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Abstract: Drones are becoming increasingly popular not only for recreational purposes but in day-
to-day applications in engineering, medicine, logistics, security and others. In addition to their
useful applications, an alarming concern in regard to the physical infrastructure security, safety
and privacy has arisen due to the potential of their use in malicious activities. To address this
problem, we propose a novel solution that automates the drone detection and identification processes
using a drone’s acoustic features with different deep learning algorithms. However, the lack of
acoustic drone datasets hinders the ability to implement an effective solution. In this paper, we
aim to fill this gap by introducing a hybrid drone acoustic dataset composed of recorded drone
audio clips and artificially generated drone audio samples using a state-of-the-art deep learning
technique known as the Generative Adversarial Network. Furthermore, we examine the effectiveness
of using drone audio with different deep learning algorithms, namely, the Convolutional Neural
Network, the Recurrent Neural Network and the Convolutional Recurrent Neural Network in drone
detection and identification. Moreover, we investigate the impact of our proposed hybrid dataset
in drone detection. Our findings prove the advantage of using deep learning techniques for drone
detection and identification while confirming our hypothesis on the benefits of using the Generative
Adversarial Networks to generate real-like drone audio clips with an aim of enhancing the detection
of new and unfamiliar drones.

Keywords: drone; UAV; machine learning; deep learning; Convolutional Neural Network CNN;
Recurrent Neural Network RNN; Convolutional Recurrent Neural Network CRNN; Generative
Adversarial Networks GAN; acoustic fingerprinting; drone audio dataset; artificial intelligence;
drone detection; drone identification

1. Introduction

In recent years, drones, also known as Unmanned Aerial Vehicles (UAVs), have be-
come significantly popular due to the rapid technical enhancements in both their hardware,
by equipping them with cameras and audio recording technologies, as well as their soft-
ware, by providing the support of autonomous flying and human tracking capabilities.
Initially, drones were mainly used for cinematography and recreational purposes; however,
their usage has been extended to automate day-to-day operations such as vegetation moni-
toring [1], various wildfire mapping applications [2], precision agriculture [3] and flying
over dangerous and out-of-reach areas for search and rescue missions [4]. In addition to
their useful applications, their use in malicious activities to invade privacy, security and
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safety regulations has been increasing alarmingly. In recent events, a number of drone
attacks on Gatwick airport led to the closure of the airport for a few days in an attempt to
detect and manually impede the drones’ malicious missions [5]. The closure affected thou-
sands of passengers and implied a significantly high financial cost [6]. Another incident
was reported in which an explosive-equipped drone was hovering over a great crowd in a
formal occasion in Venezuela, targeting a high profile personnel and the general public.
In this incident, the drone dropped a number of attached explosives randomly which,
consequently, injured civilians at the scene [7]. Furthermore, UAV attacks could have a
negative global impact, such as the recent UAVs attacks on the Khurais oilfield and the
processing plant at Abqaiq, both operated by Aramco of Saudi Arabia, causing large fires
that halted their operation. This attack led to a decrease of 5.7 million barrels in crude oil
production which contributed to an increase of 15% in the price of crude oil globally [8,9].

In addition to the safety issues associated with drones mentioned above, drones are
also being utilized to violate security measures, as witnessed in an incident where smug-
glers flew drones with illegal drugs and cell phones over prison facilities [10]. Moreover,
the drone violations extend to participate in disrupting sports events by flying illegally
over football stadiums [11].

Similarly, privacy concerns arose with the malicious use of drones as reported in
multiple incidents, where drones were used to spy and record videos and audio clips of
people in their private properties [12].

Hence, in order to secure physical premises against malicious drone attacks, an ef-
fective approach is to design an anti-drone system that is composed of multiple stages as
illustrated in Figure 1. In the first stage, the presence of a drone within a restricted area
is detected. Next, the system identifies whether the drone is authorised or unauthorised
through analysing its characteristics using parameters such as the drone’s type or model.
Then, the system localises and tracks the malicious drone. In the final stage, the system
impedes the drone’s mission using different conventional mechanisms such as shooting
drones using guns, nets [13], a laser beam [14], disrupting the drone’s localization sys-
tem [15] or interfering with transmission signals between the controller to hijack the drone
and land it safely [16]. Various studies to secure premises against malicious drone attacks
were surveyed by the authors in [17] using some of these techniques in addition to RF
characteristics and wireless acoustic sensors with machine learning. Although some of
these techniques were proven to be useful, each has a limitation when it comes to per-
forming in real-life scenarios leading to an infeasibility of their deployment. Furthermore,
the traditional techniques used in implementing anti-drone systems are mainly designed
around the final stage of impeding the drone’s mission while being heavily dependent on
manual human resources to detect and identify drones [18]. This increases the operational
cost and leaves room for human errors. Therefore, this research provides a novel solution
to automatically detect and identify drones using acoustic fingerprints. This solution
overcomes the current limitations of the conventional anti-drone systems.

