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Abstract: Public aquariums and similar institutions often use video as a method to monitor the be-
havior, health, and status of aquatic organisms in their environments. These video footages take up 
a sizeable amount of space and require the use of autoencoders to reduce their file size for efficient 
storage. The autoencoder neural network is an emerging technique which uses the extracted latent 
space from an input source to reduce the image size for storage, and then reconstructs the source 
within an acceptable loss range for use. To meet an aquarium’s practical needs, the autoencoder 
must have easily maintainable codes, low power consumption, be easily adoptable, and not require 
a substantial amount of memory use or processing power. Conventional configurations of autoen-
coders often provide results that perform beyond an aquarium’s needs at the cost of being too com-
plex for their architecture to handle, while few take low-contrast sources into consideration. Thus, 
in this instance, “keeping it simple” would be the ideal approach to the autoencoder’s model design. 
This paper proposes a practical approach catered to an aquarium’s specific needs through the con-
figuration of autoencoder parameters. It first explores the differences between the two of the most 
widely applied autoencoder approaches, Multilayer Perceptron (MLP) and Convolution Neural 
Networks (CNN), to identify the most appropriate approach. The paper concludes that while both 
approaches (with proper configurations and image preprocessing) can reduce the dimensionality 
and reduce visual noise of the low-contrast images gathered from aquatic video footage, the CNN 
approach is more suitable for an aquarium’s architecture. As an unexpected finding of the experi-
ments conducted, the paper also discovered that by manipulating the formula for the MLP ap-
proach, the autoencoder could generate a denoised differential image that contains sharper and 
more desirable visual information to an aquarium’s operation. Lastly, the paper has found that 
proper image preprocessing prior to the application of the autoencoder led to better model conver-
gence and prediction results, as demonstrated both visually and numerically in the experiment. The 
paper concludes that by combining the denoising effect of MLP, CNN’s ability to manage memory 
consumption, and proper image preprocessing, the specific practical needs of an aquarium can be 
adeptly fulfilled. 

Keywords: autoencoder; deep learning; computer vision; image recognition 
 

1. Introduction 
A common approach to tracking aquatic subjects in an aquarium is to capture their 

movements through a video camera [1]. The challenge here is not just about recording 
these videos over an extended period, but also the extraction of the images from the foot-
age. Many neural network architectures have demonstrated the capability to identify ob-
jects from within specific sample images [2]. When applying these pre-trained models on 
specific targets in various environments, not only does the neural network structures need 
to be changed often, but a series of image preprocessing is also required to provide a more 
precise model [3,4]. 
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The identification of a subject in its murky surroundings from the footage is often a chal-
lenge to the pre-trained model prediction process. The results may vary due to several uncer-
tain and inevitable factors: (1) the subjects’ captured motions may not be as clear as those in 
the training dataset [5]; (2) the condition of the water in the collected footage may not be as 
clean as those in the training dataset [6]; and (3) changes in the light source and changes in 
amount of light may cause too much ambiguity to identify the subjects with certainty [7]. 
These uncertainties highlight the importance of image preprocessing in the neural network 
model training and prediction. 

Once the subjects are identified by the trained model, the next challenge is to store these 
images into a repository for further analysis [8]. Since these images were captured in an ever-
changing the environment, such as the cycle between clear and cloudy water after water 
changing procedures [9], storing these images in their source format is ineffective. This is be-
cause: (1) to capture the source images well, it usually requires high resolution and dimension 
video devices; (2) the captured conditions are often inevitably mixed with visual noise; and (3) 
storing these source images over time requires an enormous amount of disk space and is thus 
costly. 

The autoencoder is a special application of deep learning; it aims to reduce the dimen-
sionality of the image and generates a short binary representation, the latent space of the im-
age, so that it can be reconstructed back within an acceptable loss range in comparison to the 
source. This paper argues that this latent space can be effectively used and stored into a repos-
itory, a must for an aquarium’s routine operations. It also systematically discusses the associ-
ated impacts of the various autoencoder configurations when applied to low-contrast images 
of aquatic beings. 

This paper seeks to find a practical approach to the use of autoencoders in the context of 
serving an aquarium’s needs. The goal is to reduce the dimensionality of the growing collec-
tion of the aquatic subjects over time, to store these videos effectively and efficiently, and to 
retain useful and desirable visual information. In pursuit of this goal, the paper answers sev-
eral questions regarding the outcome and impact of applying the autoencoder technique: (1) 
what are the key differences between the Multilayer Perceptron (MLP) and Convolution Neu-
ral Networks (CNN) autoencoder in terms of the model architecture and their associated pa-
rameters; (2) how do autoencoder model parameters impact the outcome; (3) can autoencoder 
techniques effectively reduce repository spaces; (4) can those regenerated images from the au-
toencoder adequately serve aquarium research and management purposes; (5) can autoen-
coder models enhance the collected low-contrast images; and (6) what are the necessary steps 
and preparations required for an aquarium to apply the proposed autoencoder framework of 
this paper. 

