

Sensors 2021, 21, 4968. https://doi.org/10.3390/s21154968 www.mdpi.com/journal/sensors

Article

Printed Circuit Board Defect Detection Using Deep Learning

via a Skip-Connected Convolutional Autoencoder

Jungsuk Kim 1, Jungbeom Ko 1, Hojong Choi 2,* and Hyunchul Kim 3,*

1 Department of Biomedical Engineering, Gachon University, 191 Hambakmoe-ro, Incheon 2199, Korea;

jungsuk@gachon.ac.kr (J.K.); rhwndqja@gachon.ac.kr (J.K.)
2 Department of Medial IT Convergence Engineering, Kumoh National Institute of Technology,

350-27, Gum-daero, Gumi 39253, Korea
3 School of Information, University of California, 102 South Hall 4600, Berkeley, CA 94704, USA

* Correspondence: hojongch@kumoh.ac.kr (H.C.); hyunchul@berkeley.edu (H.K.)

Abstract: As technology evolves, more components are integrated into printed circuit boards (PCBs)

and the PCB layout increases. Because small defects on signal trace can cause significant damage to

the system, PCB surface inspection is one of the most important quality control processes. Owing to

the limitations of manual inspection, significant efforts have been made to automate the inspection

by utilizing high resolution CCD or CMOS sensors. Despite the advanced sensor technology, setting

the pass/fail criteria based on small failure samples has always been challenging in traditional ma-

chine vision approaches. To overcome these problems, we propose an advanced PCB inspection

system based on a skip-connected convolutional autoencoder. The deep autoencoder model was

trained to decode the original non-defect images from the defect images. The decoded images were

then compared with the input image to identify the defect location. To overcome the small and

imbalanced dataset in the early manufacturing stage, we applied appropriate image augmentation

to improve the model training performance. The experimental results reveal that a simple unsuper-

vised autoencoder model delivers promising performance, with a detection rate of up to 98% and a

false pass rate below 1.7% for the test data, containing 3900 defect and non-defect images.

Keywords: deep learning; autoencoder; detect detection; PCB defeat detection; printed circuit board

manufacturing

1. Introduction

A printed circuit board (PCB) mechanically supports the connection of electronic

components via conductive tracks, pads, and soldering. PCB defects can cause malfunc-

tion and degrade the performance of the connected electronic components, which have a

crucial impact on the performance of the entire system. Recently, in the mobile era, as the

small mobile electronic product market has rapidly grown, more diverse and complicated

PCB designs are required. This, in turn, produces PCB defect patterns that are difficult to

detect by the human eye.

In general, PCB defect detection can be classified into two categories: direct inspec-

tion by a human operator and camera-based machine vision methods. Operator-based

inspection allows operators to easily perform visual checks using simple instructions.

However, operators can easily become fatigued by repetitive work and the detection re-

sults from each operator are not consistent. This is a fundamental limitation of human-

based judgment and is the leading cause of defective products leaving the factory. To

overcome these limitations, researchers have studied machine vision-based defect inspec-

tion, which consists of a camera, light source, and operation system. The main purpose of

this approach is quality control using an automated optical inspection (AOI) system. The

AOI system detects defects by acquiring high-quality images using an industrial camera

Citation: Kim, J.; Ko, J.; Choi, H.;

Kim, H. Printed Circuit Board Defect

Detection Using Deep Learning via a

Skip-Connected Convolutional

Autoencoder. Sensors 2021, 21, 4968.

https://doi.org/10.3390/s21154968

Academic Editor: Kim Phuc Tran

Received: 27 June 2021

Accepted: 20 July 2021

Published: 21 July 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and insti-

tutional affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/).

Sensors 2021, 21, 4968 2 of 13

such as Radiant vision camera [1], equipped with a charge-couples device (CCD) or com-

plementary metal-oxide-semiconductor (CMOS) image sensor. In the past, CCD was more

used due to the fixed pattern noise (FPN) of the CMOS sensor. However recently, CMOS

sensors have been widely used because of their improved performance and lower price

compared to CCD. There are three frequently used AOI approaches in PCB inspection:

reference comparison, non-reference verification, and hybrid approaches [2]. The refer-

ence comparison method compares the images to be detected with the template images to

obtain defect areas. It is intuitive and easy to understand but requires high alignment ac-

curacy and is sensitive to the light environment of the photographing process. The non-

reference comparison method checks whether the traces and layout of the circuit board to

be tested are reasonable according to the design rules; however, this method can easily

miss large defects and distortion characteristics. The hybrid comparison method considers

both advantages, but it is difficult to implement and has a large amount of computational

complexity.

