

Sensors 2021, 21, 4966. https://doi.org/10.3390/s21154966 www.mdpi.com/journal/sensors

Communication

A Deep Dive of Autoencoder Models
on Low-Contrast Aquatic Images
Rich C. Lee * and Ing-Yi Chen

Department of Computer Science and Information Engineering, National Taipei University of Technology,
Taipei 23741, Taiwan; ichen@ntut.edu.tw
* Correspondence: rich.chih.lee@gmail.com

Abstract: Public aquariums and similar institutions often use video as a method to monitor the be-
havior, health, and status of aquatic organisms in their environments. These video footages take up
a sizeable amount of space and require the use of autoencoders to reduce their file size for efficient
storage. The autoencoder neural network is an emerging technique which uses the extracted latent
space from an input source to reduce the image size for storage, and then reconstructs the source
within an acceptable loss range for use. To meet an aquarium’s practical needs, the autoencoder
must have easily maintainable codes, low power consumption, be easily adoptable, and not require
a substantial amount of memory use or processing power. Conventional configurations of autoen-
coders often provide results that perform beyond an aquarium’s needs at the cost of being too com-
plex for their architecture to handle, while few take low-contrast sources into consideration. Thus,
in this instance, “keeping it simple” would be the ideal approach to the autoencoder’s model design.
This paper proposes a practical approach catered to an aquarium’s specific needs through the con-
figuration of autoencoder parameters. It first explores the differences between the two of the most
widely applied autoencoder approaches, Multilayer Perceptron (MLP) and Convolution Neural
Networks (CNN), to identify the most appropriate approach. The paper concludes that while both
approaches (with proper configurations and image preprocessing) can reduce the dimensionality
and reduce visual noise of the low-contrast images gathered from aquatic video footage, the CNN
approach is more suitable for an aquarium’s architecture. As an unexpected finding of the experi-
ments conducted, the paper also discovered that by manipulating the formula for the MLP ap-
proach, the autoencoder could generate a denoised differential image that contains sharper and
more desirable visual information to an aquarium’s operation. Lastly, the paper has found that
proper image preprocessing prior to the application of the autoencoder led to better model conver-
gence and prediction results, as demonstrated both visually and numerically in the experiment. The
paper concludes that by combining the denoising effect of MLP, CNN’s ability to manage memory
consumption, and proper image preprocessing, the specific practical needs of an aquarium can be
adeptly fulfilled.

Keywords: autoencoder; deep learning; computer vision; image recognition

1. Introduction
A common approach to tracking aquatic subjects in an aquarium is to capture their

movements through a video camera [1]. The challenge here is not just about recording
these videos over an extended period, but also the extraction of the images from the foot-
age. Many neural network architectures have demonstrated the capability to identify ob-
jects from within specific sample images [2]. When applying these pre-trained models on
specific targets in various environments, not only does the neural network structures need
to be changed often, but a series of image preprocessing is also required to provide a more
precise model [3,4].

Citation: Lee, R.C.; Chen, I.-Y.

A Deep Dive of Autoencoder Models

on Low-Contrast Aquatic Images.

Sensors 2021, 21, 4966.

https://doi.org/10.3390/s21154966

Academic Editor: Marcin Woźniak

Received: 4 May 2021

Accepted: 19 July 2021

Published: 21 July 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and institu-

tional affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/).

Sensors 2021, 21, 4966 2 of 18

The identification of a subject in its murky surroundings from the footage is often a chal-
lenge to the pre-trained model prediction process. The results may vary due to several uncer-
tain and inevitable factors: (1) the subjects’ captured motions may not be as clear as those in
the training dataset [5]; (2) the condition of the water in the collected footage may not be as
clean as those in the training dataset [6]; and (3) changes in the light source and changes in
amount of light may cause too much ambiguity to identify the subjects with certainty [7].
These uncertainties highlight the importance of image preprocessing in the neural network
model training and prediction.

Once the subjects are identified by the trained model, the next challenge is to store these
images into a repository for further analysis [8]. Since these images were captured in an ever-
changing the environment, such as the cycle between clear and cloudy water after water
changing procedures [9], storing these images in their source format is ineffective. This is be-
cause: (1) to capture the source images well, it usually requires high resolution and dimension
video devices; (2) the captured conditions are often inevitably mixed with visual noise; and (3)
storing these source images over time requires an enormous amount of disk space and is thus
costly.

The autoencoder is a special application of deep learning; it aims to reduce the dimen-
sionality of the image and generates a short binary representation, the latent space of the im-
age, so that it can be reconstructed back within an acceptable loss range in comparison to the
source. This paper argues that this latent space can be effectively used and stored into a repos-
itory, a must for an aquarium’s routine operations. It also systematically discusses the associ-
ated impacts of the various autoencoder configurations when applied to low-contrast images
of aquatic beings.

This paper seeks to find a practical approach to the use of autoencoders in the context of
serving an aquarium’s needs. The goal is to reduce the dimensionality of the growing collec-
tion of the aquatic subjects over time, to store these videos effectively and efficiently, and to
retain useful and desirable visual information. In pursuit of this goal, the paper answers sev-
eral questions regarding the outcome and impact of applying the autoencoder technique: (1)
what are the key differences between the Multilayer Perceptron (MLP) and Convolution Neu-
ral Networks (CNN) autoencoder in terms of the model architecture and their associated pa-
rameters; (2) how do autoencoder model parameters impact the outcome; (3) can autoencoder
techniques effectively reduce repository spaces; (4) can those regenerated images from the au-
toencoder adequately serve aquarium research and management purposes; (5) can autoen-
coder models enhance the collected low-contrast images; and (6) what are the necessary steps
and preparations required for an aquarium to apply the proposed autoencoder framework of
this paper.

