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Abstract: As technology evolves, more components are integrated into printed circuit boards (PCBs) 

and the PCB layout increases. Because small defects on signal trace can cause significant damage to 

the system, PCB surface inspection is one of the most important quality control processes. Owing to 

the limitations of manual inspection, significant efforts have been made to automate the inspection 

by utilizing high resolution CCD or CMOS sensors. Despite the advanced sensor technology, setting 

the pass/fail criteria based on small failure samples has always been challenging in traditional ma-

chine vision approaches. To overcome these problems, we propose an advanced PCB inspection 

system based on a skip-connected convolutional autoencoder. The deep autoencoder model was 

trained to decode the original non-defect images from the defect images. The decoded images were 

then compared with the input image to identify the defect location. To overcome the small and 

imbalanced dataset in the early manufacturing stage, we applied appropriate image augmentation 

to improve the model training performance. The experimental results reveal that a simple unsuper-

vised autoencoder model delivers promising performance, with a detection rate of up to 98% and a 

false pass rate below 1.7% for the test data, containing 3900 defect and non-defect images. 

Keywords: deep learning; autoencoder; detect detection; PCB defeat detection; printed circuit board 

manufacturing 

 

1. Introduction 

A printed circuit board (PCB) mechanically supports the connection of electronic 

components via conductive tracks, pads, and soldering. PCB defects can cause malfunc-

tion and degrade the performance of the connected electronic components, which have a 

crucial impact on the performance of the entire system. Recently, in the mobile era, as the 

small mobile electronic product market has rapidly grown, more diverse and complicated 

PCB designs are required. This, in turn, produces PCB defect patterns that are difficult to 

detect by the human eye. 

In general, PCB defect detection can be classified into two categories: direct inspec-

tion by a human operator and camera-based machine vision methods. Operator-based 

inspection allows operators to easily perform visual checks using simple instructions. 

However, operators can easily become fatigued by repetitive work and the detection re-

sults from each operator are not consistent. This is a fundamental limitation of human-

based judgment and is the leading cause of defective products leaving the factory. To 

overcome these limitations, researchers have studied machine vision-based defect inspec-

tion, which consists of a camera, light source, and operation system. The main purpose of 

this approach is quality control using an automated optical inspection (AOI) system. The 

AOI system detects defects by acquiring high-quality images using an industrial camera 
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such as Radiant vision camera [1], equipped with a charge-couples device (CCD) or com-

plementary metal-oxide-semiconductor (CMOS) image sensor. In the past, CCD was more 

used due to the fixed pattern noise (FPN) of the CMOS sensor. However recently, CMOS 

sensors have been widely used because of their improved performance and lower price 

compared to CCD. There are three frequently used AOI approaches in PCB inspection: 

reference comparison, non-reference verification, and hybrid approaches [2]. The refer-

ence comparison method compares the images to be detected with the template images to 

obtain defect areas. It is intuitive and easy to understand but requires high alignment ac-

curacy and is sensitive to the light environment of the photographing process. The non-

reference comparison method checks whether the traces and layout of the circuit board to 

be tested are reasonable according to the design rules; however, this method can easily 

miss large defects and distortion characteristics. The hybrid comparison method considers 

both advantages, but it is difficult to implement and has a large amount of computational 

complexity. 

Not only the methods from the abovementioned literature studies but also a wide 

range of machine vision and image processing algorithms are available for developers to 

utilize [3]. Ideally, an almost perfect AOI system can be developed if all the defect types 

are reported and studied in advance. However, one cannot guarantee that the system will 

encounter only preregistered defects. In a real production environment, new types of de-

fects are always likely to be encountered and a typical machine vision-based detection 

system will not detect these correctly. In this case, the defect inspection system must be 

recalibrated using new sample data whenever the manufacturing conditions change [4]. 

This can be a major disadvantage of traditional machine vision-based inspection systems 

because process changes occur every year in recent manufacturing environments. 

Recently, the advent of deep learning techniques has enabled developers to obtain 

more generalized computer and machine vision solutions. In particular, convolutional 

neural networks (CNNs) have yielded significant improvements in the image recognition 

and detection field [5]. A CNN can learn image features automatically and is advanta-

geous in that it can operate without conjugating techniques for extracting features [6]. 