Not only the methods from the abovementioned literature studies but also a wide

range of machine vision and image processing algorithms are available for developers to

utilize [3]. Ideally, an almost perfect AOI system can be developed if all the defect types

are reported and studied in advance. However, one cannot guarantee that the system will

encounter only preregistered defects. In a real production environment, new types of de-

fects are always likely to be encountered and a typical machine vision-based detection

system will not detect these correctly. In this case, the defect inspection system must be

recalibrated using new sample data whenever the manufacturing conditions change [4].

This can be a major disadvantage of traditional machine vision-based inspection systems

because process changes occur every year in recent manufacturing environments.

Recently, the advent of deep learning techniques has enabled developers to obtain

more generalized computer and machine vision solutions. In particular, convolutional

neural networks (CNNs) have yielded significant improvements in the image recognition

and detection field [5]. A CNN can learn image features automatically and is advanta-

geous in that it can operate without conjugating techniques for extracting features [6].

AlexNet, a competitor in ImageNet LSVRC-2012 and one of the most popular CNN struc-

tures, won with an error rate 10% lower than that of the computer vision model that won

in the previous year [7]. In addition, the performances of CNNs appear to approach the

levels of humans in recognition tasks [8]. Autoencoders [9,10] are another line of neural

network structures that compress the input data into a low-dimensional representation

and expand it to reproduce the original input data [11]. It is known that an autoencoder

learns the structure of the image and reconstructs the original image from the corrupted

input image. This motivated us to investigate the autoencoder as a PCB defect detection

application. Herein, we propose a CNN-based autoencoder model that can effectively de-

tect PCB defects by capturing images of the PCB with an industrial camera equipped with

an image sensor such as a CMOS sensor without any prior knowledge of the defects or of

the expert engineers’ normal/defect assessments.

2. Materials and Methods

2.1. Data

Huang and Wei created a dataset for PCB defects [12]. To verify our PCB defect de-

tection method, we applied their open PCB defect dataset to our experiment. Ten reference

PCBs were selected to create this dataset, each of which was captured by a 16-megapixel

HD industrial camera equipped with a CMOS sensor. The resolution of the original image

was 4608 × 3456 pixels and was adjusted according to the size of each PCB. The refer-

ence PCB images are presented in Figure 1.

Sensors 2021, 21, 4968 3 of 13

Figure 1. The 400 × 400 PCB images are cropped from Huang and Wei’s PCB dataset [12]. The

number below each PCB image is the name of the reference PCB. The numbers below the cropped

images are the name of the reference image files.

After capturing the reference PCB images, we created artificial defects on the PCB

images using Photoshop, a graphics editor published by Adobe Systems. There are six

types of defects defined in this process: missing hole, mouse bite, open circuit, short, spur,

and spurious copper. The images containing defects are labeled as defect classes, and each

defect-labeled image has three to five defects of the same category in different places. The

overall PCB dataset configuration is listed in Table 1. The dataset contains 693 PCB defect

images, with 2953 defects that have been correctly labeled. The region including these

defects was cropped to a fixed size of 400 × 400, and the entire cropped images consisted

of 2953 images. Samples of the cropped defect images are shown in Figure 2.

Table 1. Overall PCB dataset configuration. The adjusted size is the size adjusted from the original 4608 × 3456 resolu-

tion to the size of each reference PCB. The number in parentheses of the total refers to the number of artificially generated

defects.

Reference

PCB Name
Adjusted Size

Defect Type

Missing Hole Mouse Bite Open Circuit Short Spur Spurious Copper

1 3034 × 1586 20 20 20 20 20 20

4 3056 × 2464 20 20 20 20 20 20

5 2544 × 2156 10 10 10 10 10 10

6 2868 × 2316 10 10 10 10 10 10

7 2904 × 1921 10 10 10 10 10 10

8 2759 × 2154 10 10 10 10 10 10

9 2775 × 2159 10 10 10 10 10 10

10 2240 × 2016 10 10 10 10 10 10

11 2282 × 2248 10 10 10 10 10 10

12 2529 × 2530 10 10 10 10 10 10

Total image (total number of defects)
115 (497) 115 (492) 116 (482) 116 (491) 115 (488) 116 (503)

693 (2593)

Sensors 2021, 21, 4968 4 of 13

Figure 2. Examples of PCB defects.