2. Related Works
The autoencoder has a symmetric neural network structure: the encoder, and the de-

coder. The encoder layer extracts the essence from the input images, while the decoder layer
uses that extracted essence to reconstruct the image. Both layers are trying to minimize loss
and converge into the trained model. It has various applications, such as: (1) dimensionality
reduction—to reduce the high dimensional images into low binary dimensional latent space
[10]; (2) feature extraction—since the latent space can be reconstructed back to the source, they
are considered the most important features of the image [11]; (3) image compression—apply-
ing the convolutional networks to construct the autoencoder is a common way of compressing
the source image [12]; (4) image denoising—by adding random noises into the source image
and letting the autoencoder model train a denoise model, it can then reconstruct noisy images
back to a form similar to the source [13]; and (5) image generation—whether the learned latent
space can be reconstructed to resemble the source will depend on the quality of the input im-
ages [14], etc.

Sensors 2021, 21, 4966 3 of 18

Both MLP and CNN autoencoder approaches were widely applied by many previous
works, but their input data dimensions were much less than the collected images by this pa-
per, hence the preprocessing and the model design require special attention. Table 1 illustrates
the comparison between the previous works and this paper.

Table 1. Autoencoder model comparison with the previous works.

Authors Framework Data Comparison

Ji et al. [15] MLP
MNIST (28, 28, 1)

CIFAR10 (32, 32, 3)

Small dimensions
High-contrast

Simple model design

Betechuoh et al. [16] MLP HIV records Estimation Function similar to the Equation (4)

Wang et al. [17] CNN BSDS500 (481, 321, 1)
Small dimensions

High-contrast

Pihlgren et al. [18] CNN
STL-10 (96, 96, 3)
SVHN (32, 32, 3)

Small dimensions
High-contrast

Simple model design

Dumas et al. [19] CNN BSDS300 (481, 321, 1)
Small dimensions

High-contrast
Image normalization preprocessing

Khan et al. [20] CNN

Applied CICFlowMeter-V3
model to extract the cyberattack

features from the CSE-CIC-
IDS2018 dataset

Small dimensions
Not an image source

No image preprocessing required

Ramalho et al. [21] CNN
The authors construct virtual

scenes with multiple 3D views

Not an image source
No image preprocessing required
Generating synthetic 3D images

The previous work by Ji et al. [15] applied an MLP framework against two famous image
datasets, MNIST—the monochrome image dimension is (28, 28, 1), and CIFAR10—the color
image dimension is (32, 32, 3); both input image dimensions in their autoencoder models
were smaller and less complex than the low-contrast images used in this paper. Thus, their
autoencoder models are not suitable for the purpose of this paper.

A medical study on HIV classification proposed the measurement of the image difference
between the source and the reconstructed image, and the standardization function [16] is sim-
ilar to this paper’s Equation (4). This paper applied the MLP framework to denoise the low-
contrast source images by generating the standardized difference images. Wang et al. [17] ap-
plied the CNN autoencoder similar framework as a part of the image preprocesses to extract
the essence from the source images.

The work of Pihlgren et al. [18] discussed the improvement of the image autoencoder by
applying the perceptual loss function to compare the images from high-level representation
perspectives. The work applied the CNN framework, a model structure similar to that of this
paper, with the difference being that higher contrast input source images were used, with
smaller latent spaces, and lower image dimensions—(64, 64, 3) and (96, 96, 3)—than those
used in this paper. Since the source images used in this paper are low contrast, the autoencoder
cannot extract the features to generate the adequate latent space in small size and reconstruct
the source image with less loss.

In the work of Dumas et al., a way was proposed to minimize the rate-distortion optimi-
zation: by giving the optimal quantization step size, the compression outcome will be better

Sensors 2021, 21, 4966 4 of 18

[19]. Similarly, this paper applied a more intuitive approach—by enhancing the source im-
ages—to train the autoencoder and apply the same method to reconstruct the low-contrast
images.

In Khan et al. [20] work, they applied two layers of one-dimensional convolution and
then connect to the autoencoder to detect the misuses from the potential cyberattacks. Since
the source datasets used in this paper were quite different than their work, certain image pre-
processing must be connected before training the model; on the other hand, this paper dis-
closes the effects between CNN and MLP approaches under various configurations, which
makes the contribution unique.

The work of Ramalho et al. used natural language as the input source data to the autoen-
coder to get the latent representations and used these latent data to generate the corresponding
synthetic 3D images [21]. This paper used the images from the aquatic live habitat as the input
data; the denoising techniques are different than their work as well as the purpose of the re-
search.

Low-contrast images are defined by the contours of the subjects being blurry in contrast
to the background. It implies that the color slopes are slim, and thus difficult to find derivatives
when the activation function is applied during the model training. However, if the contours
of the subject are too blurry, it will blend into the background and be treated as a “blank”
image, making it difficult to obtain a convergent training model.

For the purpose of this paper, several videos of fish were collected from an aquarium and
were then converted into a sequence of images, with most of the frames being low-contrast.
An object detection neural network model was then trained and used to predict the position
of the detected subjects relative to the image. The sample images from the video frames were
used as the source to extract the contours of the fish based on their relative coordinates.

3. Aquatic Subject Sample Image Dataset
The paper collected videos of aquatic subjects from the Aquatic Animal Center (National

Taiwan Ocean University Aquatic Animal Center (http://aac.ntou.edu.tw/, accessed on 20
April 2021)). These videos contain various species of fish moving about over time. The low-
contrast and high-noise images were randomly chosen to see if the autoencoder model can
help in dimensionality reduction. The number of samples was approximately equal for each
species. Figure 1 illustrates some sample frames of the subjects. Both captured images were
from a video recording of the same compartment in the aquarium. There are other compart-
ments behind the one in focus and can be seen through the murky water, which serves as
visual noise. Of the two samples chosen, (a) shows multiple subjects swimming in front of
background noise, while (b) only partially shows some of the subject in low contrast, with
most of the image only containing visual noise. From these samples, they clearly showed there
were noisy background (reflections, shades, and a metal bar), and the light illuminated from
the left and fade to the right in the compartments. These noisy backgrounds will interfere with
the outcomes of the autoencoder.

(a) (b)

Figure 1. The sample aquatic subject frames, (a) multiple subjects and (b) low-contrast subjects in their frames.