Detection Identification Localisation Impede mission

Figure 1. Proposed Anti-drone system.

In the literature, various techniques exist to detect drones, such as:

• Radio-Frequency (RF) [18,19]: this technique requires a live communication of RF
signals between the drone and its controller in order to detect the presence of the drone
accurately. However, in scenarios where autonomous drones (preprogrammed and
does not require an on-going communication) are being used in malicious activities,
the RF-based system will fail to detect the presence of the drone. Furthermore, in
some areas, implementing an RF system might not be applicable such as in military
areas and airports. Additionally, this detection approach is subject to high RF noise
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emitted from other present devices in an area [20] which contributes in decreasing the
Signal-to-Noise Ratio (SNR) [21]. Hence, leading to a significant deterioration of the
performance of the RF-based detection system.

• Visual Analysis: this approach uses videos or image recognition techniques to detect
drones. Although these methods have proven their effectiveness in ideal environment
scenarios, their performance is heavily affected by different external factors such as
weather conditions; dust, fog or rain. These recognition techniques are also susceptible
to confusing similar-looking objects such as birds or kites. This is in addition to the
inherit issues in visual analysis related to occlusion [20].

• Radar: approaches such as a GSM passive coherent location system [22] and a digital
TV-based bi-static radar [23] were proposed to detect drones using radar systems.
Furthermore, an attempt of an improved radar system through Doppler preprocessing
was proposed in [24]. However, the experimental analysis implemented by [25] using
this approach showed that the proposed solution was computationally expensive
and time-consuming, which suggests that such a solution is infeasible for real-time
applications. Although radars are highly effective for detecting large flying bodies,
they are not efficient for detecting drones. This is due to the drones’ feature of having
a low radar cross section. This is in addition to flying at low altitudes with low speed
in comparison to larger aircraft [20]. Moreover, since radar systems operate at a
high electromagnetic energy continuously, they might be unsuitable and illegal to
operate in urban areas [20]. Furthermore, radar systems are considered expensive
to deploy [21].

To address the current limitations of the drone detection systems discussed above, this
study seeks to overcome the constraints of the drone detection techniques by introducing
an autonomous system that, in addition to detecting, is able to identify drones based on their
acoustic signatures using different deep learning techniques, namely, the Convolutional
Neural Network (CNN), the Recurrent Neural Network (RNN) and the Convolutional
Recurrent Neural Network (CRNN), such that no human intervention is needed. However,
the following two challenges are faced by researchers in the field of drone audio analysis:

1. Lack of large acoustic drone datasets which are needed to train the deep learning
algorithms effectively.

2. Most drone datasets only cover a few types of drone. Hence, not covering all types
and models of drones available weakens the detection process and makes it more
vulnerable to unfamiliar drone types.

To overcome these obstacles, we utilize the Generative Adversarial Network (GAN) [26],
a state-of-art deep learning technique for artificial data generation to generate a large
artificial drone acoustic dataset with the aim of improving the drone presence detection.
Furthermore, we aim through this work to:

• Evaluate the effectiveness of the selected deep learning algorithms in drone detection
and identification based on specific evaluation metrics such as accuracy, F1 score,
precision and recall, while providing the computational time required to train and
test the models proposed.

• Examine the validity and efficacy of combining an artificially generated dataset with
a recorded drone audio dataset in enhancing the drone detection process through a
comparison with only recorded drone dataset.

• Provide an open-source drone audio dataset with recorded and artificial drone audio
to be further utilized by the research community in order to fulfill the shortage of
drone training dataset for deep learning models.

The rest of this paper is organised as follows. Section 2 explores the literature and
the state-of-art solutions, followed by Section 3, which describes the proposed framework,
datasets and the neural networks architectures used in this research. Section 4 discusses
the setup of the different experiments carried out through this work. In Section 5, the
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experimental results of the drone detection and identification approaches are presented
and analysed. Finally, the conclusion is presented in Section 6.