2.2. Overall System Configuration

The pipeline of the entire PCB defect detection system proposed in this study is

shown in Figure 3. In the preprocessing step, the original PCB dataset is processed by

image contrast enhancement and noise rejection to improve the image quality. In the last

step of the preprocessing, the PCB images are segmented into patch images of size

400 × 400 pixels, and these patch images including the defects are grouped separately for

data augmentation. In the data augmentation block, defect patch data are augmented by

random rotation, random flip, and random Gaussian to overcome the limitation resulting

from a lack of data and an imbalance of data classes. Then, the augmented patch images,

including the defects, are used to train the skip-connected convolutional autoencoder

models [2] to predict the non-defect patch images of the input. Once the trained model

predicts a high-quality PCB image from the defective PCB images, the defect detection

map is generated by subtracting the infrared image from the defective input image. Crit-

ical defects can be highlighted by applying the appropriate threshold to the detection map

images.

Figure 3. System overview of PCB defect detection (To enhance the quality of the data, we applied

preprocessing to the PCB dataset. The quantity of the data for training is fulfilled by the data aug-

mentation step, and all the data are inputted into our proposed autoencoder model. After the train-

ing, the trained model generates a non-defect image from the defect image, and image subtraction

between these two images enables us to find the exact defect shape and location).

Sensors 2021, 21, 4968 5 of 13

2.3. Preprocessing

Data preprocessing involves making a dataset suitable for training, and the quality

of the training data determines the performance of the neural network models [13]. In this

study, the PCB defect datasets were preprocessed for two main purposes. The first was to

improve the quality of the images through clear contrast and noise filtering, and the sec-

ond was to extract the defect area.

A clear contrast of the data is obtained by histogram equalization. Histogram equal-

ization is a typical image enhancement method, and its operation is processed by re-

mapping the grayscale levels of the image on the basis of the probability distribution of

the input grayscale levels [14]. To remove the overall noise of the data, we apply a median

filtering method. A median filter is a rank selection filter that has shown excellent ability

to denoise salt and pepper noise [15]. The algorithm for the median filter is as follows:

Step 1. Select a two-dimensional window W of size 3 × 3. Assume that the pixel being

processed is Cx,y.

Step 2. Compute Wmed, the median of the pixel values in window W.

Step 3. Replace Cx,y with Wmed.

Step 4. Repeat steps 1 to 3 until all the pixels in the entire image are processed.

High-resolution images are acquired by an industrial-grade camera, which requires

high computational power and results in a long processing time in training the deep neu-

ral network model. Thus, preprocessing is designed to automatically obtain a specified

patch image of size 400 × 400 from the original image, as well as to perform image con-

trasting and noise rejection.

2.4. Data Augmentation

Typically, training deep neural networks requires large-scale training data owing to

the significantly large hyperparameters. However, the frequency at which defective prod-

ucts typically occur during the manufacturing process is bound to be small, and the types

of defects can also change during mass production. This data imbalance issue can be a

fundamental limitation of deep neural network-based defect inspection systems because

mass production requires an appropriate inspection system before the production starts.

Applying these unbalanced data to a deep neural network model can lead to several prob-

lems such as overfitting and performance degradation [16]. To avoid these problems, we

applied data augmentation to supplement a small amount of defect data and improve the

model performance. Considering the redundancy of the augmented images, geometric

transformations and noise injection were applied. Geometric transformations are efficient

methods for positional biases of the training data using variations in the shape, orienta-

tion, or location of the part features. Random rotation and random flip are applied to

overcome the positional biases of the PCB data. Noise injections are methods that involve

adding or multiplying a matrix of random values from a noise distribution, and a random

Gaussian noise function is applied to generate this noise to help neural network models

learn more robust features.

2.5. Skip-Connected Convolutional Autoencoder

An autoencoder is a network that aims to encode an input to a low-dimensional latent

space and then decode it [17]. It is an unsupervised learning algorithm that allows the

extraction of generally useful features from unlabeled data [18]. As shown in Figure 4, an

autoencoder consists of two parts: an encoder, which transforms the input data into low-

dimensional latent vectors, and a decoder, which expands the latent vectors to reproduce

the original input data. They are commonly used for data compression [19,20], denoising

[21–23], and anomaly detection [24–27].

Sensors 2021, 21, 4968 6 of 13

Figure 4. Working process of an autoencoder: transforming input data to compressed latent vectors

and then decoding it as the data.