Sensors 2021, 21, 4966 5 of 18

Since the aquatic objects are the focal points, not the noisy backgrounds, a following
research question is raised: what would the autoencoder learn only from the aquatic ob-
jects and can this autoencoder reconstruct back to the full image? To prove that, this paper
cropped the aquatic objects out of the source images and standardized them into a unified
size (taking the maximum value from the object dimension as the square’s width), illus-
trated in Figure 2. The purpose of this squaring scheme is to prevent distortion and retain
the subjects’ aspect ratios when the model training requires the same dimension for all
input images. The paper posits that, if there were a way to reduce the background noises
and reveal the aquatic object shapes well, so that the caregivers could observe their living
condition conveniently. Since the size of the input images is smaller and the number of
aquatic object samples is also more than the full image, the autoencoder might have better
outcomes.

(a) (b) (c) (d)

Figure 2. Sample standardized aquatic object images with various appearances: (a) partial body, (b) full body, (c) body
with nose, and (d) diving body.

4. Autoencoder Framework
The autoencoder models designed in this paper are derived from two widely applied

approaches, namely MLP [16,22] and CNN [23,24]. The authors have shared the autoen-
coder codes on the GitHub (The GitHub link of the shard autoencoder programs is at
https://github.com/rich58lee/autoencoder (accessed on 20 April 2021)). Figure 3 illustrates
the proposed autoencoder framework consisting of two separate processes; the upper pro-
cess is used to populate and preprocess the datasets, while the lower process is the actual
autoencoder model training process. In the diagram below, the thin lined circle represents
where the process starts, while the bold lined circle represents where the process ends.
The rectangles represent the tasks, the cylinders represent a repository, database, or files,
and the diamond shape with a plus sign represents two parallel process branches.

In the preprocess part, there are two branches of tasks: (1) “Load Full Images”—reads
all full-image files into a high-dimensional matrix and proceeds the following diamond-
plus tasks; (2) “Load Object Images”—reads the object image files extracted by an object
detector; each object image contains only one object. The diamond-plus contains a series
tasks of: (4) “Enhance Images”—filtering out those images with exceptionally low quality,
smoothing the images with a filter kernel and amplifying their contrast; (5) “Augment
Images”—to prevent model overfitting side-effect, populating more samples by shifting
the coordinates and making rotations (in every 45°); this augmentation reflects the reality
that the aquatic subjects may be present various ways in their habitat; (6) “Resize Im-
ages”—considering the practical use, decreasing the image size by applying an interpola-
tion method to save the model training time; and (7) “Save Images”—storing these pre-
processed images onto the repository.

Sensors 2021, 21, 4966 6 of 18

Figure 3. The proposed autoencoder framework.

In the model training part, the task (8), “Load Images”, loads the preprocessed im-
ages into a high-dimensional matrix from the repository, and then conducts the task (9),
“Partition Data Sets”, to partition this matrix into two datasets (the ratio between the da-
tasets of the train and the test is 80% and 20%) randomly. The diamond-plus parallel tasks
are: (10) “MLP Models”—given various dimensions to formulate the model structures and
conducting the training for each model; (11) “CNN Models”—by given the same dimen-
sions as MLP to formulate several convolution networks, and then proceed with a series
of neural network following tasks.

The task (12), “Train MLP/CNN Models”, begins the model training; it reads the im-
age files from the “Training Data Set”, and then derives the model weights and the train-
ing history; the task (13), “Validate MLP/CNN Models”, applies the model against the
“Test Data Set”; and finally, the task (14), “MLP/CNN Performance Benchmarks”, pre-
sents the reconstructed images visually.

When applying the autoencoder techniques, several interesting research questions
need to be answered: (1) how do model configurations affect the outcome; (2) is the neural
network structure better if it is more complex (3) how to achieve the optimal length of the
latent space; and (4) will image preprocessing affect the training result?

5. Environment Setup
This paper used a high-performance computer equipped with: (1) Intel(R) Core(TM)

i9-9900KF CPU @3.60 GHz; (2) RAM 128 GB; (3) GPU NVIDIA TU102 (GeForce RTX 2080
Ti); and (4) Xeon E3-1200 v5/E3-1500 PCIe for 2 TB SSD. This computer was running the
Ubuntu operating system (the 20.04 LTS version); the CPU performance of generating
10,000 prime numbers took only 10 s to complete by the sysbench, a modular, cross-plat-
form and multi-threaded benchmark utility.

Sensors 2021, 21, 4966 7 of 18

6. Autoencoder Model Design
The input images were all placed into a square format with the dimensions of 256 ×

256 px with the original ratio of the images preserved to save computing resources and
training time. The remaining empty spaces were filled with zeros, resulting in the spaces
being filled with black.

6.1. MLP Autoencoder Models
The baseline settings were: (1) the latent code length: 64; (2) the training epochs: 512;

(3) the batch size: 8; (4) the activation functions: Rectified Linear Unit (ReLU) and Sigmoid
[25]; (5) the optimization algorithm: Adam [26]; (6) the loss function: binary cross entropy
[27]; and (7) the training model: based on fully connected layers (denoted as Dense), illus-
trated in Table 2.

Table 2. MLP baseline training model. Bold indicates the latent layer.

Id Layer Type Output Shape Activation Param #

IN input Input Layer (None, 196,608) ReLU 0

EN256 encoded_256 Dense (None, 256) ReLU 50,331,904

EN128 encoded_128 Dense (None, 128) ReLU 32,896

L latent Dense (None, 64) ReLU 8256

DE128 decoded_128 Dense (None, 128) ReLU 8320

DE256 decoded_256 Dense (None, 256) ReLU 33,024

OUT output Dense (None, 196,608) Sigmoid 50,528,256

The standardized function is illustrated in Equation (1): 𝑥𝑥 is a pixel value, and 𝑋𝑋 is
the whole image matrix. The Equation (2) illustrates the image difference calculation for
visualization; the purpose is to ensure that all pixel values will be within 0 ≤ 𝑥𝑥 ≤ 1. Equa-
tion (3) calculates the RGB color (red, green, or blue) difference between the two images.
A benchmark function (the total differences over the RGB color planes) is defined in Equa-
tion (4): simply take the square root of the summation of all color differences. The higher
the benchmark value, the higher the visual contrast.