2. Related Work

Several researchers focused their studies on drone detection using audio characteristics.
A research was undertaken by the authors in [27], in which a new methodology through
using digital signal processing (DSP) to detect the presence of drones in an area was
proposed. Similarly, in the study conducted by the authors in [28], a new technique of
drone detection was implemented by combining DSP with Machine Learning algorithms
such as the Support Vector Machine (SVM) algorithm. It was reported by the authors
the effectiveness of using SVM in drone detection which have yielded high accuracy, yet
the research was limited to explicit background sounds. Moreover, SVM requires manual
extraction and optimization of hand-crafted features to fine tune the model, which is
an additional step to the classification solution. From this perspective, deep learning
models have the capability to surpass these shortcomings and eliminate the additional
steps required in the conventional machine learning algorithms by providing an end to
end training of the model autonomously [29]. Following this vein, an approach was
brought forward in [30] to target drone detection using DSP along with two Machine
Learning algorithms, the Plotted Image Learning (PIL) and the K-Nearest Neighbor (KNN).
While the algorithms demonstrated their effectiveness and detection ability, yet the overall
accuracy of KNN algorithm reported was remarkably low. The authors argued that this
is due to the limitation imposed by the design of the proposed solution and the fact that
KNN lacks the ability of building hierarchies of internal representation which could aid in
classifying similar targets. Another shortcoming is derived from the fact that PIL requires
large amount of pre-stored images datasets with a consistently varying background noises
to avoid biases and overfitting the noise, thus deploying such a solution in real environment
is challenging.

Similarly, research undertaken by the authors in [31] surveyed the literature for some
of the acoustic-based drone detection techniques, shedding light on the study conducted
by [32] where a drone detection and tracking system through different DSP techniques
was proposed. Although the probability of detection using the proposed solution was
reported to be approximately 99% for specific ranges, it was observed that the authors
have used hand-engineered values in the design of the solution. Hence, the system could
fail to detect malicious drones with frequencies outside the range selected by the authors.
Furthermore, the experiment was validated using one drone, indicating that if presented
with a new drone, the performance of the system might be negatively affected. To avoid
these limitations, in this work, we propose the use of deep learning techniques with various
types of drones in order to examine and validate the robustness of the solution when faced
with an unfamiliar drone.

Two of the main challenges of using an acoustic-based solution for drone detection
were put forward in [31]. The first is the effect of background noise on the performance of
the acoustic-based solution and the second is the availability of large amounts of diverse
drone acoustic data. To address these challenges, in this research, we examine the perfor-
mance of our proposed solution with the presence of various background noises in order to
mimic real-life application. Furthermore, we address the second challenge by introducing
a synthetic drone acoustic dataset with the aim of filling the gap in drone acoustic data.

Recent research has shown that deep learning algorithms are effective in audio appli-
cations such as speech recognition [33–35]. However, at present, little is known about the
utilization of deep learning techniques in drone detection using drone’s acoustic features.
In fact, to our best knowledge, the only study found in this field was in [36]. The authors
have opted to use the Gaussian Mixture Models (GMM), RNN and CNN for this applica-
tion. The authors have designed and examined the different machine and deep learning
models to come to a conclusion that RNN has outperformed, in terms of F1 score, the other
two algorithms.
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In regard to the identification aspect of the anti-drone systems, the authors in [37]
conducted a remarkable research in which they have utilized deep learning techniques
for non-verbal audio identification. In their research, they studied and examined the
implementation of using deep learning techniques for bird species identification which
showed that such a mechanism, when used to identify bird species based on their acoustic
signatures, would yield promising results. Inspired by their work, our initial work [38],
which this paper is based on, aimed at designing a drone detection and identification
solution using deep learning techniques, explicitly; CNN, RNN and CRNN, using recorded
drone acoustic datasets [39]. We extend our study in this work to investigate what role, if
any, the introduction and usage of an artificial dataset generated through GAN plays in
improving the overall performance of the deep learning models as well as to verify if the
artificially generated data will be good enough to fill the gap in drone audio datasets.