2. Related Works 
The autoencoder has a symmetric neural network structure: the encoder, and the de-

coder. The encoder layer extracts the essence from the input images, while the decoder layer 
uses that extracted essence to reconstruct the image. Both layers are trying to minimize loss 
and converge into the trained model. It has various applications, such as: (1) dimensionality 
reduction—to reduce the high dimensional images into low binary dimensional latent space 
[10]; (2) feature extraction—since the latent space can be reconstructed back to the source, they 
are considered the most important features of the image [11]; (3) image compression—apply-
ing the convolutional networks to construct the autoencoder is a common way of compressing 
the source image [12]; (4) image denoising—by adding random noises into the source image 
and letting the autoencoder model train a denoise model, it can then reconstruct noisy images 
back to a form similar to the source [13]; and (5) image generation—whether the learned latent 
space can be reconstructed to resemble the source will depend on the quality of the input im-
ages [14], etc. 
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Both MLP and CNN autoencoder approaches were widely applied by many previous 
works, but their input data dimensions were much less than the collected images by this pa-
per, hence the preprocessing and the model design require special attention. Table 1 illustrates 
the comparison between the previous works and this paper. 

Table 1. Autoencoder model comparison with the previous works. 

Authors Framework Data Comparison 

Ji et al. [15] MLP 
MNIST (28, 28, 1) 

CIFAR10 (32, 32, 3) 

Small dimensions 
High-contrast 

Simple model design 

Betechuoh et al. [16] MLP HIV records Estimation Function similar to the Equation (4) 

Wang et al. [17] CNN BSDS500 (481, 321, 1) 
Small dimensions 

High-contrast 

Pihlgren et al. [18] CNN 
STL-10 (96, 96, 3) 
SVHN (32, 32, 3) 

Small dimensions 
High-contrast 

Simple model design 

Dumas et al. [19] CNN BSDS300 (481, 321, 1) 
Small dimensions 

High-contrast 
Image normalization preprocessing 

Khan et al. [20] CNN 

Applied CICFlowMeter-V3 
model to extract the cyberattack 

features from the CSE-CIC-
IDS2018 dataset  

Small dimensions 
Not an image source 

No image preprocessing required 

Ramalho et al. [21] CNN 
The authors construct virtual 

scenes with multiple 3D views 

Not an image source 
No image preprocessing required 
Generating synthetic 3D images 

The previous work by Ji et al. [15] applied an MLP framework against two famous image 
datasets, MNIST—the monochrome image dimension is (28, 28, 1), and CIFAR10—the color 
image dimension is (32, 32, 3); both input image dimensions in their autoencoder models 
were smaller and less complex than the low-contrast images used in this paper. Thus, their 
autoencoder models are not suitable for the purpose of this paper. 

A medical study on HIV classification proposed the measurement of the image difference 
between the source and the reconstructed image, and the standardization function [16] is sim-
ilar to this paper’s Equation (4). This paper applied the MLP framework to denoise the low-
contrast source images by generating the standardized difference images. Wang et al. [17] ap-
plied the CNN autoencoder similar framework as a part of the image preprocesses to extract 
the essence from the source images. 

The work of Pihlgren et al. [18] discussed the improvement of the image autoencoder by 
applying the perceptual loss function to compare the images from high-level representation 
perspectives. The work applied the CNN framework, a model structure similar to that of this 
paper, with the difference being that higher contrast input source images were used, with 
smaller latent spaces, and lower image dimensions—(64, 64, 3) and (96, 96, 3)—than those 
used in this paper. Since the source images used in this paper are low contrast, the autoencoder 
cannot extract the features to generate the adequate latent space in small size and reconstruct 
the source image with less loss. 

In the work of Dumas et al., a way was proposed to minimize the rate-distortion optimi-
zation: by giving the optimal quantization step size, the compression outcome will be better 
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[19]. Similarly, this paper applied a more intuitive approach—by enhancing the source im-
ages—to train the autoencoder and apply the same method to reconstruct the low-contrast 
images. 

In Khan et al. [20] work, they applied two layers of one-dimensional convolution and 
then connect to the autoencoder to detect the misuses from the potential cyberattacks. Since 
the source datasets used in this paper were quite different than their work, certain image pre-
processing must be connected before training the model; on the other hand, this paper dis-
closes the effects between CNN and MLP approaches under various configurations, which 
makes the contribution unique. 

The work of Ramalho et al. used natural language as the input source data to the autoen-
coder to get the latent representations and used these latent data to generate the corresponding 
synthetic 3D images [21]. This paper used the images from the aquatic live habitat as the input 
data; the denoising techniques are different than their work as well as the purpose of the re-
search. 

Low-contrast images are defined by the contours of the subjects being blurry in contrast 
to the background. It implies that the color slopes are slim, and thus difficult to find derivatives 
when the activation function is applied during the model training. However, if the contours 
of the subject are too blurry, it will blend into the background and be treated as a “blank” 
image, making it difficult to obtain a convergent training model. 

For the purpose of this paper, several videos of fish were collected from an aquarium and 
were then converted into a sequence of images, with most of the frames being low-contrast. 
An object detection neural network model was then trained and used to predict the position 
of the detected subjects relative to the image. The sample images from the video frames were 
used as the source to extract the contours of the fish based on their relative coordinates. 