Because typical autoencoders, such as fully connected autoencoders, ignore the two-

dimensional (2D) image structure [28], an autoencoder consisting of convolutional layers

(Conv) is used for dealing with 2D image data. This is called a convolutional autoencoder.

Conv are core components of CNNs, which have been commonly applied to analyze vis-

ual imagery, with each layer of parameters being composed of learnable filters. When the

input data pass through the Conv, the resistance between the filter and the input data is

calculated through a voltage operation at the width and height of the input volume, and

a feature map is generated in two dimensions through the activation function such as the

rectified linear unit (ReLU) and sigmoid functions [29]. It provides model flexibility.

���� = ���(���
�×��(�, �)) (1)

The main purpose of the pooling layer is to maintain spatial permanence while re-

ducing the resolution of the feature map, which allows efficient learning by reducing the

amount of computation by decreasing the size of the data and feature maps [29]. Gener-

ally, max pooling is used frequently and the window function �(�, �) of (1) is applied to

the input ���
�×�, replacing each neighborhood of the input with the maximum value ����,

reducing the size of the input.

According to [30], when deeper networks can start converging, a degradation prob-

lem is encountered. This problem saturates the accuracy of the network as the network

depth increases. When the autoencoder encounters this problem, it is difficult to learn the

details from the data. To address this, we added skip connections between the two en-

coder and decoder layers, as shown in Figure 5. The skip connections between the corre-

sponding encoder and decoder layers allows to converge to a better optimum in pixel-

wise prediction problems.[9] Let the outputs from the encoder layer and the correspond-

ing decoder layer be �� and ��, respectively. The input to the next decoder layer is cal-

culated as follows:

Figure 5. Architectures of the skip-connected convolutional autoencoder and convolutional autoen-

coder. The arrows indicate the skip connections.

�(��, ��) = �� ⊕ �� (2)

Through skip connections, each feature map of the corresponding encoder and de-

coder are summed element-wise, which helps the network to recover the image well. The

autoencoder used in this study was trained to reproduce the non-defect image data from

the defect image data. Table 2 shows the overall architecture of the proposed autoencoder.

Sensors 2021, 21, 4968 7 of 13

As shown in Table 2, the layers above and below the table center line are the encoder

and decoder parts, respectively. The input data of size 400 × 400 × 3 are encoded into

latent vectors through the encoder part, and the decoder generates the output data, which

has the same size as that of the input data from the latent vectors. Through this encoder,

the decoder process reproduces the defect image as an image without the defect and the

generated image is used for image subtraction for defect detection. Each convolutional

layer includes the ReLU activation function and batch normalization. The ReLU activation

function allows models learn fast, makes models learn qualitatively sensible features from

data. [31] Each skip connection complements the data loss due to the data compression in

the encoder part by combining the encoder Conv output and the UpSampling output.

The proposed skip-connected convolutional autoencoder has 26.8 BFLOPs to process

a 400 × 400 image. This is 2.24 times less compared to the famous real-time object detec-

tion model called yolo v4 to process a 416 × 416 image. Yolo v4 runs at 55 FPS when

using an NVIDIA RTX 2070 as a computational unit, from which we can see that the skip-

connected convolutional autoencoder can run inference in real time faster than yolo v4.

Table 2. Overall architecture of the skip-connected convolutional autoencoder. In the kernel col-

umn, the first number denotes the number of channels produces by the convolution, and the tuple

of two number denotes the filter size.

Layer Kernel Output

Input – (400, 400, 3)

Conv1 64, (5,5) (400, 400, 64)

MaxPooling1 (2,2) (200, 200, 64)

Conv2 64, (5,5) (200, 200, 64)

MaxPooling2 (2,2) (100, 100, 64)

Conv3 128, (3,3) (100, 100, 128)

MaxPooling3 (2,2) (50, 50, 64)

Conv4 128, (3,3) (50, 50, 64)

MaxPooling4 (2,2) (25, 25, 128)

Conv5 128, (3,3) (25, 25, 128)

UpSampling1 (2,2) (50, 50, 128)

Conv6 128, (3,3) (50, 50, 128)

UpSampling2 (2,2) (100, 100, 128)

SkipConnection1 – UpSampling2 + Conv3

Conv7 64, (5,5) (100, 100, 64)

UpSampling3 (2,2) (200, 200, 64)