Recently, GANs have been used extensively in generating new images and photos of
people. These images resemble a combination of features extracted from a variety of real
human photos. In some cases, these photos have been modified by the GAN algorithm,
through changing the hair colour or adding accessories to the human photo for example,
to produce new real-like human photos [40]. Similarly, in [41], the authors introduced a
new method of generating drums and piano-like audio clips using GAN models through
two methods, WaveGAN and SpecGAN. Qualitatively, they evaluated the output of both
experiments through human experts, in which the listeners preferred the WaveGAN audio
clips over those generated through SpecGAN. To the best of our knowledge, there has been
no prior literature that implements the GAN architecture to generate drone like audio to
enhance detection of drones.

3. Proposed Framework

In this section, we discuss our proposed solution, starting with a thorough explanation
of the designed research framework in Section 3.1, followed by the description of the deep
learning algorithms used throughout this work in Section 3.2, and finally we breakdown
our proposed drone audio datasets which we are releasing to the public and can be found
in [39,42] in Section 3.3.

3.1. Research Framework

Figure 2 illustrates the design of the experiments that will be carried out throughout
this research. In order to implement the proposed solution using deep learning techniques,
a large amount of drone audio data were required. However, due to various reasons such
as privacy, there were no public drone audio dataset available for this application in the
literature as of the time of writing this paper. Hence, in our initial work published in [38],
which is further demonstrated and extended in this paper under the experiments A.1 and
A.2, we have created our own drone audio dataset by acquiring, through audio recording
using a microphone, more than 1300 audio clips of drone sounds. These clips can be
found in [39]. Moreover, to mimic real life scenarios, we have used the publicly available
noise datasets [43,44] to artificially augment the drone audio clips with noise. The main
purpose of the artificial augmentation is to measure the feasibility of the system in a noisy
environment. In addition to training the deep learning algorithm, CNN, RNN and CRNN,
on the augmented sound clips, we have dedicated a portion of the dataset to include pure
noise, silence and pure drone audio clips in order to ensure that the system will be able to
detect and identify the drone’s sound from similar noises in an environment. Throughout
this paper, we will be referring to this dataset as R2 as it consist of audio clips of two drones.

We further expand, through this study, our dataset to incorporate other types of
drones with the aim to consequently increase the diversification of the dataset. The new
drone audio clips were collected from a variety of open-source YouTube [45] drone videos.
We cleaned and preprocessed the acquired audio clips using similar techniques as those
used for R2, to produce an enhanced drone audio dataset that incorporates five distinct
drones, four of which were used in the training of the deep learning classifier and the
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remaining one drone is reserved for the testing phase. Hence, this dataset is referred to as
R4. Then, by conducting experiment A.3, we evaluated the performance of CNN on the
enhanced dataset.

By expanding the R2 dataset to R4, we aim to increase the diversification of the dataset.
We speculate that the added drone types will ensure that the artificial dataset generated
from the GAN model would be less biased towards a specific drone type. The dataset
generated through the GAN model using R4 is referred to RG given that it is made up of
recorded and GAN generated drone audio clips.

Research Framework

Experiment A
Without GAN

Experiment B 
With GANDataset

(1) Comparison of CNN 
performance on

- RG
- Output of (A.3)

(1) Evaluating performance 
for detection using R2

- CNN
- RNN
- CRNN

R2 R4 RG(3) Evaluating CNN 
performance on 

R4

(2) Evaluating performance 
for identification using R2
- CNN
- RNN
- CRNN

R4A RGA (2) Comparison of CNN 
performance on

- RGA
- Output of (A.4)

(4) Evaluating CNN 
performance on 

R4A

Figure 2. High level design of the proposed framework.

Hence, in the experiment B.1, we evaluate CNN’s performance on the RG dataset in
order to establish whether adding an artificial dataset to the recorded drone audio dataset
would improve the overall performance of the model by comparing the outcomes of this
experiment to those found in the experiment A.3.

Furthermore, to evaluate the effect of altering the original drone audio clips on the
classification performance, we have used pitch shifting as another data augmentation
method such that it extends the R4 dataset to include the pitch shifted audio records.
The enhanced dataset is referred to as R4A. Then, by conducting the experiment A.4, we
evaluated the performance of CNN on this dataset.

Moreover, we hypothesised that the increase in the diversity of audio clips in R4A
dataset through the integration of the pitch shifted values will allow for further generalisa-
tion and lower biases towards a specific type of drone in the artificial dataset generated
from the GAN model. Hence, the dataset generated through the GAN model using R4A is
referred to RGA.

