated in two dimensions through the activation function such as the
rectified linear unit (ReLU) and sigmoid functions [29]. It provides model flexibility.

aout = max
(
an×n

in u(n, n)
)

(1)

The main purpose of the pooling layer is to maintain spatial permanence while
reducing the resolution of the feature map, which allows efficient learning by reducing
the amount of computation by decreasing the size of the data and feature maps [29].
Generally, max pooling is used frequently and the window function u(x, y) of (1) is applied
to the input an×n

in , replacing each neighborhood of the input with the maximum value aout,
reducing the size of the input.

According to [30], when deeper networks can start converging, a degradation problem
is encountered. This problem saturates the accuracy of the network as the network depth
increases. When the autoencoder encounters this problem, it is difficult to learn the details
from the data. To address this, we added skip connections between the two encoder and
decoder layers, as shown in Figure 5. The skip connections between the corresponding
encoder and decoder layers allows to converge to a better optimum in pixel-wise prediction
problems [9]. Let the outputs from the encoder layer and the corresponding decoder layer
be X1 and X2, respectively. The input to the next decoder layer is calculated as follows:

F(X1, X2) = X1 ⊕ X2 (2)

Figure 5. Architectures of the skip-connected convolutional autoencoder and convolutional autoencoder. The arrows
indicate the skip connections.

Through skip connections, each feature map of the corresponding encoder and decoder
are summed element-wise, which helps the network to recover the image well. The
autoencoder used in this study was trained to reproduce the non-defect image data from
the defect image data. Table 2 shows the overall architecture of the proposed autoencoder.

As shown in Table 2, the layers above and below the table center line are the encoder
and decoder parts, respectively. The input data of size 400 × 400 × 3 are encoded into
latent vectors through the encoder part, and the decoder generates the output data, which
has the same size as that of the input data from the latent vectors. Through this encoder,
the decoder process reproduces the defect image as an image without the defect and the
generated image is used for image subtraction for defect detection. Each convolutional
layer includes the ReLU activation function and batch normalization. The ReLU activation
function allows models learn fast, makes models learn qualitatively sensible features from
data. [31] Each skip connection complements the data loss due to the data compression in
the encoder part by combining the encoder Conv output and the UpSampling output.

The proposed skip-connected convolutional autoencoder has 26.8 BFLOPs to process
a 400 × 400 image. This is 2.24 times less compared to the famous real-time object detection
model called yolo v4 to process a 416 × 416 image. Yolo v4 runs at 55 FPS when using an
NVIDIA RTX 2070 as a computational unit, from which we can see that the skip-connected
convolutional autoencoder can run inference in real time faster than yolo v4.
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Table 2. Overall architecture of the skip-connected convolutional autoencoder. In the kernel column,
the first number denotes the number of channels produces by the convolution, and the tuple of two
number denotes the filter size.

Layer Kernel Output

Input – (400, 400, 3)
Conv1 64, (5,5) (400, 400, 64)

MaxPooling1 (2,2) (200, 200, 64)
Conv2 64, (5,5) (200, 200, 64)

MaxPooling2 (2,2) (100, 100, 64)
Conv3 128, (3,3) (100, 100, 128)

MaxPooling3 (2,2) (50, 50, 64)
Conv4 128, (3,3) (50, 50, 64)

MaxPooling4 (2,2) (25, 25, 128)
Conv5 128, (3,3) (25, 25, 128)

UpSampling1 (2,2) (50, 50, 128)
Conv6 128, (3,3) (50, 50, 128)

UpSampling2 (2,2) (100, 100, 128)
SkipConnection1 – UpSampling2 + Conv3

Conv7 64, (5,5) (100, 100, 64)
UpSampling3 (2,2) (200, 200, 64)

SkipConnection2 – UpSampling3 + Conv2
Conv8 64, (5,5) (200, 200, 64)

UpSampling4 (2,2) (400, 400, 64)
SkipConnection3 – UpSampling4 + Conv1

Conv9 3, (3,3) (400, 400, 3)