SkipConnection2 – UpSampling3 + Conv2

Conv8 64, (5,5) (200, 200, 64)

UpSampling4 (2,2) (400, 400, 64)

SkipConnection3 – UpSampling4 + Conv1

Conv9 3, (3,3) (400, 400, 3)

2.6. Performance Evaluation

In our approach, our model generates a non-defect output image and subtracts it

from the input image. This image subtraction method is a process whereby the digital

numeric value of the whole image is subtracted from that of another image [32]. Through

this method, we can detect changes between two images and this detection of changes can

be used to recognize defects. Therefore, the better quality of output images indicates the

performance improvement of our model, and this performance indicator measures how

similar it is to the target image. The mean square error (MSE) and peak signal-to-noise

ratio (PSNR), which calculates similarity with absolute difference in pixel values, can be

calculated with high similarity even for the blurred image, we applied the structural sim-

ilarity index measurement (SSIM). SSIM measures the degradation of the structural infor-

mation in one image compared with that of another image. Specifically, SSIM is calculated

Sensors 2021, 21, 4968 8 of 13

first by comparing the luminance, contrast, and structural similarities between two im-

ages. The standard SSIM is calculated as follows:

����(�, �) =
(2���� + ��)(2��� + ��)

(��
� + ��

� + ��)(��
� + ��

� + ��)
 (3)

where � and � denote the local mean and local variance, respectively; ��� is the local

covariance; and ��, �� are constants to prevent division by zero.

Accuracy is the most basic indicator used to evaluate detection and classification

models. However, because general accuracy does not consider class imbalances in the

data, accurate performance evaluations can be difficult. Therefore, different metrics

should be considered when evaluating the predictive accuracy of each class. In this study,

which deals with unbalanced data, widely employed indicators were utilized for the

model evaluation [33].

The performance evaluation indicators used in this study were the accuracy, true

positive rate (TPR), true negative rate (TNR), precision, F1 score, and balanced classifica-

tion rate (BCR), which all take percentage values between 0 and 1, where a value closer to

1 represents a better performance. Each performance indicator utilizes the components of

the confusion matrix shown in Table 3. NG represents all defects, and OK represents a

non-defective case. The defect class was considered to be positive in this study. The accu-

racy, calculated using Equation (4), represents the ratio of the total data predicted accu-

rately by the model and is the most fundamental metric for evaluating the model.

Table 3. Confusion matrix of the defect classification.

Actual Class

NG OK

Predicted Class
NG True Positive (TP) False Positive (FP)

OK False Negative (FN) True Negative (TN)

The TPR and TNR, calculated using Equations (5) and (6), respectively, represent the

rates at which the model correctly identifies the actual data as defective and normal, re-

spectively. The precision is calculated using Equation (7) and represents the ratio of actual

defects to defects predicted from the data. Using the TPR, TNR, and precision, we can

determine how accurately the normal and defective cases are predicted.

�������� =
�� + ��

�� + �� + �� + ��
 (4)

��� =
��

�� + ��
 (5)

��� =
��

�� + ��
 (6)

��������� =
��

�� + ��
 (7)

�1 ����� =
2

1
���������

+
1

������

=
2 × (��������� × ������)

(��������� + ������)
 (8)

��� =
1

2
×

��

�� + ��
+

��

�� + ��
 (9)

The F1 score and BCR are indicators that summarize the classification performance,

and they are given by Equations (8) and (9), respectively. The F1 score is the harmonic

mean of the precision and TPR, whereas the BCR is the geometric mean of the TPR and

Sensors 2021, 21, 4968 9 of 13

TNR. The models used for the performance evaluation were the proposed skip connected

convolutional autoencoder and a convolutional autoencoder. The values obtained for each

model were calculated using the softmax values of each class. Then, the highest value was

determined as the final result, and all the results were aggregated to calculate the perfor-

mance metrics on the basis of the confusion matrix in Table 3.

3. Experiment Results

To train the models, we applied data augmentation to the dataset. The augmented

dataset consisted of 98,730 patch images, and each patch image was paired with a refer-

ence normal patch image. We followed the training hyperparameter settings in [34], as

listed in Table 4. The initial learning rate was 0.1, which was divided by 5 at 60, 120, and

160 epochs; the weight decay was 5 × 10−4; and the Nesterov momentum was 0.9. The total

number of training epochs was 300 with a batch size of 128. Figure 6 shows the training

losses of the two networks. As shown in the figure, the training losses decrease rapidly

according to the learning rate schedule and the training loss of the skip-connected convo-

lutional autoencoder is slightly lower than that of the autoencoder. As we mentioned

above, the lower training loss in the skip-connected autoencoder is because skip connec-

tions solve the degradation problem so that it can converge to a better optimum.