Similar to experiment B.1, we investigate in the experiment B.2 the CNN’s perfor-
mance trained on the RGA dataset in order to discover whether adding a larger dataset with
manually pitch-shifted audio clips would improve the data generated through GAN and
hence the performance of CNN. This is achieved through a comparison analysis between
the outcomes of this experiment against those found in the experiment A.4.

3.2. Deep Learning Algorithms

To implement the drone detection and identification solution, we have selected a
number of well-known deep learning algorithms, namely, CNN, RNN and CRNN. The
reason behind selecting each of these algorithms is expressed below:

• CNN is a type of deep learning algorithms that is implemented based on supervised
learning to analyse, predict, categorise, and classify a given dataset. The two main
features that distinguishes CNN are: (1) Patterns learnt by CNN are said to be transla-
tion invariant [46]. (2) Learning spatial hierarchies of patterns [46]. In our proposed
solution, we used these unique characteristics of CNN in detecting and identifying
the drones. Furthermore, we implemented the CNN architecture proposed in [47]
which is built with two convolution layers followed by a linear layer and a hidden
fully-connected layer.
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• RNN is a deep learning algorithm that is used for detecting and classifying sequential
and temporal data. An enhanced RNN architecture called Long Short-Term Memory
(LSTM) was designed by the authors in [48] to store information through extended
time sequences [49]. Taking advantage of this unique characteristic of LSTM, in
this paper, the performance of RNN based on LSTM classifier in detecting whether
capturing time-based dependencies improves classification performance was inves-
tigated. Moreover, we implement the RNN architecture proposed by the authors
in [47] which is based on a model with a LSTM layer, output projection layer and
peep-hole connections.

• CRNN is a hybrid architecture made up of CNN and RNN layers [50]. One of the main
features of this deep learning architecture is that it combines the unique characteristics
of CNN, through the utilization of the local temporal or spatial association using the
CNN layers, as well as takes advantages of RNN characteristic of finding the global
temporal dependencies between the different features [47]. Therefore, in this paper,
we use the CRNN model proposed in [47] with convolutional layer, followed by two
RNN-GRU based layers and a fully connected layer.

To implement these architectures, in this paper we have used the open-source code
available in [47] to build our RNN, CNN and CRNN models. This code is an enhanced
version of TensorFlow’s open-source tutorial [33]. In our implementation, the default
values were used for the models’ architectures and hyperparameters per the original
authors’ setup. However, it is important to note that we have modified the code to suit
our application by incorporating the validation termination condition (further discussed in
Section 4). By analyzing the code, the default architectures and hyperparameters proposed
in [47], we inferred that the total number of trainable parameters are 69,610, 78,516 and
75,432 for CNN, RNN and CRNN models, respectively. Based on these values, we can
deduce that the three deep learning models implemented in this application are similar in
terms of their complexity. Furthermore, given that an essential part of designing the drone
detection is to bridge the gap of the shortage of drone acoustic dataset, in this paper, we
built a system based on GANs to generate new artificial drone audio clips.

The concept of GANs was first introduced by the authors in [26], where they proposed
an unsupervised model build using two different types of neural networks: the Generative
model G and the Discriminative model D. D can be any deep learning classifier. Whereas
G is a specifically designed to generate a new set of synthetic data based on the training
dataset fed to it. When it comes to training GAN, the first step is feeding a known dataset of
pure drone audio and random noise as an initial input to D, in which it achieves a reasonable
classification performance in differentiating between the drone audio samples and the noise
samples. Then, G generates data which are initially random. As the training progresses
for both models, the performance of both models improves where G generates better data
samples based on the successful attempts of fooling D. In this work, we implemented the
GAN model using the same architecture proposed in [41] with a slight modification to the
WaveGAN’s code. The selection of WaveGAN over SpecGAN in our solution was based
on the recommendation and comparative study outcome provided in [41].