AlexNet, a competitor in ImageNet LSVRC-2012 and one of the most popular CNN struc-

tures, won with an error rate 10% lower than that of the computer vision model that won 

in the previous year [7]. In addition, the performances of CNNs appear to approach the 

levels of humans in recognition tasks [8]. Autoencoders [9,10] are another line of neural 

network structures that compress the input data into a low-dimensional representation 

and expand it to reproduce the original input data [11]. It is known that an autoencoder 

learns the structure of the image and reconstructs the original image from the corrupted 

input image. This motivated us to investigate the autoencoder as a PCB defect detection 

application. Herein, we propose a CNN-based autoencoder model that can effectively de-

tect PCB defects by capturing images of the PCB with an industrial camera equipped with 

an image sensor such as a CMOS sensor without any prior knowledge of the defects or of 

the expert engineers’ normal/defect assessments. 

2. Materials and Methods 

2.1. Data 

Huang and Wei created a dataset for PCB defects [12]. To verify our PCB defect de-

tection method, we applied their open PCB defect dataset to our experiment. Ten reference 

PCBs were selected to create this dataset, each of which was captured by a 16-megapixel 

HD industrial camera equipped with a CMOS sensor. The resolution of the original image 

was 4608 × 3456 pixels and was adjusted according to the size of each PCB. The refer-

ence PCB images are presented in Figure 1. 
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Figure 1. The 400 × 400 PCB images are cropped from Huang and Wei’s PCB dataset [12]. The 

number below each PCB image is the name of the reference PCB. The numbers below the cropped 

images are the name of the reference image files. 

After capturing the reference PCB images, we created artificial defects on the PCB 

images using Photoshop, a graphics editor published by Adobe Systems. There are six 

types of defects defined in this process: missing hole, mouse bite, open circuit, short, spur, 

and spurious copper. The images containing defects are labeled as defect classes, and each 

defect-labeled image has three to five defects of the same category in different places. The 

overall PCB dataset configuration is listed in Table 1. The dataset contains 693 PCB defect 

images, with 2953 defects that have been correctly labeled. The region including these 

defects was cropped to a fixed size of 400 × 400, and the entire cropped images consisted 

of 2953 images. Samples of the cropped defect images are shown in Figure 2. 

Table 1. Overall PCB dataset configuration. The adjusted size is the size adjusted from the original 4608 × 3456 resolu-

tion to the size of each reference PCB. The number in parentheses of the total refers to the number of artificially generated 

defects. 

Reference 

PCB Name 
Adjusted Size 

Defect Type 

Missing Hole Mouse Bite Open Circuit Short Spur Spurious Copper 

1 3034 × 1586 20 20 20 20 20 20 

4 3056 × 2464 20 20 20 20 20 20 

5 2544 × 2156 10 10 10 10 10 10 

6 2868 × 2316 10 10 10 10 10 10 

7 2904 × 1921 10 10 10 10 10 10 

8 2759 × 2154 10 10 10 10 10 10 

9 2775 × 2159 10 10 10 10 10 10 

10 2240 × 2016 10 10 10 10 10 10 

11 2282 × 2248 10 10 10 10 10 10 

12 2529 × 2530 10 10 10 10 10 10 

Total image (total number of defects) 
115 (497) 115 (492) 116 (482) 116 (491) 115 (488) 116 (503) 

693 (2593) 
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Figure 2. Examples of PCB defects. 

2.2. Overall System Configuration 

The pipeline of the entire PCB defect detection system proposed in this study is 

shown in Figure 3. In the preprocessing step, the original PCB dataset is processed by 

image contrast enhancement and noise rejection to improve the image quality. In the last 

step of the preprocessing, the PCB images are segmented into patch images of size 

400 × 400 pixels, and these patch images including the defects are grouped separately for 

data augmentation. In the data augmentation block, defect patch data are augmented by 

random rotation, random flip, and random Gaussian to overcome the limitation resulting 

from a lack of data and an imbalance of data classes. Then, the augmented patch images, 

including the defects, are used to train the skip-connected convolutional autoencoder 

models [2] to predict the non-defect patch images of the input. Once the trained model 

predicts a high-quality PCB image from the defective PCB images, the defect detection 

map is generated by subtracting the infrared image from the defective input image. Crit-

ical defects can be highlighted by applying the appropriate threshold to the detection map 

images. 