Table 4. Training hyperparameter settings of the autoencoder and skip-connected autoencoder.

Hyperparameter Value

Total number of epochs 300

Batch size 128

Optimizer
Weight decay: 5 × 10−4

Momentum: 0.9

Learning rate (lr)
Epoch 60 120 160 300

Lr 0.1 0.02 0.004 0.0008

Figure 6. Training losses of the two models. The green line graph is the training loss of the skip-

connected convolutional autoencoder, whereas the blue one indicates that of the convolutional au-

toencoder. Both models show decreased training loss according to the learning rate.

To measure the performance of both training models at 300 epochs, we used a test

dataset that was not used during the training to test the models. As shown in Table 5, the

test dataset contains 3900 patch images, which consist of 2000 defect images and 1900 nor-

mal images. The trained models used the test data to generate artificial non-defect images

and performed image subtraction to check the difference between the generated images

and the input images. Figure 7 shows a sample result of the model test with six test im-

ages. The difference between the two pairs of images is an indicator of defects or a normal

surface depending on the amount of difference; therefore, if the output images are almost

the same as the input images, it will have an adverse effect on the classification perfor-

mance of the model. To increase the quality of the images for defect detection, we applied

image thresholding to filter out extra noise and highlight the defect area.

Sensors 2021, 21, 4968 10 of 13

Table 5. The dataset configuration. The training data are for the autoencoders, whereas the test data

are for the defect existence classification test.

Dataset Configuration

Total number of training data
98,730 pairs of

defect and non-defect images

Total number of test data
3900

1900 normal images 2000 defect images

Figure 7. Results from the six test images. The subtraction result is the difference between the gen-

erated image and the input image. The binary dilation result is an image whose noise is removed

by using the dilation technique.

The performance evaluation results for both models using the test dataset with 3900

patch images are shown in Table 6. To compare the defect classification performance, we

calculated the accuracy, TPR, TNR, precision, F1 score, and BCR. SSIM was calculated to

compare which model has a better non-defect image regeneration performance. As shown

in Table 6, the accuracy of the skip-connected convolutional autoencoder is approximately

3% higher than that of the convolutional autoencoder. In addition, the SSIM of the former

autoencoder is higher than that of the latter autoencoder. The skip-connected convolu-

tional autoencoder works well with various defect types. Additionally, we tested the skip-

connected convolutional autoencoder using new PCB images. As shown in Figure 8, the

skip-connected convolutional autoencoder works well for other PCB images.

Table 6. Comparison between the convolutional autoencoder and the skip-connected convolutional

autoencoder in terms of defect classification performance.

Models Accuracy TPR TNR Precision F1 BCR SSIM

Convolutional autoencoder 0.9508 0.9131 0.9865 0.9847 0.9475 0.9491 0.9510

Skip-connected convolutional

autoencoder
0.9808 0.9773 0.9840 0.9830 0.9801 0.9806 0.9749

Sensors 2021, 21, 4968 11 of 13

Figure 8. Results from the new PCB images. The defects of input images were artificially drawn.

4. Conclusions

In this paper, we proposed a PCB defect inspection system based on a skip-connected

convolutional autoencoder. The PCB datasets were preprocessed to reduce the image size

by removing the unused area and to improve the image quality using well-known image

enhancement algorithms. In addition, datasets were augmented to mitigate the issue of

an imbalanced training dataset. The pretrained and augmented datasets can successfully

train the autoencoder model to predict the non-defect images from the potentially defec-

tive PCB sample images. Finally, we evaluated the model performance using the SSIM,

which measures the similarity between the model output and the target. According to the

SSIM evaluation result, the addition of the skip connection to the autoencoder increases

the similarity and the prediction performance of the model as well.

Lastly, we used image subtraction to obtain the difference between the non-defect

output image and the input image. The difference between the model input and the out-

put image is crucial information for detecting PCB defects and their exact locations.

Although we achieved highly accurate test results based on synthetic defect data,

there are few issues that need to be overcome in the future. First, because we used artifi-

cially generated PCB defect images, it is necessary to validate our model on real PCB de-

fect data to confirm the performance of our model in an actual measurement environment.