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋) = [𝑥𝑥 −𝑚𝑚𝑚𝑚𝑚𝑚 (𝑋𝑋)] [𝑚𝑚𝑚𝑚𝑚𝑚(𝑋𝑋) −𝑚𝑚𝑚𝑚𝑚𝑚 (𝑋𝑋)]⁄ (1)

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑋𝑋,𝑌𝑌) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋 − 𝑌𝑌) (2)

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑋𝑋,𝑌𝑌, 𝑐𝑐) = {𝑋𝑋𝑐𝑐 − 𝑌𝑌𝑐𝑐}2 (3)

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑋𝑋,𝑌𝑌) = ��𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑋𝑋,𝑌𝑌, 𝑐𝑐)
2

𝑐𝑐=0

 (4)

The validation result, illustrated in Figure 4, consists of four parts: Figure 4a—the
source image; Figure 4b—the standardized latent space; Figure 4c—the reconstructed im-
age through the autoencoder; and Figure 4d—the standardized difference image between
Figure 4a and Figure 4c. The random sample’s benchmark value was 0.1779; it can be
treated as the performance of the autoencoder. It is worth noting here that the difference
image (Figure 4d) provides a much clearer visual of the subject’s body in comparison to
the reconstruction. The model converged at the 151st epoch, the loss and the validation

Sensors 2021, 21, 4966 8 of 18

loss were (0.2640, 0.2695), respectively. The model extracted the body contour noise,
which is why the standardized difference image (a subtraction between the source (Figure
4a) and the reconstructed image (Figure 4c)) shows a much clearer shape.

(a) (b) (c) (d)

Figure 4. The MLP autoencoder sample results: (a) source, (b) latent, (c) reconstructed, and (d) difference.

The next experiment was to add additional symmetric layers, namely 𝐼𝐼𝐼𝐼 → 𝐸𝐸𝐸𝐸512 →
𝐸𝐸𝐸𝐸256, and 𝐷𝐷𝐷𝐷256 → 𝐷𝐷𝐷𝐷512 → 𝑂𝑂𝑂𝑂𝑂𝑂. The latent space length was 122; it remained in a
squared-value so that it can be visualized. The model converged at the 101st epoch; the
loss and the validation loss were (0.2642, 0.2701), respectively. As expected, the standard-
ized difference image again showed a clearer shape of the subject, this means the autoen-
coder has effectively filtered the noise out of the source images.

The last experiment is based on the previous model structure, but with enhanced
source images before the model training. The image enhancement preprocess set the
brightness factor to 2 (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣: 0 ≤ 𝑏𝑏 ≤ 100) , the contrast factor to 0.6
(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣: 1.0 ≤ 𝑏𝑏 ≤ 3.0) , and applied a (3, 3) filter ({[−1,−1,−1], [−1,11,−1],
[−1,−1,−1]}) to the source images. The model converged at the 147th epoch, with the loss
and the validation loss being (0.3698, 0.3756), respectively. The sample low-contrast
source images that were omitted during the initial model training process due to their
exceptionally low quality, “unseen” by the autoencoder training model, so to speak, were
then tested through the autoencoder, which was able to reconstruct the source and pro-
duce a benchmark value of 0.7301. This means the model has been effectively trained and
could even work with images previously deemed too low quality for model training.

This paper concluded that changing the MLP autoencoder’s configuration does not
improve the reconstruction from a low-contrast source image. However, an unexpected
finding was that the difference images (as illustrated in Figure 5), managed to preserve
the subjects’ contours extremely well. Figure 5a was constructed from the test set, while
Figure 5b,c were constructed from the “unseen” (omitted from the initial model training
due to exceptionally low quality) low-contrast images. This implies the common features
of the source images has been extracted as noise patterns during the autoencoding pro-
cess. There were attempts to experiment with more complex MLP models, however these
models were unable to be deployed due to requiring addition computing resources (be-
yond what would be considered practical for an aquarium). Since MLP could not reach
the research goal, image convolution and pooling scheme (CNN) may be worth exploring.

Sensors 2021, 21, 4966 9 of 18

(a) (b) (c)

Figure 5. The image differences from various random samples: (a) difference from the test set, (b) difference from the
“unseen” samples, and (c) difference from the “unseen” samples II.

6.2. CNN Autoencoder Models
The baseline settings were: (1) the latent space: (32, 32, 64); (2) the training epochs:

512; (3) the batch size: 8; (4) the activation functions: ReLU and Sigmoid; (5) the optimiza-
tion algorithm: Adam; (6) the loss function: mean-square error (MSE); and (7) the training
model: the encoding part consists of two blocks, each block contains two-dimensional con-
volution and the max pooling layers, and the decoding part is symmetrical to the encoding
but built in reverse, as illustrated in Table 3. The convolution’s kernel size is (3, 3), while
the max pooling’s pool size is (2, 2).

Table 3. CNN baseline training model. Bold indicates the latent layer.

Id Layer Type Output Shape Activation Param #

IN input Input Layer (None, 256, 256, 3) ReLU 0

CN_256 Conv2D_256 Conv2D (None, 256, 256, 256) ReLU 7168

MP_256 MaxPooling_256 MaxPooling2D (None, 128, 128, 256) ReLU 0

CN_128 Conv2D_128 Conv2D (None, 128, 128, 128) ReLU 295,040

MP_128 MaxPooling_128 MaxPooling2D (None, 64, 64, 128) ReLU 0

CN_64 Conv2D_64 Conv2D (None, 64, 64, 64) ReLU 73,792

L latent MaxPooling2D (None, 32, 32, 64) ReLU 0

CND_64 Conv2DT_64 Conv2DTranspose (None, 32, 32, 64) ReLU 36,928

US_256 UpSampling2D _64 UpSampling2D (None, 64, 64, 64) ReLU 0

CND_128 Conv2DT_128 Conv2DTranspose (None, 64, 64, 128) ReLU 73,856

US_128 UpSampling2D _128 UpSampling2D (None, 128, 128, 128) ReLU 0

CND_256 Conv2DT_256 Conv2DTranspose (None, 128, 128, 256) ReLU 295,168

US_256 UpSampling2D _256 UpSampling2D (None, 256, 256, 256) ReLU 0

OUT output Dense (None, 256, 256, 3) Sigmoid 6915

The CNN model applies two-dimensional convolutions against the input images and
receives the maximum values out of the pooling matrices to encode the latent space. This
derived latent space is then used to apply the reverse convolution transposition and the

Sensors 2021, 21, 4966 10 of 18

up-sampling process to reconstruct the source image. The model converged at the 365th
epoch, the loss and the validation loss were (4.1545 × 10−5, 4.2398 × 10−5), respectively.