 

Figure 3. System overview of PCB defect detection (To enhance the quality of the data, we applied 

preprocessing to the PCB dataset. The quantity of the data for training is fulfilled by the data aug-

mentation step, and all the data are inputted into our proposed autoencoder model. After the train-

ing, the trained model generates a non-defect image from the defect image, and image subtraction 

between these two images enables us to find the exact defect shape and location). 
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2.3. Preprocessing 

Data preprocessing involves making a dataset suitable for training, and the quality 

of the training data determines the performance of the neural network models [13]. In this 

study, the PCB defect datasets were preprocessed for two main purposes. The first was to 

improve the quality of the images through clear contrast and noise filtering, and the sec-

ond was to extract the defect area. 

A clear contrast of the data is obtained by histogram equalization. Histogram equal-

ization is a typical image enhancement method, and its operation is processed by re-

mapping the grayscale levels of the image on the basis of the probability distribution of 

the input grayscale levels [14]. To remove the overall noise of the data, we apply a median 

filtering method. A median filter is a rank selection filter that has shown excellent ability 

to denoise salt and pepper noise [15]. The algorithm for the median filter is as follows: 

Step 1. Select a two-dimensional window W of size 3 × 3. Assume that the pixel being 

processed is Cx,y. 

Step 2. Compute Wmed, the median of the pixel values in window W. 

Step 3. Replace Cx,y with Wmed. 

Step 4. Repeat steps 1 to 3 until all the pixels in the entire image are processed. 

High-resolution images are acquired by an industrial-grade camera, which requires 

high computational power and results in a long processing time in training the deep neu-

ral network model. Thus, preprocessing is designed to automatically obtain a specified 

patch image of size 400 × 400 from the original image, as well as to perform image con-

trasting and noise rejection. 

2.4. Data Augmentation 

Typically, training deep neural networks requires large-scale training data owing to 

the significantly large hyperparameters. However, the frequency at which defective prod-

ucts typically occur during the manufacturing process is bound to be small, and the types 

of defects can also change during mass production. This data imbalance issue can be a 

fundamental limitation of deep neural network-based defect inspection systems because 

mass production requires an appropriate inspection system before the production starts. 

Applying these unbalanced data to a deep neural network model can lead to several prob-

lems such as overfitting and performance degradation [16]. To avoid these problems, we 

applied data augmentation to supplement a small amount of defect data and improve the 

model performance. Considering the redundancy of the augmented images, geometric 

transformations and noise injection were applied. Geometric transformations are efficient 

methods for positional biases of the training data using variations in the shape, orienta-

tion, or location of the part features. Random rotation and random flip are applied to 

overcome the positional biases of the PCB data. Noise injections are methods that involve 

adding or multiplying a matrix of random values from a noise distribution, and a random 

Gaussian noise function is applied to generate this noise to help neural network models 

learn more robust features. 

2.5. Skip-Connected Convolutional Autoencoder 

An autoencoder is a network that aims to encode an input to a low-dimensional latent 

space and then decode it [17]. It is an unsupervised learning algorithm that allows the 

extraction of generally useful features from unlabeled data [18]. As shown in Figure 4, an 

autoencoder consists of two parts: an encoder, which transforms the input data into low-

dimensional latent vectors, and a decoder, which expands the latent vectors to reproduce 

the original input data. They are commonly used for data compression [19,20], denoising 

[21–23], and anomaly detection [24–27]. 
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Figure 4. Working process of an autoencoder: transforming input data to compressed latent vectors 

and then decoding it as the data. 

Because typical autoencoders, such as fully connected autoencoders, ignore the two-

dimensional (2D) image structure [28], an autoencoder consisting of convolutional layers 

(Conv) is used for dealing with 2D image data. This is called a convolutional autoencoder. 

Conv are core components of CNNs, which have been commonly applied to analyze vis-

ual imagery, with each layer of parameters being composed of learnable filters. When the 

input data pass through the Conv, the resistance between the filter and the input data is 

calculated through a voltage operation at the width and height of the input volume, and 

a feature map is generated in two dimensions through the activation function such as the 

rectified linear unit (ReLU) and sigmoid functions [29]. It provides model flexibility. 

���� = ���(���
�×��(�, �)) (1)

The main purpose of the pooling layer is to maintain spatial permanence while re-

ducing the resolution of the feature map, which allows efficient learning by reducing the 

amount of computation by decreasing the size of the data and feature maps [29]. Gener-

ally, max pooling is used frequently and the window function �(�, �) of (1) is applied to 

the input ���
�×�, replacing each neighborhood of the input with the maximum value ����, 

reducing the size of the input. 