3. Aquatic Subject Sample Image Dataset 
The paper collected videos of aquatic subjects from the Aquatic Animal Center (National 

Taiwan Ocean University Aquatic Animal Center (http://aac.ntou.edu.tw/, accessed on 20 
April 2021)). These videos contain various species of fish moving about over time. The low-
contrast and high-noise images were randomly chosen to see if the autoencoder model can 
help in dimensionality reduction. The number of samples was approximately equal for each 
species. Figure 1 illustrates some sample frames of the subjects. Both captured images were 
from a video recording of the same compartment in the aquarium. There are other compart-
ments behind the one in focus and can be seen through the murky water, which serves as 
visual noise. Of the two samples chosen, (a) shows multiple subjects swimming in front of 
background noise, while (b) only partially shows some of the subject in low contrast, with 
most of the image only containing visual noise. From these samples, they clearly showed there 
were noisy background (reflections, shades, and a metal bar), and the light illuminated from 
the left and fade to the right in the compartments. These noisy backgrounds will interfere with 
the outcomes of the autoencoder. 

  

(a) (b) 

Figure 1. The sample aquatic subject frames, (a) multiple subjects and (b) low-contrast subjects in their frames. 
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Since the aquatic objects are the focal points, not the noisy backgrounds, a following 
research question is raised: what would the autoencoder learn only from the aquatic ob-
jects and can this autoencoder reconstruct back to the full image? To prove that, this paper 
cropped the aquatic objects out of the source images and standardized them into a unified 
size (taking the maximum value from the object dimension as the square’s width), illus-
trated in Figure 2. The purpose of this squaring scheme is to prevent distortion and retain 
the subjects’ aspect ratios when the model training requires the same dimension for all 
input images. The paper posits that, if there were a way to reduce the background noises 
and reveal the aquatic object shapes well, so that the caregivers could observe their living 
condition conveniently. Since the size of the input images is smaller and the number of 
aquatic object samples is also more than the full image, the autoencoder might have better 
outcomes. 

    

(a) (b) (c) (d) 

Figure 2. Sample standardized aquatic object images with various appearances: (a) partial body, (b) full body, (c) body 
with nose, and (d) diving body. 

4. Autoencoder Framework 
The autoencoder models designed in this paper are derived from two widely applied 

approaches, namely MLP [16,22] and CNN [23,24]. The authors have shared the autoen-
coder codes on the GitHub (The GitHub link of the shard autoencoder programs is at 
https://github.com/rich58lee/autoencoder (accessed on 20 April 2021)). Figure 3 illustrates 
the proposed autoencoder framework consisting of two separate processes; the upper pro-
cess is used to populate and preprocess the datasets, while the lower process is the actual 
autoencoder model training process. In the diagram below, the thin lined circle represents 
where the process starts, while the bold lined circle represents where the process ends. 
The rectangles represent the tasks, the cylinders represent a repository, database, or files, 
and the diamond shape with a plus sign represents two parallel process branches. 

In the preprocess part, there are two branches of tasks: (1) “Load Full Images”—reads 
all full-image files into a high-dimensional matrix and proceeds the following diamond-
plus tasks; (2) “Load Object Images”—reads the object image files extracted by an object 
detector; each object image contains only one object. The diamond-plus contains a series 
tasks of: (4) “Enhance Images”—filtering out those images with exceptionally low quality, 
smoothing the images with a filter kernel and amplifying their contrast; (5) “Augment 
Images”—to prevent model overfitting side-effect, populating more samples by shifting 
the coordinates and making rotations (in every 45°); this augmentation reflects the reality 
that the aquatic subjects may be present various ways in their habitat; (6) “Resize Im-
ages”—considering the practical use, decreasing the image size by applying an interpola-
tion method to save the model training time; and (7) “Save Images”—storing these pre-
processed images onto the repository. 
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Figure 3. The proposed autoencoder framework. 

In the model training part, the task (8), “Load Images”, loads the preprocessed im-
ages into a high-dimensional matrix from the repository, and then conducts the task (9), 
“Partition Data Sets”, to partition this matrix into two datasets (the ratio between the da-
tasets of the train and the test is 80% and 20%) randomly. The diamond-plus parallel tasks 
are: (10) “MLP Models”—given various dimensions to formulate the model structures and 
conducting the training for each model; (11) “CNN Models”—by given the same dimen-
sions as MLP to formulate several convolution networks, and then proceed with a series 
of neural network following tasks. 

The task (12), “Train MLP/CNN Models”, begins the model training; it reads the im-
age files from the “Training Data Set”, and then derives the model weights and the train-
ing history; the task (13), “Validate MLP/CNN Models”, applies the model against the 
“Test Data Set”; and finally, the task (14), “MLP/CNN Performance Benchmarks”, pre-
sents the reconstructed images visually. 

When applying the autoencoder techniques, several interesting research questions 
need to be answered: (1) how do model configurations affect the outcome; (2) is the neural 
network structure better if it is more complex (3) how to achieve the optimal length of the 
latent space; and (4) will image preprocessing affect the training result? 