The sample standardize difference image benchmark value (the total differences over
the RGB color planes calculated by Equation (4)) was 0.2199. The standardized difference
image showed that the contours were far less clear than MLP’s. The Figure 6 illustrates:
Figure 6a—the source image, Figure 6b—the reconstructed image, and Figure 6c—the
standardized difference image. Not surprisingly for this effect, CNN’s latent code contains
more information than MLP’s, 2562 > 82.

(a) (b) (c)

Figure 6. The CNN autoencoder sample results: (a) source, (b) reconstructed, and (c) difference.

The next experiment was to reduce the dimension spaces, 𝐶𝐶𝐶𝐶_256 → 𝐶𝐶𝐶𝐶_128 ,
𝐶𝐶𝐶𝐶_128 → 𝐶𝐶𝐶𝐶_64, and 𝐶𝐶𝐶𝐶_64 → 𝐶𝐶𝐶𝐶_32, but the model structure remained as the baseline.
The latent space thus reduced to (32, 32, 32). The standardized image difference was
0.29380453 ± 0.021411419. The model converged at the 379th epoch; the loss and the vali-
dation loss were (4.5114 × 10−5, 4.3126 × 10−5), respectively. The sample image benchmark value
was 0.03299. The result showed that reducing the dimension spaces improved the outcome
(because the benchmark value 0.03299 < 0.2199) and consumed much less computing time
in comparison with the baseline.

The following experiment aimed to reduce the dimension spaces further, 𝐶𝐶𝐶𝐶_256 →
𝐶𝐶𝐶𝐶_64, 𝐶𝐶𝐶𝐶_128 → 𝐶𝐶𝐶𝐶_32, and 𝐶𝐶𝐶𝐶_64 → 𝐶𝐶𝐶𝐶_16, but with the model structure remaining as
the baseline. The latent space thus reduced to (32, 32, 16). The standardized image difference
was 0.47967815 ± 0.027717976. The model stopped at the 512th epoch because the losses
had not improved since the previous intermediate result; the loss and the validation loss were
(5.5957 × 10−5, 5.2107 × 10−5), respectively.

The sample difference image benchmark value was 0.4075, and when the model was
applied to another “unseen” sample, an identical difference image benchmark value was gen-
erated, indicating that the model is stable. The result showed that by reducing the dimension
spaces further, it had made the performance slightly worse (0.4075 > 0.2199). However, the
autoencoder consumed much less computing time in comparison with the baseline.

Will image enhancement help with the autoencoder? The following experiment was to
enhance the source image first by setting the brightness factor to 2 (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣: 0 ≤ 𝑏𝑏 ≤ 100),
the contrast factor to 0.6 (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣: 1.0 ≤ 𝑏𝑏 ≤ 3.0), and a (3, 3) filter
({[−1,−1,−1], [−1,9,−1], [−1,−1,−1]}). The model structure and the latent space remained
as the same as the previous one. The model converged at the 420th epoch. The loss and the
validation loss were (1.5203 × 10−4, 1.5547 × 10−4), respectively. The sample standardized differ-
ence image benchmark value was 0.1754. Applying the model to another “unseen” sample
also got the identical standardized difference image benchmark value, indicating that the
model is stable.

In comparison to the previous model, the image enhancement model has a better bench-
mark value (0.1754 < 0.4075), meaning the reconstructed image has a higher contrast than
the unenhanced model. Furthermore, by taking the proper image enhancement treatment, the

Sensors 2021, 21, 4966 11 of 18

autoencoder still generated good results in terms of the outcome (the benchmark value
0.1754 < 0.2199) and the computing time consumption, in comparison to the baseline model.

Can the autoencoder learn from the full images and still reconstruct images successfully?
While previous experiments used cropped images focusing on just the fish to train the auto-
encoder models, the entire frame is used here instead. The experiment applied the baseline
model, with enhanced source images, and with the same settings as the previous experiment
before the model training. After the model was trained, sample source images (both full scale
and cropped), were tested against the autoencoder model to produce reconstructions.

The model converged at the 189th epoch with fewer losses of (1.1481 × 10−4, 1.1045 × 10−4)
than the baseline. The benchmark value was 0.2885. Figure 7 illustrates the results: Figure 7a
is the randomly chosen full scale source image; Figure 7b is the resulting reconstructed image;
Figure 7c is the standardized difference image between Figure 7a and Figure 7c; and Figure
7d is the reconstructed image of a cropped fish. The results show that an autoencoder model
that was trained on full images can also reconstruct low-contrast images (Figure 7d) success-
fully, including even the particularly low-quality ones that were previously “unseen”.

(a) (b) (c) (d)

Figure 7. CNN full image autoencoder against cropped sample results: (a) source, (b) reconstructed, (c) difference, and (d)
extended.

A new question then arises: can an autoencoder model trained from cropped images
reconstruct full images? An autoencoder model trained only on cropped images should
be missing training information when dealing with a full image, so how would the model
reconstruct a full image? The results are illustrated in Figure 8; Figure 8a is the source full
image, Figure 8b is the reconstructed image, and Figure 8c is the standardized difference
image. The autoencoder can in fact successfully reconstruct a full image, despite seem-
ingly lacking some information.

(a) (b) (c)

Figure 8. CNN cropped image autoencoder against full sample results: (a) source, (b) reconstructed, and (c) difference.