According to [30], when deeper networks can start converging, a degradation prob-

lem is encountered. This problem saturates the accuracy of the network as the network 

depth increases. When the autoencoder encounters this problem, it is difficult to learn the 

details from the data. To address this, we added skip connections between the two en-

coder and decoder layers, as shown in Figure 5. The skip connections between the corre-

sponding encoder and decoder layers allows to converge to a better optimum in pixel-

wise prediction problems.[9] Let the outputs from the encoder layer and the correspond-

ing decoder layer be �� and ��, respectively. The input to the next decoder layer is cal-

culated as follows: 

 

Figure 5. Architectures of the skip-connected convolutional autoencoder and convolutional autoen-

coder. The arrows indicate the skip connections. 

�(��, ��) = �� ⊕ �� (2)

Through skip connections, each feature map of the corresponding encoder and de-

coder are summed element-wise, which helps the network to recover the image well. The 

autoencoder used in this study was trained to reproduce the non-defect image data from 

the defect image data. Table 2 shows the overall architecture of the proposed autoencoder. 
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As shown in Table 2, the layers above and below the table center line are the encoder 

and decoder parts, respectively. The input data of size 400 × 400 × 3 are encoded into 

latent vectors through the encoder part, and the decoder generates the output data, which 

has the same size as that of the input data from the latent vectors. Through this encoder, 

the decoder process reproduces the defect image as an image without the defect and the 

generated image is used for image subtraction for defect detection. Each convolutional 

layer includes the ReLU activation function and batch normalization. The ReLU activation 

function allows models learn fast, makes models learn qualitatively sensible features from 

data. [31] Each skip connection complements the data loss due to the data compression in 

the encoder part by combining the encoder Conv output and the UpSampling output. 

The proposed skip-connected convolutional autoencoder has 26.8 BFLOPs to process 

a 400 × 400 image. This is 2.24 times less compared to the famous real-time object detec-

tion model called yolo v4 to process a 416 × 416 image. Yolo v4 runs at 55 FPS when 

using an NVIDIA RTX 2070 as a computational unit, from which we can see that the skip-

connected convolutional autoencoder can run inference in real time faster than yolo v4. 

Table 2. Overall architecture of the skip-connected convolutional autoencoder. In the kernel col-

umn, the first number denotes the number of channels produces by the convolution, and the tuple 

of two number denotes the filter size. 

Layer Kernel Output 

Input – (400, 400, 3) 

Conv1 64, (5,5) (400, 400, 64) 

MaxPooling1 (2,2) (200, 200, 64) 

Conv2 64, (5,5) (200, 200, 64) 

MaxPooling2 (2,2) (100, 100, 64) 

Conv3 128, (3,3) (100, 100, 128) 

MaxPooling3 (2,2) (50, 50, 64) 

Conv4 128, (3,3) (50, 50, 64) 

MaxPooling4 (2,2) (25, 25, 128) 

Conv5 128, (3,3) (25, 25, 128) 

UpSampling1 (2,2) (50, 50, 128) 

Conv6 128, (3,3) (50, 50, 128) 

UpSampling2 (2,2) (100, 100, 128) 

SkipConnection1 – UpSampling2 + Conv3 

Conv7 64, (5,5) (100, 100, 64) 

UpSampling3 (2,2) (200, 200, 64) 

SkipConnection2 – UpSampling3 + Conv2 

Conv8 64, (5,5) (200, 200, 64) 

UpSampling4 (2,2) (400, 400, 64) 

SkipConnection3 – UpSampling4 + Conv1 

Conv9 3, (3,3) (400, 400, 3) 

2.6. Performance Evaluation 

In our approach, our model generates a non-defect output image and subtracts it 

from the input image. This image subtraction method is a process whereby the digital 

numeric value of the whole image is subtracted from that of another image [32]. Through 

this method, we can detect changes between two images and this detection of changes can 

be used to recognize defects. Therefore, the better quality of output images indicates the 

performance improvement of our model, and this performance indicator measures how 

similar it is to the target image. The mean square error (MSE) and peak signal-to-noise 

ratio (PSNR), which calculates similarity with absolute difference in pixel values, can be 

calculated with high similarity even for the blurred image, we applied the structural sim-

ilarity index measurement (SSIM). SSIM measures the degradation of the structural infor-

mation in one image compared with that of another image. Specifically, SSIM is calculated 
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first by comparing the luminance, contrast, and structural similarities between two im-

ages. The standard SSIM is calculated as follows: 

����(�, �) =  
(2���� + ��)(2��� + ��)

(��
� + ��

� + ��)(��
� + ��

� + ��)
 (3)

where � and � denote the local mean and local variance, respectively; ��� is the local 

covariance; and ��, �� are constants to prevent division by zero. 