5. Environment Setup 
This paper used a high-performance computer equipped with: (1) Intel(R) Core(TM) 

i9-9900KF CPU @3.60 GHz; (2) RAM 128 GB; (3) GPU NVIDIA TU102 (GeForce RTX 2080 
Ti); and (4) Xeon E3-1200 v5/E3-1500 PCIe for 2 TB SSD. This computer was running the 
Ubuntu operating system (the 20.04 LTS version); the CPU performance of generating 
10,000 prime numbers took only 10 s to complete by the sysbench, a modular, cross-plat-
form and multi-threaded benchmark utility. 
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6. Autoencoder Model Design 
The input images were all placed into a square format with the dimensions of 256 × 

256 px with the original ratio of the images preserved to save computing resources and 
training time. The remaining empty spaces were filled with zeros, resulting in the spaces 
being filled with black. 

6.1. MLP Autoencoder Models 
The baseline settings were: (1) the latent code length: 64; (2) the training epochs: 512; 

(3) the batch size: 8; (4) the activation functions: Rectified Linear Unit (ReLU) and Sigmoid 
[25]; (5) the optimization algorithm: Adam [26]; (6) the loss function: binary cross entropy 
[27]; and (7) the training model: based on fully connected layers (denoted as Dense), illus-
trated in Table 2. 

Table 2. MLP baseline training model. Bold indicates the latent layer. 

Id Layer Type Output Shape Activation Param # 

IN input Input Layer (None, 196,608) ReLU 0 

EN256 encoded_256 Dense (None, 256) ReLU 50,331,904 

EN128 encoded_128 Dense (None, 128) ReLU 32,896 

L latent Dense (None, 64) ReLU 8256 

DE128 decoded_128 Dense (None, 128) ReLU 8320 

DE256 decoded_256 Dense (None, 256) ReLU 33,024 

OUT output Dense (None, 196,608) Sigmoid 50,528,256 

The standardized function is illustrated in Equation (1): 𝑥𝑥 is a pixel value, and 𝑋𝑋 is 
the whole image matrix. The Equation (2) illustrates the image difference calculation for 
visualization; the purpose is to ensure that all pixel values will be within 0 ≤ 𝑥𝑥 ≤ 1. Equa-
tion (3) calculates the RGB color (red, green, or blue) difference between the two images. 
A benchmark function (the total differences over the RGB color planes) is defined in Equa-
tion (4): simply take the square root of the summation of all color differences. The higher 
the benchmark value, the higher the visual contrast. 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋) = [𝑥𝑥 −𝑚𝑚𝑚𝑚𝑚𝑚 (𝑋𝑋)] [𝑚𝑚𝑚𝑚𝑚𝑚(𝑋𝑋) −𝑚𝑚𝑚𝑚𝑚𝑚 (𝑋𝑋)]⁄  (1) 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑋𝑋,𝑌𝑌) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋 − 𝑌𝑌) (2) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑋𝑋,𝑌𝑌, 𝑐𝑐) = {𝑋𝑋𝑐𝑐 − 𝑌𝑌𝑐𝑐}2 (3) 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑋𝑋,𝑌𝑌) = ��𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑋𝑋,𝑌𝑌, 𝑐𝑐)
2

𝑐𝑐=0

 (4) 

The validation result, illustrated in Figure 4, consists of four parts: Figure 4a—the 
source image; Figure 4b—the standardized latent space; Figure 4c—the reconstructed im-
age through the autoencoder; and Figure 4d—the standardized difference image between 
Figure 4a and Figure 4c. The random sample’s benchmark value was 0.1779; it can be 
treated as the performance of the autoencoder. It is worth noting here that the difference 
image (Figure 4d) provides a much clearer visual of the subject’s body in comparison to 
the reconstruction. The model converged at the 151st epoch, the loss and the validation 
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loss were (0.2640, 0.2695), respectively. The model extracted the body contour noise, 
which is why the standardized difference image (a subtraction between the source (Figure 
4a) and the reconstructed image (Figure 4c)) shows a much clearer shape. 

    

(a) (b) (c) (d) 

Figure 4. The MLP autoencoder sample results: (a) source, (b) latent, (c) reconstructed, and (d) difference. 

The next experiment was to add additional symmetric layers, namely 𝐼𝐼𝐼𝐼 → 𝐸𝐸𝐸𝐸512 →
𝐸𝐸𝐸𝐸256, and 𝐷𝐷𝐷𝐷256 → 𝐷𝐷𝐷𝐷512 → 𝑂𝑂𝑂𝑂𝑂𝑂. The latent space length was 122; it remained in a 
squared-value so that it can be visualized. The model converged at the 101st epoch; the 
loss and the validation loss were (0.2642, 0.2701), respectively. As expected, the standard-
ized difference image again showed a clearer shape of the subject, this means the autoen-
coder has effectively filtered the noise out of the source images. 