3.3. Dataset
3.3.1. R2: Recorded Drone Audio Dataset
Data Acquisition

To acquire the drone’s audio, we have recorded, using a microphone embedded
within a smartphone, the sound generated by the drone’s propellers while flying and
hovering in a quiet indoor environment within a range of distance between 1 and 20 m
at different altitudes between 1 and 4 m. This enabled us to publish the dataset publicly
without breaching any privacy regulations. Furthermore, we acquired a balanced number
of audio clips per drone with equivalent time intervals to ensure that the audio clips will be
equivalently random when fed to the algorithm to avoid any biases. This process yielded
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in a total audio clip of 11 min and 6 s per drone formatted in MPEG-4 audio format (m4a)
with a sampling rate of 44.1 kHz and bitrate of 64 kbps.

Data Preprocessing

In order to prepare the audio files for deep neural networks, firstly, we reformatted the
output audio clips produced from the microphone’s recording and the background noise
clips by converting audio file type to WAVE, sampling rate to 16 kHz, bitrate to 16 kbps
and the channel to mono to ensure consistency.

Secondly, we divided the formatted audio files into multiple short (one second) seg-
ments by specifying the time intervals at which the audio clip will be segmented, this will
enable the deep learning algorithm to optimize the training of the model for real-time
deployment in which the time required for the detection and identification is critical. Hence,
to investigate whether the size of the audio segment affects the overall performance of the
classifier, we have experimented with multiple segment sizes such as one, two and five
second segments. Based on our heuristic observations, we deduced that the one second
segmentation was sufficient.

One possible way to train machine learning or deep learning algorithm on audio
input is by converting the audio clips into spectrograms [33]. Various features are then
extracted from the generated spectrograms by the algorithm to train the deep learning
models. To illustrate the outcome of this process, Figure 3 represents a one second example
of a drone’s audio. Whereas Figure 4 represents an audio clip of a random noise such as a
person typing.

Figure 3. Example of drone noise in spectrogram representation © [2019] IEEE. Reprinted, with
permission, from [38].

Figure 4. Example of other noise in spectrogram representation © [2019] IEEE. Reprinted, with
permission, from [38].
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Data Augmentation Using Background Noise

Since the application of the drone detection and identification could be deployed in
areas with a variety of background noises, we have approached the problem by introducing
a method of augmentation, in which a real-life background noise is overlapped with the
drone audio without any modification on the actual audio features, such as the amplitude
or the frequency of the audio clip. Particularly, we have used the background noise from
the publicly available datasets [43,44]. The SNR after the background noise augmentation
ranges from −32 dB to −3 dB. However, it was rather important to reformat the audio
clips acquired from these datasets as discussed in Section Data Preprocessing to ensure the
consistency of the audio files. Using this mechanism enabled us to mimic real-life scenarios.

Data Labeling

We have collected our drone acoustic data for two commercially available drones,
Bebop and Mambo, manufactured by Parrot. This leaves us with R2 dataset, which repre-
sent those two drones. For the identification problem, we have labelled our dataset, [39],
simply as Unknown for other noises in an environment, Bebop as the first drone and
Mambo representing the second drone. We have left four original drone audio clips for
further performance analysis purposes. The distribution of audio clips acquired per label
is represented in Table 1.

Table 1. Data per label.

Type of Drone
Records (1 s Audio Clips)

Original Augmented Total Clips for Identification Total Clips for Detection

Bebop 331 335 666
1322

Mambo 331 335 666

Similarly, for the detection aspect of this system, we have combined the data collected
for both Bebop and Mambo drones as one entity and labelled them as drone and any other
audio clip was labelled as not a drone.

3.3.2. R4: Enhanced Recorded Drone Audio Dataset

As discussed in the introduction of Section 3.1, we expanded our drone dataset which
initially consisted of two drones to incorporate other types of drones from a variety of
manufacturers to be used in the drone detection experiment. The drone audio clips were
collected from a variety of open-source YouTube drone videos [45] in both indoor and
outdoor environments. Table 2 shows the additional drones selected along with the total
number of one second clips per drone.

Table 2. Additional drones per label.

Type of Drone Total Records (1 s Audio Clips)

3DR Solo 191

DJI Phantom 4 87

AR Drone 140

The selection of acquiring drone audio in two different locations, indoor and outdoor
environment with general flying distances and different altitudes such as flying in an open
field, was mainly to avoid the data augmentation process mentioned in Section 3.3.1 above.
We manipulated the raw videos by, firstly, converting them into audio files. Secondly, we
selected the relevant sections from the entire audio for this application. Finally, we divided,
cleaned and preprocessed the collected drone audio clips using the same techniques as
those used for R2 in Section 3.3.1 to produce the final R4 dataset, which stands for four
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recorded drone audio dataset. The addition of these drones is done to increase the diversity
of the R2 dataset in order to be used later on in the production of a hybrid version of the
dataset using GANs.