Second, because the defect patterns in the datasets were synthesized on the basis of a few

well-known defect patterns, our method might show a low detection rate for untrained

defect datasets.

Abbreviations

The following abbreviations are used in this manuscript:
PCB Printed Circuit Boards

AOI Automated Optical Inspection

CCD Charge Coupled Device

CMOS Complementary Metal Oxide Semiconductor

CNN Convolutional Neural Network

Conv Convolutional Layers

ReLU Rectified Linear Unit

BFLOPs Billion Floating-point Operations

FPS Frames Per Second

MSE Mean Square Error

PSNR Peak Signal-to-Noise Ratio

SSIM Structural Similarity Index Measurement

TPR True Positive Rate

TNR True Negative Rate

BCR Balanced Classification Rate

Sensors 2021, 21, 4968 12 of 13

Author Contributions: Conceptualization, J.K. (Jungsuk Kim), J.K. (Jungbeom Ko), H.C. and H.K.;

methodology, J.K. (Jungsuk Kim), J.K. (Jungbeom Ko) and H.K.; formal analysis, J.K. (Jungsuk Kim),

J.K. (Jungbeom Ko) and H.K.; writing—original draft preparation, J.K. (Jungsuk Kim), J.K.

(Jungbeom Ko), H.C. and H.K.; writing—review and editing, J.K. (Jungsuk Kim), J.K. (Jungbeom

Ko), H.C. and H.K.; supervision, J.K. (Jungsuk Kim), H.C. and H.K.; funding acquisition, J.K. (Jung-

suk Kim). All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the National Research Foundation of Korea grant

(NRF-2017M3A9E2056461) and Gachon University research fund (GCU-2018-0324).

Acknowledgements: The authors would like to thank Jisu Park to run simulations for this work,

IDEC to provide design tools, and Editage Inc. to correct English grammar for the scientific paper.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are included within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Radiant Vision System. Available online: https://www.radiantvisionsystems.com/products (accessed on 19 July 2021).

2. Guo, F.; Guan, S.-A. Research of the Machine Vision Based PCB Defect Inspection System. In Proceedings of the International

Conference on Intelligence Science and Information Engineering, Washington, DC, USA, 20–21 August 2011; pp. 472–475.

3. Koch, J.; Gritsch, A.; Reinhart, G. Process design for the management of changes in manufacturing: Toward a Manufacturing

Change Management process. CIRP J. Manuf. Sci. Technol. 2016, 14, 10–19, doi:10.1016/j.cirpj.2016.04.010.

4. Anoop, K.P.; Kumar, S. A Review of PCB Defect Detection Using Image Processing. Intern. J. Eng. Innov. Technol. 2015, 4, 188–

192.

5. Park, J.-K.; Kwon, B.-K.; Park, J.-H.; Kang, D.-J. Machine learning-based imaging system for surface defect inspection. Int. J.

Precis. Eng. Manuf. Technol. 2016, 3, 303–310, doi:10.1007/s40684-016-0039-x.

6. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,

2278–2324, doi:10.1109/5.726791.

7. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM

2017, 60, 84–90, doi:10.1145/3065386.

8. Ciresan, D.; Meier, U.; Schmidhuber, J. Multi-column deep neural networks for image classification. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3642–3649.

9. Mao, X.; Shen, C.; Yang, Y.B. Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Con-

nections. Advances in Neural Information Processing Systems; Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R., Eds.;

Curran Associates: Red Hook, NY, USA, 2016.

10. Baldi, P. Autoencoders, Unsupervised Learning, and Deep Architectures; Guyon, I., Dror, G., Lemaire, V., Taylor, G., Silver, D., Eds.;

PMLR: Bellevue, WA, USA, 2012; pp. 37–49.

11. Srimani, P.K.; Prathiba, V. Adaptive Data Mining Approach for PCB Defect Detection and Classification. Indian J. Sci. Technol.

2016, 9, doi:10.17485/ijst/2016/v9i44/98964.

12. Huang, W.; Wei, P. A PCB Dataset for Defects Detection and Classification. arXiv 2019, arXiv:1901.08204.

13. Kivinen, J.; Mannila, H. The power of sampling in knowledge discovery. In Proceedings of the Thirteenth ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems; Association for Computing Machinery: New York, NY, USA, 24–27 May

1994; pp. 77–85.

14. Maragatham, G.; Roomi, S.M. A Review of Image Contrast Enhancement Methods and Techniques. Res. J. Appl. Sci. Eng. Technol.