The last experiment is based on the previous model structure, but with enhanced 
source images before the model training. The image enhancement preprocess set the 
brightness factor to 2 (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣: 0 ≤ 𝑏𝑏 ≤ 100) , the contrast factor to 0.6 
(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣: 1.0 ≤ 𝑏𝑏 ≤ 3.0) , and applied a (3, 3) filter ( {[−1,−1,−1], [−1,11,−1],
[−1,−1,−1]}) to the source images. The model converged at the 147th epoch, with the loss 
and the validation loss being (0.3698, 0.3756), respectively. The sample low-contrast 
source images that were omitted during the initial model training process due to their 
exceptionally low quality, “unseen” by the autoencoder training model, so to speak, were 
then tested through the autoencoder, which was able to reconstruct the source and pro-
duce a benchmark value of 0.7301. This means the model has been effectively trained and 
could even work with images previously deemed too low quality for model training. 

This paper concluded that changing the MLP autoencoder’s configuration does not 
improve the reconstruction from a low-contrast source image. However, an unexpected 
finding was that the difference images (as illustrated in Figure 5), managed to preserve 
the subjects’ contours extremely well. Figure 5a was constructed from the test set, while 
Figure 5b,c were constructed from the “unseen” (omitted from the initial model training 
due to exceptionally low quality) low-contrast images. This implies the common features 
of the source images has been extracted as noise patterns during the autoencoding pro-
cess. There were attempts to experiment with more complex MLP models, however these 
models were unable to be deployed due to requiring addition computing resources (be-
yond what would be considered practical for an aquarium). Since MLP could not reach 
the research goal, image convolution and pooling scheme (CNN) may be worth exploring. 
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(a) (b) (c) 
 

Figure 5. The image differences from various random samples: (a) difference from the test set, (b) difference from the 
“unseen” samples, and (c) difference from the “unseen” samples II. 

6.2. CNN Autoencoder Models 
The baseline settings were: (1) the latent space: (32, 32, 64); (2) the training epochs: 

512; (3) the batch size: 8; (4) the activation functions: ReLU and Sigmoid; (5) the optimiza-
tion algorithm: Adam; (6) the loss function: mean-square error (MSE); and (7) the training 
model: the encoding part consists of two blocks, each block contains two-dimensional con-
volution and the max pooling layers, and the decoding part is symmetrical to the encoding 
but built in reverse, as illustrated in Table 3. The convolution’s kernel size is (3, 3), while 
the max pooling’s pool size is (2, 2). 

Table 3. CNN baseline training model. Bold indicates the latent layer. 

Id Layer Type Output Shape Activation Param # 

IN input Input Layer (None, 256, 256, 3) ReLU 0 

CN_256 Conv2D_256 Conv2D (None, 256, 256, 256) ReLU 7168 

MP_256 MaxPooling_256 MaxPooling2D (None, 128, 128, 256) ReLU 0 

CN_128 Conv2D_128 Conv2D (None, 128, 128, 128) ReLU 295,040 

MP_128 MaxPooling_128 MaxPooling2D (None, 64, 64, 128) ReLU 0 

CN_64 Conv2D_64 Conv2D (None, 64, 64, 64) ReLU 73,792 

L latent MaxPooling2D (None, 32, 32, 64) ReLU 0 

CND_64 Conv2DT_64 Conv2DTranspose (None, 32, 32, 64) ReLU 36,928 

US_256 UpSampling2D _64 UpSampling2D (None, 64, 64, 64) ReLU 0 

CND_128 Conv2DT_128 Conv2DTranspose (None, 64, 64, 128) ReLU 73,856 

US_128 UpSampling2D _128 UpSampling2D (None, 128, 128, 128) ReLU 0 

CND_256 Conv2DT_256 Conv2DTranspose (None, 128, 128, 256) ReLU 295,168 

US_256 UpSampling2D _256 UpSampling2D (None, 256, 256, 256) ReLU 0 

OUT output Dense (None, 256, 256, 3) Sigmoid 6915 

The CNN model applies two-dimensional convolutions against the input images and 
receives the maximum values out of the pooling matrices to encode the latent space. This 
derived latent space is then used to apply the reverse convolution transposition and the 
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up-sampling process to reconstruct the source image. The model converged at the 365th 
epoch, the loss and the validation loss were (4.1545 × 10−5, 4.2398 × 10−5), respectively. 

The sample standardize difference image benchmark value (the total differences over 
the RGB color planes calculated by Equation (4)) was 0.2199. The standardized difference 
image showed that the contours were far less clear than MLP’s. The Figure 6 illustrates: 
Figure 6a—the source image, Figure 6b—the reconstructed image, and Figure 6c—the 
standardized difference image. Not surprisingly for this effect, CNN’s latent code contains 
more information than MLP’s, 2562 > 82. 

   

(a) (b) (c) 

Figure 6. The CNN autoencoder sample results: (a) source, (b) reconstructed, and (c) difference. 