2.6. Performance Evaluation

In our approach, our model generates a non-defect output image and subtracts it
from the input image. This image subtraction method is a process whereby the digital
numeric value of the whole image is subtracted from that of another image [32]. Through
this method, we can detect changes between two images and this detection of changes can
be used to recognize defects. Therefore, the better quality of output images indicates the
performance improvement of our model, and this performance indicator measures how
similar it is to the target image. The mean square error (MSE) and peak signal-to-noise
ratio (PSNR), which calculates similarity with absolute difference in pixel values, can
be calculated with high similarity even for the blurred image, we applied the structural
similarity index measurement (SSIM). SSIM measures the degradation of the structural
information in one image compared with that of another image. Specifically, SSIM is
calculated first by comparing the luminance, contrast, and structural similarities between
two images. The standard SSIM is calculated as follows:

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (3)

where µ and σ denote the local mean and local variance, respectively; σxy is the local
covariance; and c1, c2 are constants to prevent division by zero.

Accuracy is the most basic indicator used to evaluate detection and classification
models. However, because general accuracy does not consider class imbalances in the data,
accurate performance evaluations can be difficult. Therefore, different metrics should be
considered when evaluating the predictive accuracy of each class. In this study, which
deals with unbalanced data, widely employed indicators were utilized for the model
evaluation [33].

The performance evaluation indicators used in this study were the accuracy, true
positive rate (TPR), true negative rate (TNR), precision, F1 score, and balanced classification
rate (BCR), which all take percentage values between 0 and 1, where a value closer to
1 represents a better performance. Each performance indicator utilizes the components
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of the confusion matrix shown in Table 3. NG represents all defects, and OK represents
a non-defective case. The defect class was considered to be positive in this study. The
accuracy, calculated using Equation (4), represents the ratio of the total data predicted
accurately by the model and is the most fundamental metric for evaluating the model.

Table 3. Confusion matrix of the defect classification.

Actual Class

NG OK

Predicted Class
NG True Positive (TP) False Positive (FP)
OK False Negative (FN) True Negative (TN)

The TPR and TNR, calculated using Equations (5) and (6), respectively, represent
the rates at which the model correctly identifies the actual data as defective and normal,
respectively. The precision is calculated using Equation (7) and represents the ratio of
actual defects to defects predicted from the data. Using the TPR, TNR, and precision, we
can determine how accurately the normal and defective cases are predicted.

Accuracy =
TP + TN

TP + FN + TN + FP
(4)

TPR =
TP

TP + FN
(5)

TNR =
TN

TN + FP
(6)

Precision =
TP

TP + FP
(7)

F1 score =
2

1
Precision + 1

Recall
=

2 × (Precision × Recall)
(Precision + Recall)

(8)

BCR =
1
2
× TP

TP + FN
+

TN
TN + FP

(9)

The F1 score and BCR are indicators that summarize the classification performance,
and they are given by Equations (8) and (9), respectively. The F1 score is the harmonic
mean of the precision and TPR, whereas the BCR is the geometric mean of the TPR and
TNR. The models used for the performance evaluation were the proposed skip connected
convolutional autoencoder and a convolutional autoencoder. The values obtained for each
model were calculated using the softmax values of each class. Then, the highest value
was determined as the final result, and all the results were aggregated to calculate the
performance metrics on the basis of the confusion matrix in Table 3.

3. Experiment Results

To train the models, we applied data augmentation to the dataset. The augmented
dataset consisted of 98,730 patch images, and each patch image was paired with a reference
normal patch image. We followed the training hyperparameter settings in [34], as listed in
Table 4. The initial learning rate was 0.1, which was divided by 5 at 60, 120, and 160 epochs;
the weight decay was 5 × 10−4; and the Nesterov momentum was 0.9. The total number
of training epochs was 300 with a batch size of 128. Figure 6 shows the training losses of
the two networks. As shown in the figure, the training losses decrease rapidly according
to the learning rate schedule and the training loss of the skip-connected convolutional
autoencoder is slightly lower than that of the autoencoder. As we mentioned above, the
lower training loss in the skip-connected autoencoder is because skip connections solve
the degradation problem so that it can converge to a better optimum.
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Table 4. Training hyperparameter settings of the autoencoder and skip-connected autoencoder.