Sensors 2021, 21, 4966 12 of 18

The answer is in the baseline model itself; through convolution and pooling, the CNN
model can extract the image features required to reconstruct images regardless of the
cropping. In conclusion, an autoencoder trained on just cropped images is sufficient to
reconstruct a full image from a source. In other words, an aquarium could save computing
resources by opting to train the autoencoder using cropped images over entire images.

7. Latent Space Database
The traditional relational database has a special feature: the binary large object

(BLOB), which is able to store and to retrieve the images [28]. One drawback of using
BLOB to retrieve the images is that the process needs a temporary buffer storage to hold
the data. Another drawback is that the binary data needs to be serialized—the Base64 for-
mat is a common scheme—when transferring over the Internet. As with the BLOB, the
character large object (CLOB) can store and retrieve the latent space in Base64 format as
well. This transformation comes with a price of increasing the size of the data.

The aquatic subjects are identified and predicted by the object-detection neural
model; the detected subjects are the input source buffer arrays to the autoencoder. These
buffer arrays are dimensioned into the corresponding latent spaces; and then serialized
and stored into the database. It is a continuous process—from video capture to the storing
of the latent space—taking up sizeable computing resources and time for the task.

NoSQL is a promising solution to store and retrieve the latent spaces. Its robustness
and redundancy can reduce the effort in backing up and maintaining the data within [29].
This paper stored the hourly video files under a file structure, the date, and twenty-four
hours sub-folders. The metadata contains the information about where and when the
video was recorded; along with the latent space data, a NoSQL database was used to store
these data. The latent space size was (32, 32, 64), 64 KB. After serialization in Base64 for-
mat, the size is increased up to 86 KB. Since an aquarium’s objective is to study the fishes’
behavior and habitation, the standardize difference images in binary form are adequate
for such purposes. Many traditional relational databases cannot support the BLOB and
CLOB exceeding 64 KB in size. Using NoSQL database to store and retrieve these tremen-
dous number of latent spaces is inevitable [30].

8. Discussion
This paper derives two different model structures, the MLP and the CNN. The ex-

periments showed that applying the MLP model will result in better standardized differ-
ence images, which can replace the source low-contrast images; in addition, through a
Sobel treatment for enhancing the object shapes [31] it will be handy to the aquarium op-
eration in observing the aquatic subjects only, disregarding the background noises. Figure
9 illustrates the visual effects with MLP model (the dense layers of “128-64-32-64-128”, the
training epochs were 16): Figure 9a shows the source image captured from the habitat;
Figure 9b shows the reconstructed image by the retrained MLP autoencoder against the
standardized difference images (clearer aquatic shape in visual); and Figure 9c shows the
Figure 9b image after Sobel treatment; it is particularly useful in observing the aquatic
subjects’ behavior, such as being ill or dying, in the habitat. The training loss versus the
validated was (0.4157, 0.4171) after the 16th epoch. The model was slightly overfitting, but
it was acceptable; the ones illustrated in Figure 9b,c have a practical use, especially when
the caregiver has difficulty in observing the low-contrast images.

Sensors 2021, 21, 4966 13 of 18

(a) (b) (c)

Figure 9. MLP auto-encoded images: (a) source image, (b) reconstructed image, and (c) Sobel treatment image.

On the other hand, the CNN model (the convolution and max-pooling blocks are
“128-64-32”, similar to the previous MLP model), has a better outcome in reconstructing
the synthetic images, because the standardized differences are low—the difference be-
tween the source and the reconstructed one is less recognizable visually. The training loss
versus the validated was (0.4075, 0.4086) after the 16th epoch; the model was slightly over-
fitting, but it was still acceptable. In practical use, the latent representatives are stored into
the database to reconstruct the synthetic images instead of keeping those high-dimen-
sional source images.

Using the color histogram method can disclose the color distribution and the frequen-
cies about the colors used, respectively. Two approaches were taken: (1) applied and
learnt the neural model against the FULL (covered entire compartment) images; and (2)
the neural model trained on the OBJECT (covered the extracted boxed object only) images
and applied the model against the FULL images. The validating samples contain the im-
ages that has not been seen by the training models.

The model performance was measured by the histogram matrices for the Standard-
ized Difference (DIFF, the image differences of Source—Reconstructed) and DIFF2 (Sobel
Treatment against DIFF) images. This paper calculated: (1) Model—the model structure
ID; (2) Min.—the minimal value; (3) Max.—the maximal value; (4) Std. Dev.—the standard
deviation of all histograms; (5) Scale—the subtraction of Max. and Min.; (6) COV.—the
coefficient variance of all histograms; and (7) Image—the training dataset is either from
FULL or OBJECT.

For MLP models (the symmetric layers of “64-32-16”, “128-64-32”, and “256-64”), the
DIFF and DIFF2 images have the best visual outcomes for different purposes, not the re-
constructed ones; therefore, the best performance model has the best distinguishability,
e.g., the Train-Loss, Validate-Loss, COV., Std. Dev., and Scale values are the largest ones,
respectively. The MLP models are applied to derive the Sobel images (DIFF2); therefore,
this paper is only concerned about the loss values of the last epoch.

Table 4 illustrates the results and shows that the “256-64” model derived from OB-
JECT has the best performance which has the best distinguishability than others. How-
ever, considering the model training time, the FULL model training took approximate 365
ms/step, but the OBJECT models only took approximate 84 ms/step; therefore, this paper
proposes the use the DIFF2 (Sobel treatment) derived from this OBJECT model to observe
the aquatic object movements, because lots of background noises were greatly reduced.

Sensors 2021, 21, 4966 14 of 18

Table 4. MLP model performance against the standardized difference images.

Layers Loss Validate-Loss Standard Deviation Scale Coefficient of Variance Image

64-32-16
0.58 0.58 546.94 3213.96 0.08 F
0.27 0.27 686.68 3474.33 0.10 O

128-64-32 0.58 0.58 764.69 3575.76 0.10 F
0.27 0.27 736.14 4753.11 0.11 O

256-64
0.58 0.58 938.27 4253.11 0.11 F
0.26 0.27 1719.05 6617.41 0.20 O

Figure 10 illustrates the histograms comparison across the MLP autoencoder models:
Figure 10a—the autoencoder models trained on FULL images and validated on FULL im-
ages; other than the training dataset, it implies that the “256-64” has the best color distin-
guishability than others; Figure 10b—the autoencoder models trained on OBJECT images
and validated on FULL images; it also implies that the “256-64” has the best color distin-
guishability than others.