The next experiment was to reduce the dimension spaces, 𝐶𝐶𝐶𝐶_256 → 𝐶𝐶𝐶𝐶_128 , 
𝐶𝐶𝐶𝐶_128 → 𝐶𝐶𝐶𝐶_64, and 𝐶𝐶𝐶𝐶_64 → 𝐶𝐶𝐶𝐶_32, but the model structure remained as the baseline. 
The latent space thus reduced to (32, 32, 32). The standardized image difference was 
0.29380453 ± 0.021411419. The model converged at the 379th epoch; the loss and the vali-
dation loss were (4.5114 × 10−5, 4.3126 × 10−5), respectively. The sample image benchmark value 
was 0.03299. The result showed that reducing the dimension spaces improved the outcome 
(because the benchmark value 0.03299 < 0.2199) and consumed much less computing time 
in comparison with the baseline. 

The following experiment aimed to reduce the dimension spaces further, 𝐶𝐶𝐶𝐶_256 →
𝐶𝐶𝐶𝐶_64, 𝐶𝐶𝐶𝐶_128 → 𝐶𝐶𝐶𝐶_32, and 𝐶𝐶𝐶𝐶_64 → 𝐶𝐶𝐶𝐶_16, but with the model structure remaining as 
the baseline. The latent space thus reduced to (32, 32, 16). The standardized image difference 
was 0.47967815 ± 0.027717976. The model stopped at the 512th epoch because the losses 
had not improved since the previous intermediate result; the loss and the validation loss were 
(5.5957 × 10−5, 5.2107 × 10−5), respectively. 

The sample difference image benchmark value was 0.4075, and when the model was 
applied to another “unseen” sample, an identical difference image benchmark value was gen-
erated, indicating that the model is stable. The result showed that by reducing the dimension 
spaces further, it had made the performance slightly worse (0.4075 > 0.2199). However, the 
autoencoder consumed much less computing time in comparison with the baseline. 

Will image enhancement help with the autoencoder? The following experiment was to 
enhance the source image first by setting the brightness factor to 2 (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣: 0 ≤ 𝑏𝑏 ≤ 100), 
the contrast factor to 0.6 ( 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣: 1.0 ≤ 𝑏𝑏 ≤ 3.0 ), and a (3, 3)  filter 
({[−1,−1,−1], [−1,9,−1], [−1,−1,−1]}). The model structure and the latent space remained 
as the same as the previous one. The model converged at the 420th epoch. The loss and the 
validation loss were (1.5203 × 10−4, 1.5547 × 10−4), respectively. The sample standardized differ-
ence image benchmark value was 0.1754. Applying the model to another “unseen” sample 
also got the identical standardized difference image benchmark value, indicating that the 
model is stable. 

In comparison to the previous model, the image enhancement model has a better bench-
mark value (0.1754 < 0.4075), meaning the reconstructed image has a higher contrast than 
the unenhanced model. Furthermore, by taking the proper image enhancement treatment, the 
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autoencoder still generated good results in terms of the outcome (the benchmark value 
0.1754 < 0.2199) and the computing time consumption, in comparison to the baseline model. 

Can the autoencoder learn from the full images and still reconstruct images successfully? 
While previous experiments used cropped images focusing on just the fish to train the auto-
encoder models, the entire frame is used here instead. The experiment applied the baseline 
model, with enhanced source images, and with the same settings as the previous experiment 
before the model training. After the model was trained, sample source images (both full scale 
and cropped), were tested against the autoencoder model to produce reconstructions. 

The model converged at the 189th epoch with fewer losses of (1.1481 × 10−4, 1.1045 × 10−4) 
than the baseline. The benchmark value was 0.2885. Figure 7 illustrates the results: Figure 7a 
is the randomly chosen full scale source image; Figure 7b is the resulting reconstructed image; 
Figure 7c is the standardized difference image between Figure 7a and Figure 7c; and Figure 
7d is the reconstructed image of a cropped fish. The results show that an autoencoder model 
that was trained on full images can also reconstruct low-contrast images (Figure 7d) success-
fully, including even the particularly low-quality ones that were previously “unseen”. 

    

(a) (b) (c) (d) 

Figure 7. CNN full image autoencoder against cropped sample results: (a) source, (b) reconstructed, (c) difference, and (d) 
extended. 

A new question then arises: can an autoencoder model trained from cropped images 
reconstruct full images? An autoencoder model trained only on cropped images should 
be missing training information when dealing with a full image, so how would the model 
reconstruct a full image? The results are illustrated in Figure 8; Figure 8a is the source full 
image, Figure 8b is the reconstructed image, and Figure 8c is the standardized difference 
image. The autoencoder can in fact successfully reconstruct a full image, despite seem-
ingly lacking some information. 

   

(a) (b) (c) 

Figure 8. CNN cropped image autoencoder against full sample results: (a) source, (b) reconstructed, and (c) difference. 
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The answer is in the baseline model itself; through convolution and pooling, the CNN 
model can extract the image features required to reconstruct images regardless of the 
cropping. In conclusion, an autoencoder trained on just cropped images is sufficient to 
reconstruct a full image from a source. In other words, an aquarium could save computing 
resources by opting to train the autoencoder using cropped images over entire images. 