Hyperparameter Value

Total number of epochs 300
Batch size 128

Optimizer Weight decay: 5 × 10−4

Momentum: 0.9

Learning rate (lr) Epoch 60 120 160 300
Lr 0.1 0.02 0.004 0.0008

Figure 6. Training losses of the two models. The green line graph is the training loss of the skip-connected convolutional
autoencoder, whereas the blue one indicates that of the convolutional autoencoder. Both models show decreased training
loss according to the learning rate.

To measure the performance of both training models at 300 epochs, we used a test
dataset that was not used during the training to test the models. As shown in Table 5,
the test dataset contains 3900 patch images, which consist of 2000 defect images and 1900
normal images. The trained models used the test data to generate artificial non-defect
images and performed image subtraction to check the difference between the generated
images and the input images. Figure 7 shows a sample result of the model test with six
test images. The difference between the two pairs of images is an indicator of defects or
a normal surface depending on the amount of difference; therefore, if the output images
are almost the same as the input images, it will have an adverse effect on the classification
performance of the model. To increase the quality of the images for defect detection, we
applied image thresholding to filter out extra noise and highlight the defect area.

Table 5. The dataset configuration. The training data are for the autoencoders, whereas the test data
are for the defect existence classification test.

Dataset Configuration

Total number of training data 98,730 pairs of
defect and non-defect images

Total number of test data
3900

1900 normal images 2000 defect images

The performance evaluation results for both models using the test dataset with 3900
patch images are shown in Table 6. To compare the defect classification performance, we
calculated the accuracy, TPR, TNR, precision, F1 score, and BCR. SSIM was calculated to
compare which model has a better non-defect image regeneration performance. As shown
in Table 6, the accuracy of the skip-connected convolutional autoencoder is approximately
3% higher than that of the convolutional autoencoder. In addition, the SSIM of the former
autoencoder is higher than that of the latter autoencoder. The skip-connected convolutional
autoencoder works well with various defect types. Additionally, we tested the skip-
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connected convolutional autoencoder using new PCB images. As shown in Figure 8, the
skip-connected convolutional autoencoder works well for other PCB images.

Figure 7. Results from the six test images. The subtraction result is the difference between the generated image and the
input image. The binary dilation result is an image whose noise is removed by using the dilation technique.

Table 6. Comparison between the convolutional autoencoder and the skip-connected convolutional
autoencoder in terms of defect classification performance.

Models Accuracy TPR TNR Precision F1 BCR SSIM

Convolutional
autoencoder 0.9508 0.9131 0.9865 0.9847 0.9475 0.9491 0.9510

Skip-connected
convolutional
autoencoder

0.9808 0.9773 0.9840 0.9830 0.9801 0.9806 0.9749

Figure 8. Results from the new PCB images. The defects of input images were artificially drawn.

4. Conclusions

In this paper, we proposed a PCB defect inspection system based on a skip-connected
convolutional autoencoder. The PCB datasets were preprocessed to reduce the image size
by removing the unused area and to improve the image quality using well-known image
enhancement algorithms. In addition, datasets were augmented to mitigate the issue of an
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imbalanced training dataset. The pretrained and augmented datasets can successfully train
the autoencoder model to predict the non-defect images from the potentially defective
PCB sample images. Finally, we evaluated the model performance using the SSIM, which
measures the similarity between the model output and the target. According to the SSIM
evaluation result, the addition of the skip connection to the autoencoder increases the
similarity and the prediction performance of the model as well.

Lastly, we used image subtraction to obtain the difference between the non-defect
output image and the input image. The difference between the model input and the output
image is crucial information for detecting PCB defects and their exact locations.

Although we achieved highly accurate test results based on synthetic defect data, there
are few issues that need to be overcome in the future. First, because we used artificially
generated PCB defect images, it is necessary to validate our model on real PCB defect
data to confirm the performance of our model in an actual measurement environment.
Second, because the defect patterns in the datasets were synthesized on the basis of a few
well-known defect patterns, our method might show a low detection rate for untrained
defect datasets.
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