(a) Train FULL → Validate FULL (b) Train OBJECT → Validate FULL

Figure 10. MLP model histograms comparison.

For CNN models (the symmetric layers of “64-32-16”, “128-64-32”, “256-128-64-32”,
and “512-256-128-64-32”), the reconstructed images are already good enough; the DIFF
and DIFF2 histograms both have the most noises; therefore, the best performance model
has the least distinguishability, e.g., the Validate-Loss, Accuracy, COV., Std. Dev., and
Scale values are the smallest ones, respectively.

Table 5 illustrates the results and shows that the “512-256-128-64-32-64-126-256-512”
models (both FULL and OBJECT) have similar distinguishability, validate-loss, and accu-
racy values, but considering the Accuracy and COV., this paper proposes to use the latent
representatives derived from this FULL model to reconstruct the source images. Another
finding worth noting is that using the OBJECT samples to reconstruct the source images
does not always converge; these low-accuracy values explain that finding.

Sensors 2021, 21, 4966 15 of 18

Table 5. CNN model performance against the standardized difference images.

Model Loss Accuracy Standard Deviation Scale Coefficient of Variance Image

64-32-16
0.56 84 2296.47 14721.56 0.16 F
0.26 83 2166.39 13143.80 0.15 O

128-64-32 0.56 60 2196.73 14540.64 0.16 F
0.26 84 2206.08 13135.36 0.15 O

256-128-64-32
0.56 86 2177.37 13486.72 0.16 F
0.26 84 2265.50 14608.20 0.15 O

512-256-128-64-32
0.56 83 2163.02 11761.30 0.14 F
0.56 84 2131.25 12779.87 0.14 O

Figure 11 illustrates the histograms’ comparison across the CNN autoencoder mod-
els: Figure 11a—the autoencoder models trained on FULL images and validated on other
FULL images; it implies that the “512-256-128-64-32” has the best color distinguishability
than others; Figure 11b—the autoencoder models trained on OBJECT images and vali-
dated on FULL images; it also implies that the “512-256-128-64-32” has the best color dis-
tinguishability than others, but the training converged much earlier than the FULL model.

(a) Train FULL → Validate FULL

Sensors 2021, 21, 4966 16 of 18

(b) Train OBJECT → Validate FULL

Figure 11. CNN model histograms comparison.

9. Conclusions
Just as with other neural networks, the model design of the autoencoder is data-

driven, especially in image-related applications. The bottom line is that the model must
serve a given purpose, which, in the context of an aquarium, is to store images of fish and
other aquatic subjects filmed in their low-contrast environments effectively, with less di-
mensionality and yet retain the image fidelity to an acceptable degree with reduced noise
and clearly defined shapes. This paper disclosed the insight of applying the autoencoder
frameworks, by presenting the experiment results against the low-contrast images and
concluded that both the MLP and the CNN have their appropriate uses in dealing with
low-contrast image reconstruction. In addition, by applying the image preprocessing—
enhancing the source images—it will make the autoencoder model reconstruct the images
with more satisfactory results.

In a practical context, this paper concludes that a combination of both MLP and CNN
approaches is better suited for an aquarium. This paper discovered that, through Equation
(4) used during the MLP process, a standardized difference image was generated that sat-
isfied the needs of an aquarium. The standardized difference image is not only sharp and
well defined, but also removed unnecessary visual noise, retaining only relevant visual
information pertaining to aquarium research and management. By using this difference
image as a new source image for the CNN model, it provides an ideal solution for an
aquarium’s architecture that requires the capability to handle complex configurations
without excessive computing resources. To improve the low-contrast autoencoder models
derived from the MLP frameworks, it may require a complex model structure that de-
mands more computing resource than is available. For aquarium applications—the ab-
normality detection and behavior observation, “good enough”—considering the visual
results, the dimensionality reduction, and the training time— is the rule of thumb, thus
this paper does not seek to develop a superior autoencoder model than previous works,
but is instead considered an implementation that is practical and feasible for aquarium
operations.

Sensors 2021, 21, 4966 17 of 18

Author Contributions: Conceptualization, methodology, software, validation, formal analysis, in-
vestigation, resources, data curation, writing—original draft preparation, writing—review and ed-
iting, visualization, project administration, and funding acquisition: R.C.L.; supervision: I.-Y.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Available upon request from corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hasim, E.M.; Indrawan, H.; Karem, M. The Role of Aquarium in Increasing Visitors Interactivity in Interior Design of Jakarta

Aquarium. In Proceedings of the Tarumanagara International Conference on the Applications of Social Sciences and Humani-
ties (TICASH 2020), Jakarta, Indonesia, 3–4 August 2020.

2. Dhillon, A.; Verma, G.K. Convolutional Neural Network: A Review of Models, Methodologies and Applications to Object De-
tection. Prog. Artif. Intell. 2020, 9, 85–112.

3. Dharavath, K.; Talukdar, F.A.; Laskar, R.H. Improving Face Recognition Rate, Indian J. Sci. Technol. 2014, 7, 1170–1175.
4. Jeong, H.-J.; Park, K.-S.; Ha, Y.-G. Image Preprocessing for Efficient Training of YOLO Deep Learning Networks. In Proceedings

of the 2018 IEEE International Conference on Big Data and Smart Computing (BigComp), Shanghai, China, 15–18 January 2018.
5. Papadakis, V.M.; Papadakis, I.E.; Lamprianidou, F.; Glaropoulos, A.; Kentouri, M. A Computer-vision System and Methodol-

ogy for the Analysis of Fish Behavior. Aquac. Eng. 2012, 46, 53–59.
6. Yoga, G.; Samir, O. Ammonia Toxicity to Endemic Fish (rasbora Maninjau) of Lake Maninjau as a Reference for Water Quality

Guidelines. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Bogor, Indonesia, 29 August 2019.
7. Pierce, J.; Wong, R.Y.; Merrill, N. Sensor Illumination: Exploring Design Qualities and Ethical Implications of Smart Cameras

and Image/Video Analytics. In Proceedings of the Sensor Illumination: Exploring Design Qualities and Ethical Implications of
Smart Cameras and Image/Video Analytics, Honolulu, HI, USA, 25–30 April 2020.