7. Latent Space Database 
The traditional relational database has a special feature: the binary large object 

(BLOB), which is able to store and to retrieve the images [28]. One drawback of using 
BLOB to retrieve the images is that the process needs a temporary buffer storage to hold 
the data. Another drawback is that the binary data needs to be serialized—the Base64 for-
mat is a common scheme—when transferring over the Internet. As with the BLOB, the 
character large object (CLOB) can store and retrieve the latent space in Base64 format as 
well. This transformation comes with a price of increasing the size of the data. 

The aquatic subjects are identified and predicted by the object-detection neural 
model; the detected subjects are the input source buffer arrays to the autoencoder. These 
buffer arrays are dimensioned into the corresponding latent spaces; and then serialized 
and stored into the database. It is a continuous process—from video capture to the storing 
of the latent space—taking up sizeable computing resources and time for the task. 

NoSQL is a promising solution to store and retrieve the latent spaces. Its robustness 
and redundancy can reduce the effort in backing up and maintaining the data within [29]. 
This paper stored the hourly video files under a file structure, the date, and twenty-four 
hours sub-folders. The metadata contains the information about where and when the 
video was recorded; along with the latent space data, a NoSQL database was used to store 
these data. The latent space size was (32, 32, 64), 64 KB. After serialization in Base64 for-
mat, the size is increased up to 86 KB. Since an aquarium’s objective is to study the fishes’ 
behavior and habitation, the standardize difference images in binary form are adequate 
for such purposes. Many traditional relational databases cannot support the BLOB and 
CLOB exceeding 64 KB in size. Using NoSQL database to store and retrieve these tremen-
dous number of latent spaces is inevitable [30]. 

8. Discussion 
This paper derives two different model structures, the MLP and the CNN. The ex-

periments showed that applying the MLP model will result in better standardized differ-
ence images, which can replace the source low-contrast images; in addition, through a 
Sobel treatment for enhancing the object shapes [31] it will be handy to the aquarium op-
eration in observing the aquatic subjects only, disregarding the background noises. Figure 
9 illustrates the visual effects with MLP model (the dense layers of “128-64-32-64-128”, the 
training epochs were 16): Figure 9a shows the source image captured from the habitat; 
Figure 9b shows the reconstructed image by the retrained MLP autoencoder against the 
standardized difference images (clearer aquatic shape in visual); and Figure 9c shows the 
Figure 9b image after Sobel treatment; it is particularly useful in observing the aquatic 
subjects’ behavior, such as being ill or dying, in the habitat. The training loss versus the 
validated was (0.4157, 0.4171) after the 16th epoch. The model was slightly overfitting, but 
it was acceptable; the ones illustrated in Figure 9b,c have a practical use, especially when 
the caregiver has difficulty in observing the low-contrast images. 
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(a) (b) (c) 

Figure 9. MLP auto-encoded images: (a) source image, (b) reconstructed image, and (c) Sobel treatment image. 

On the other hand, the CNN model (the convolution and max-pooling blocks are 
“128-64-32”, similar to the previous MLP model), has a better outcome in reconstructing 
the synthetic images, because the standardized differences are low—the difference be-
tween the source and the reconstructed one is less recognizable visually. The training loss 
versus the validated was (0.4075, 0.4086) after the 16th epoch; the model was slightly over-
fitting, but it was still acceptable. In practical use, the latent representatives are stored into 
the database to reconstruct the synthetic images instead of keeping those high-dimen-
sional source images. 

Using the color histogram method can disclose the color distribution and the frequen-
cies about the colors used, respectively. Two approaches were taken: (1) applied and 
learnt the neural model against the FULL (covered entire compartment) images; and (2) 
the neural model trained on the OBJECT (covered the extracted boxed object only) images 
and applied the model against the FULL images. The validating samples contain the im-
ages that has not been seen by the training models. 

The model performance was measured by the histogram matrices for the Standard-
ized Difference (DIFF, the image differences of Source—Reconstructed) and DIFF2 (Sobel 
Treatment against DIFF) images. This paper calculated: (1) Model—the model structure 
ID; (2) Min.—the minimal value; (3) Max.—the maximal value; (4) Std. Dev.—the standard 
deviation of all histograms; (5) Scale—the subtraction of Max. and Min.; (6) COV.—the 
coefficient variance of all histograms; and (7) Image—the training dataset is either from 
FULL or OBJECT. 

For MLP models (the symmetric layers of “64-32-16”, “128-64-32”, and “256-64”), the 
DIFF and DIFF2 images have the best visual outcomes for different purposes, not the re-
constructed ones; therefore, the best performance model has the best distinguishability, 
e.g., the Train-Loss, Validate-Loss, COV., Std. Dev., and Scale values are the largest ones, 
respectively. The MLP models are applied to derive the Sobel images (DIFF2); therefore, 
this paper is only concerned about the loss values of the last epoch. 

Table 4 illustrates the results and shows that the “256-64” model derived from OB-
JECT has the best performance which has the best distinguishability than others. How-
ever, considering the model training time, the FULL model training took approximate 365 
ms/step, but the OBJECT models only took approximate 84 ms/step; therefore, this paper 
proposes the use the DIFF2 (Sobel treatment) derived from this OBJECT model to observe 
the aquatic object movements, because lots of background noises were greatly reduced. 
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Table 4. MLP model performance against the standardized difference images. 