Accuracy is the most basic indicator used to evaluate detection and classification 

models. However, because general accuracy does not consider class imbalances in the 

data, accurate performance evaluations can be difficult. Therefore, different metrics 

should be considered when evaluating the predictive accuracy of each class. In this study, 

which deals with unbalanced data, widely employed indicators were utilized for the 

model evaluation [33]. 

The performance evaluation indicators used in this study were the accuracy, true 

positive rate (TPR), true negative rate (TNR), precision, F1 score, and balanced classifica-

tion rate (BCR), which all take percentage values between 0 and 1, where a value closer to 

1 represents a better performance. Each performance indicator utilizes the components of 

the confusion matrix shown in Table 3. NG represents all defects, and OK represents a 

non-defective case. The defect class was considered to be positive in this study. The accu-

racy, calculated using Equation (4), represents the ratio of the total data predicted accu-

rately by the model and is the most fundamental metric for evaluating the model. 

Table 3. Confusion matrix of the defect classification. 

 
Actual Class 

NG OK 

Predicted Class 
NG True Positive (TP) False Positive (FP) 

OK False Negative (FN) True Negative (TN) 

The TPR and TNR, calculated using Equations (5) and (6), respectively, represent the 

rates at which the model correctly identifies the actual data as defective and normal, re-

spectively. The precision is calculated using Equation (7) and represents the ratio of actual 

defects to defects predicted from the data. Using the TPR, TNR, and precision, we can 

determine how accurately the normal and defective cases are predicted. 

�������� =
�� + ��

�� + �� + �� + ��
 (4)

��� =  
��

�� + ��
 (5)

��� =  
��

�� + ��
 (6)

��������� =  
��

�� + ��
 (7)

�1 ����� =  
2

1
���������

+
1

������

=  
2 × (��������� ×  ������)

(��������� +  ������)
 (8)

��� =
1

2
×

��

�� + ��
+

��

�� + ��
 (9)

The F1 score and BCR are indicators that summarize the classification performance, 

and they are given by Equations (8) and (9), respectively. The F1 score is the harmonic 

mean of the precision and TPR, whereas the BCR is the geometric mean of the TPR and 
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TNR. The models used for the performance evaluation were the proposed skip connected 

convolutional autoencoder and a convolutional autoencoder. The values obtained for each 

model were calculated using the softmax values of each class. Then, the highest value was 

determined as the final result, and all the results were aggregated to calculate the perfor-

mance metrics on the basis of the confusion matrix in Table 3. 

3. Experiment Results 

To train the models, we applied data augmentation to the dataset. The augmented 

dataset consisted of 98,730 patch images, and each patch image was paired with a refer-

ence normal patch image. We followed the training hyperparameter settings in [34], as 

listed in Table 4. The initial learning rate was 0.1, which was divided by 5 at 60, 120, and 

160 epochs; the weight decay was 5 × 10−4; and the Nesterov momentum was 0.9. The total 

number of training epochs was 300 with a batch size of 128. Figure 6 shows the training 

losses of the two networks. As shown in the figure, the training losses decrease rapidly 

according to the learning rate schedule and the training loss of the skip-connected convo-

lutional autoencoder is slightly lower than that of the autoencoder. As we mentioned 

above, the lower training loss in the skip-connected autoencoder is because skip connec-

tions solve the degradation problem so that it can converge to a better optimum. 

Table 4. Training hyperparameter settings of the autoencoder and skip-connected autoencoder.  

Hyperparameter Value 

Total number of epochs 300 

Batch size 128 

Optimizer 
Weight decay: 5 × 10−4 

Momentum: 0.9 

Learning rate (lr) 
Epoch 60 120 160 300 

Lr 0.1 0.02 0.004 0.0008 

 

Figure 6. Training losses of the two models. The green line graph is the training loss of the skip-

connected convolutional autoencoder, whereas the blue one indicates that of the convolutional au-

toencoder. Both models show decreased training loss according to the learning rate. 