8. Wang, X.-Y.; Yu, Y.-J.; Yang, H. An Effective Image Retrieval Scheme Using Color, Texture and Shape Features. Comput. Stand.
Interfaces, 2021, 33, 1, 59-68.

9. Michaux, B.; Hannula, J.; Rudolph, M.; Reuter, M.A. Study of Process Water Recirculation in a Flotation Plant by Means of
Process Simulation. Miner. Eng. 2020, 145, 15.

10. Wang, J.; He, H.; Prokhorov, D.V. A Folded Neural Network Autoencoder for Dimensionality, In Proceedings of the Interna-
tional Neural Network Society Winter Conference (INNS-WC 2012), Bangkok, Thailand, 3–5 October 2012.

11. Irsoy, O.; Alpaydın, E. Unsupervised Feature Extraction with Autoencoder Trees. Neurocomputing 2017, 258, 63–73.
12. Cheng, Z.; Sun, H.; Takeuchi, M.; Katto, J. Deep Convolutional AutoEncoder-based Lossy Image Compression, In Proceedings

of the 2018 Picture Coding Symposium (PCS), San Francisco, CA, USA, 24–27 June 2018.
13. Vincent; Larochelle, H.; Bengio, Y.; Manzagol, A. Extracting and Composing Robust Features with Denoising Autoencoders. In

Proceedings of the 25th International Conference on Machine Learning (ICML 2008), Helsinki, Finland, 5–9 July 2008.
14. Xu, W.; Keshmiri, S.; Wang, G. Adversarially Approximated Autoencoder for Image Generation and Manipulation. IEEE Trans.

Multimed. 2019, 21, 2387–2396.
15. Feng, J.; Zhou, Z.-H. AutoEncoder by Forest. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI-18),

New Orleans, LA, USA, 2–7 February 2018.
16. Betechuoh, B.L.; Marwala, T.; Tettey, T. Autoencoder Networks for HIV Classification. Curr. Sci. 2006, 91, 1467–1473.
17. Wang, C.; Yang, B.; Liao, Y. Unsupervised Image Segmentation Using Convolutional Autoencoder with Total Variation Regu-

larization as Preprocessing. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), New Orleans, LA, 5–9 March 2017.

18. Pihlgren, G.G.; Sandin, F.; Liwicki, M. Improving Image Autoencoder Embeddings with Perceptual Loss. In Proceedings of the
2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020.

19. Dumas, T.; Roumy, A.; Guillemot, C. Autoencoder Based Image Compression: Can the Learning be Quantization Independent?
In Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–
20 April 2018.

20. Khan, M.A.; Kim, J. Toward Developing Efficient Conv-AE-Based Intrusion Detection System Using Heterogeneous Dataset.
Electronics 2020, 9, 1–17.

21. Ramalho, T.; Kocisky, T.; Besse, F.; Eslami, S.M.A.; Melis, G.; Viola, F.; Blunsom; Hermann, K.M. Learning to Encode Spatial
Relations from Natural Language. In Proceedings of the Seventh International Conference on Learning Representations (ICLR),
New Orleans, LA, USA, 6–9 May 2018.

Sensors 2021, 21, 4966 18 of 18

22. Ahmadlou, M.; Al-Fugara, A.; Al-Shabeeb, A.R.; Arora, A.; Al-Adamat, R.; Pham, Q.B.; Al-Ansari, N.; Linh, N.T.T.; Sajedi, H.
Flood Susceptibility Mapping and Assessment Using a Novel Deep Learning Model Combining Multilayer Perceptron and
Autoencoder Neural Networks. J. Flood Risk Manag. 2021, 14, 1.

23. Omata, N.; Shirayama, S. A Novel Method of Low-dimensional Representation for Temporal Behavior of Flow Fields Using
Deep Autoencoder. AIP Adv. 2019, 9, 1.

24. Lin, B.; Wang, X.; Yuan, W.; Wu, N. A Novel OFDM Autoencoder Featuring CNN-Based Channel Estimation for Internet of
Vessels. IEEE Internet Things J. 2020, 7, 7601–7611.

25. Sharma, S.; Sharma, S. Activation Functions in Neural Networks. Int. J. Eng. Appl. Sci. Technol. 2020, 4, 310–316.
26. Bock, S.; Weiß, M. A Proof of Local Convergence for the Adam Optimizer. In Proceedings of the 2019 International Joint Con-

ference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019.
27. Liu, L.; Qi, H. Learning Effective Binary Descriptors via Cross Entropy. In Proceedings of the 2017 IEEE Winter Conference on

Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017.
28. Spahiu, C.S. A Multimedia Database Server for Information Storage and Querying. In Proceedings of the International Multi-

conference on Computer Science and Information Technology, Mragowo, Poland, 12–14 October 2009.
29. Khasawneh, T.N.; L-Sahlee, M.H.A.; Safia, A.A., SQL, NewSQL, and NOSQL Databases: A Comparative Survey. In Proceedings

of the 2020 11th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 7–9 April 2020.
30. Xiao, Z.; Liu, Y., Remote Sensing Image Database Based on Nosql Database. In Proceedings of the 19th International Conference

on Geoinformatics, Shanghai, China, 24–26 June 2011.
31. Vincent, O.R.; Folorunso, O. A Descriptive Algorithm for Sobel Image Edge Detection. In Proceedings of the Informing Science

& IT Education Conference (InSITE), Macon, GA, USA, 12–15 June 2009.

	1. Introduction
	2. Related Works
	3. Aquatic Subject Sample Image Dataset
	4. Autoencoder Framework
	5. Environment Setup
	6. Autoencoder Model Design
	6.1. MLP Autoencoder Models
	6.2. CNN Autoencoder Models

	7. Latent Space Database
	8. Discussion
	9. Conclusions
	References