Layers Loss Validate-Loss Standard Deviation Scale Coefficient of Variance Image 

64-32-16 
0.58 0.58 546.94 3213.96 0.08 F 
0.27 0.27 686.68 3474.33 0.10 O 

128-64-32 0.58 0.58 764.69 3575.76 0.10 F 
0.27 0.27 736.14 4753.11 0.11 O 

256-64 
0.58 0.58 938.27 4253.11 0.11 F 
0.26 0.27 1719.05 6617.41 0.20 O 

Figure 10 illustrates the histograms comparison across the MLP autoencoder models: 
Figure 10a—the autoencoder models trained on FULL images and validated on FULL im-
ages; other than the training dataset, it implies that the “256-64” has the best color distin-
guishability than others; Figure 10b—the autoencoder models trained on OBJECT images 
and validated on FULL images; it also implies that the “256-64” has the best color distin-
guishability than others. 

  
(a) Train FULL → Validate FULL (b) Train OBJECT → Validate FULL 

Figure 10. MLP model histograms comparison. 

For CNN models (the symmetric layers of “64-32-16”, “128-64-32”, “256-128-64-32”, 
and “512-256-128-64-32”), the reconstructed images are already good enough; the DIFF 
and DIFF2 histograms both have the most noises; therefore, the best performance model 
has the least distinguishability, e.g., the Validate-Loss, Accuracy, COV., Std. Dev., and 
Scale values are the smallest ones, respectively. 

Table 5 illustrates the results and shows that the “512-256-128-64-32-64-126-256-512” 
models (both FULL and OBJECT) have similar distinguishability, validate-loss, and accu-
racy values, but considering the Accuracy and COV., this paper proposes to use the latent 
representatives derived from this FULL model to reconstruct the source images. Another 
finding worth noting is that using the OBJECT samples to reconstruct the source images 
does not always converge; these low-accuracy values explain that finding. 
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Table 5. CNN model performance against the standardized difference images. 

Model Loss Accuracy Standard Deviation Scale Coefficient of Variance Image 

64-32-16 
0.56 84 2296.47 14721.56 0.16 F 
0.26 83 2166.39 13143.80 0.15 O 

128-64-32 0.56 60 2196.73 14540.64 0.16 F 
0.26 84 2206.08 13135.36 0.15 O 

256-128-64-32 
0.56 86 2177.37 13486.72 0.16 F 
0.26 84 2265.50 14608.20 0.15 O 

512-256-128-64-32 
0.56 83 2163.02 11761.30 0.14 F 
0.56 84 2131.25 12779.87 0.14 O 

Figure 11 illustrates the histograms’ comparison across the CNN autoencoder mod-
els: Figure 11a—the autoencoder models trained on FULL images and validated on other 
FULL images; it implies that the “512-256-128-64-32” has the best color distinguishability 
than others; Figure 11b—the autoencoder models trained on OBJECT images and vali-
dated on FULL images; it also implies that the “512-256-128-64-32” has the best color dis-
tinguishability than others, but the training converged much earlier than the FULL model. 

 
(a) Train FULL → Validate FULL 
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(b) Train OBJECT → Validate FULL 

Figure 11. CNN model histograms comparison. 

9. Conclusions 
Just as with other neural networks, the model design of the autoencoder is data-

driven, especially in image-related applications. The bottom line is that the model must 
serve a given purpose, which, in the context of an aquarium, is to store images of fish and 
other aquatic subjects filmed in their low-contrast environments effectively, with less di-
mensionality and yet retain the image fidelity to an acceptable degree with reduced noise 
and clearly defined shapes. This paper disclosed the insight of applying the autoencoder 
frameworks, by presenting the experiment results against the low-contrast images and 
concluded that both the MLP and the CNN have their appropriate uses in dealing with 
low-contrast image reconstruction. In addition, by applying the image preprocessing—
enhancing the source images—it will make the autoencoder model reconstruct the images 
with more satisfactory results. 

In a practical context, this paper concludes that a combination of both MLP and CNN 
approaches is better suited for an aquarium. This paper discovered that, through Equation 
(4) used during the MLP process, a standardized difference image was generated that sat-
isfied the needs of an aquarium. The standardized difference image is not only sharp and 
well defined, but also removed unnecessary visual noise, retaining only relevant visual 
information pertaining to aquarium research and management. By using this difference 
image as a new source image for the CNN model, it provides an ideal solution for an 
aquarium’s architecture that requires the capability to handle complex configurations 
without excessive computing resources. To improve the low-contrast autoencoder models 
derived from the MLP frameworks, it may require a complex model structure that de-
mands more computing resource than is available. For aquarium applications—the ab-
normality detection and behavior observation, “good enough”—considering the visual 
results, the dimensionality reduction, and the training time— is the rule of thumb, thus 
this paper does not seek to develop a superior autoencoder model than previous works, 
but is instead considered an implementation that is practical and feasible for aquarium 
operations. 
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