To measure the performance of both training models at 300 epochs, we used a test 

dataset that was not used during the training to test the models. As shown in Table 5, the 

test dataset contains 3900 patch images, which consist of 2000 defect images and 1900 nor-

mal images. The trained models used the test data to generate artificial non-defect images 

and performed image subtraction to check the difference between the generated images 

and the input images. Figure 7 shows a sample result of the model test with six test im-

ages. The difference between the two pairs of images is an indicator of defects or a normal 

surface depending on the amount of difference; therefore, if the output images are almost 

the same as the input images, it will have an adverse effect on the classification perfor-

mance of the model. To increase the quality of the images for defect detection, we applied 

image thresholding to filter out extra noise and highlight the defect area. 
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Table 5. The dataset configuration. The training data are for the autoencoders, whereas the test data 

are for the defect existence classification test. 

Dataset Configuration 

Total number of training data 
98,730 pairs of  

defect and non-defect images 

Total number of test data 
3900 

1900 normal images 2000 defect images 

 

Figure 7. Results from the six test images. The subtraction result is the difference between the gen-

erated image and the input image. The binary dilation result is an image whose noise is removed 

by using the dilation technique. 

The performance evaluation results for both models using the test dataset with 3900 

patch images are shown in Table 6. To compare the defect classification performance, we 

calculated the accuracy, TPR, TNR, precision, F1 score, and BCR. SSIM was calculated to 

compare which model has a better non-defect image regeneration performance. As shown 

in Table 6, the accuracy of the skip-connected convolutional autoencoder is approximately 

3% higher than that of the convolutional autoencoder. In addition, the SSIM of the former 

autoencoder is higher than that of the latter autoencoder. The skip-connected convolu-

tional autoencoder works well with various defect types. Additionally, we tested the skip-

connected convolutional autoencoder using new PCB images. As shown in Figure 8, the 

skip-connected convolutional autoencoder works well for other PCB images. 

Table 6. Comparison between the convolutional autoencoder and the skip-connected convolutional 

autoencoder in terms of defect classification performance. 

Models Accuracy TPR TNR Precision F1 BCR SSIM 

Convolutional autoencoder 0.9508 0.9131 0.9865 0.9847 0.9475 0.9491 0.9510 

Skip-connected convolutional 

autoencoder 
0.9808 0.9773 0.9840 0.9830 0.9801 0.9806 0.9749 
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Figure 8. Results from the new PCB images. The defects of input images were artificially drawn. 

4. Conclusions 

In this paper, we proposed a PCB defect inspection system based on a skip-connected 

convolutional autoencoder. The PCB datasets were preprocessed to reduce the image size 

by removing the unused area and to improve the image quality using well-known image 

enhancement algorithms. In addition, datasets were augmented to mitigate the issue of 

an imbalanced training dataset. The pretrained and augmented datasets can successfully 

train the autoencoder model to predict the non-defect images from the potentially defec-

tive PCB sample images. Finally, we evaluated the model performance using the SSIM, 

which measures the similarity between the model output and the target. According to the 

SSIM evaluation result, the addition of the skip connection to the autoencoder increases 

the similarity and the prediction performance of the model as well. 

Lastly, we used image subtraction to obtain the difference between the non-defect 

output image and the input image. The difference between the model input and the out-

put image is crucial information for detecting PCB defects and their exact locations. 

Although we achieved highly accurate test results based on synthetic defect data, 

there are few issues that need to be overcome in the future. First, because we used artifi-

cially generated PCB defect images, it is necessary to validate our model on real PCB de-

fect data to confirm the performance of our model in an actual measurement environment. 

Second, because the defect patterns in the datasets were synthesized on the basis of a few 

well-known defect patterns, our method might show a low detection rate for untrained 

defect datasets. 

Abbreviations 

The following abbreviations are used in this manuscript: 
PCB Printed Circuit Boards 

AOI Automated Optical Inspection 

CCD Charge Coupled Device 

CMOS Complementary Metal Oxide Semiconductor 

CNN Convolutional Neural Network 

Conv Convolutional Layers 

ReLU Rectified Linear Unit 

BFLOPs Billion Floating-point Operations 

FPS Frames Per Second 

MSE Mean Square Error 

PSNR Peak Signal-to-Noise Ratio 

SSIM Structural Similarity Index Measurement 

TPR True Positive Rate 

TNR True Negative Rate 

BCR Balanced Classification Rate 
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