2015, 9, 309–326, doi:10.19026/rjaset.9.1409.

15. Hambal, A.M.; Pei, Z. Image Noise Reduction and Filtering Techniques. Int. J. Sci. Res. 2017, 6, 2033–2038.

16. Chawla, N.V.; Japkowicz, N.; Kotcz, A. Editorial: Special Issue on Learning from Imbalanced Data Sets. SIGKDD Explor. Newsl.

2004, 6, 1–6, doi:10.1145/1007730.1007733.

17. Chollet, F. Deep Learning with Python; Manning Publications: Shelter Island, NY, USA, 2017.

18. Turchenko, V.; Chalmers, E.; Luczak, A. A Deep convolutional auto-encoder with pooling—Unpooling layers in caffe. Int. J.

Comput. 2019, 8–31, doi:10.47839/ijc.18.1.1270.

19. Theis, L.; Shi, W.; Cunningham, A.; Huszár, F. Lossy Image Compression with Compressive Autoencoders. arXiv 2017,

arXiv:1703.00395.

20. Choi, Y.; El-Khamy, M.; Lee, J. Variable Rate Deep Image Compression with a Conditional Autoencoder. In Proceedings of the

IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019.

21. Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.A. Stacked Denoising Autoencoders: Learning Useful Represen-

tations in a Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408.

Sensors 2021, 21, 4968 13 of 13

22. Ashfahani, A.; Pratama, M.; Lughofer, E.; Ong, Y.-S. DEVDAN: Deep evolving denoising autoencoder. Neurocomputing 2020,

390, 297–314, doi:10.1016/j.neucom.2019.07.106.

23. Sun, M.; Wang, H.; Liu, P.; Huang, S.; Fan, P. A sparse stacked denoising autoencoder with optimized transfer learning applied

to the fault diagnosis of rolling bearings. Measurement 2019, 146, 305–314, doi:10.1016/j.measurement.2019.06.029.

24. Sakurada, M.; Yairi, T. Anomaly Detection Using Autoencoders with Nonlinear Dimensionality Reduction. In Proceedings of

the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, Gold Coast, Australia, 2 December 2014.

25. Zong, B.; Song, Q.; Min, M.R.; Cheng, W.; Lumezanu, C.; Cho, D.; Chen, H. Deep Autoencoding Gaussian Mixture Model for

Unsupervised Anomaly Detection. In Proceedings of the International Conference on Learning Representations, Vancouver,

BC, Canada, 30 April–3 May 2018.

26. Gong, D.; Liu, L.; Le, V.; Saha, B.; Mansour, M.R.; Venkatesh, S.; Hengel, A.V.D. Memorizing Normality to Detect Anomaly:

Memory-Augmented Deep Autoencoder for Unsupervised Anomaly Detection. In Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019.

27. Zavrak, S.; Iskefiyeli, M. Anomaly-Based Intrusion Detection from Network Flow Features Using Variational Autoencoder.

IEEE Access 2020, 8, 108346–108358, doi:10.1109/access.2020.3001350.

28. Masci, J.; Meier, U.; Cireşan, D.; Schmidhuber, J. Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction. In

Proceedings of the International Conference on Artificial Neural Networks, Espoo, Finland, 14–17 June 2011.

29. Scherer, D.; Müller, A.; Behnke, S. Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition. In

Proceedings of the International Conference on Artificial Neural Networks, Thessaloniki, Greece, 15–18 September 2010; pp.

92–101.

30. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition; Springer: Thessaloniki, Greece, 2016; pp. 770–778.

31. Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the 27th International

Conference on International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; pp. 807–814.

32. Wu, W.-Y.; Wang, M.-J.J.; Liu, C.-M. Automated inspection of printed circuit boards through machine vision. Comput. Ind. 1996,

28, 103–111, doi:10.1016/0166-3615(95)00063-1.

33. Shultz, T.R.; Fahlman, S.E.; Craw, S.; Andritsos, P.; Tsaparas, P.; Silva, R.; Drummond, C.; Lanzi, P.L.; Gama, J.; Wiegand, R.P.;

et al. Confusion Matrix. In Encyclopedia of Machine Learning; Sammut, C., Webb, G.I., Eds.; Springer: Boston, MA, USA, 2011.

34. Devries, T.; Taylor, G.W. Improved Regularization of Convolutional Neural Networks with Cutout. arXiv 2017,

arXiv:1708.04552.