To better understand the behaviour of the classification models on different combina-
tions of drones, where some might be more difficult to detect than others due to their audio
features’ nature, we divided our recorded drone audio dataset into five different groups
referred to as D experiments, each with a different combination of drones illustrated in
Table 3. In every experiment, a single unseen drone was not used in the training phase
of the classifiers. The audio clips of the unseen drone was left for an exclusive testing in
order to observe if the models can generalise well beyond the four drones seen during the
training phase.

In each of the D experiments, the seen drones were grouped together and labelled
as drone and the same noise audio clips mentioned in Section 3.3.1 above were used and
labelled as not a drone.

Table 3. Enhanced Drone Audio Dataset.

Drone Type Experiment
D1 D2 D3 D4 D5

Bebop Unseen X X X X
DJI Phantom 4 X Unseen X X X

3DR Solo X X Unseen X X
Mambo X X X Unseen X

AR Drone X X X X Unseen

In order to create different variations of the audio dataset manually, various data
augmentation methods were proposed in [51] such as pitch shifting. Being inspired by
their work, we selected this method as an alternative way of data generation. The semitone
values used in pitch shifting the original drone audio clips were −4,−8,−12,−16, 4, 8, 12,
16. The selection of these semitone values was based on two main factors:

1. In numerous heuristic experiments, in which we ensured that the audio produced
through sounded like a drone, it was observed that audio clips shifted beyond 16
semitones or below −16 semitones no longer resembled a drone to the human ears.

2. In [51], it was observed that for objects that produce a consistent audio pattern such
as a drill or an air conditioner, pitch shifting with a larger range of semitone values
improved the classifier performance more than those with a smaller range of semitone
values. Therefore, given that the drone sound pattern is closer to those audio signals,
we have made the selection of the range of the semitone values above.

Hence, the extension of R4 dataset was made through the addition of the pitch shifted
drone audio which consists of an additional 420 audio records per drone, we refer to this
dataset as R4A. The distribution of the dataset is illustrated in Table 4.

Table 4. Breakdown of R4A Dataset.

Type of Audio Clips D1 D2 D3 D4 D5

R4 Dataset 868 1331 1248 868 1288

Pitch Shifted Audio Clips 1680 1680 1680 1680 1680
Total number of records 2548 3011 2928 2548 2968

3.3.3. RG: Hybrid Drone Audio Dataset

To generate the artificial drone audio dataset, we implemented a GAN model based on
WaveGAN architecture described in [41]. We fed the algorithm with long pure drone audio
clips which were, explicitly, recorded in an indoor environment for each of D experiments
mentioned in Section 3.3.2. It is important to note that in every D experiment, the unseen
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drone was not exposed to the training of the GAN model nor in the training phase of the
classifiers. After training, the GAN model generated 200 artificial drone audio clips with
a duration of one second each. We have carried out human-hearing tests with a number
of volunteers to test how different the GAN generated audio files are in each partition. It
was concluded that there was a distinguishable difference in the sound generated for each
of the D partitions. Those artificially generated audio clips were then combined with R4
drone dataset resulting in what we refer to as RG, which stands for recorded and GAN
drone dataset. Table 5 shows the proportion of each in the RG dataset.

Table 5. RG Drone Audio Dataset Breakdown.

Audio Type
Experiment

D1 D2 D3 D4 D5

Recorded Drone Clips 868 1331 1248 868 1288

GAN Drone Clips 200 200 200 200 200
Total 1068 1531 1448 1068 1488

Furthermore, each set of the recorded drone clips and GAN drone clips for every D
experiment illustrated in Table 5 were grouped together and labelled as drone and the
same noise audio clips that were mentioned in Section 3.3.1 were used and labelled as
not a drone.

In a similar fashion of creating the RG dataset, we have introduced the pure pitch
shifted drone audio clips along with the original pure audio files to train the GAN model
with the aim of increasing the diversity of the dataset fed to the GAN. Hence, the new
drone-like audio clips produced through GAN were combined with R4A dataset to create
RGA dataset. The breakdown of RGA dataset is shown in Table 6.

Table 6. Breakdown of RGA Dataset.

Type of Audio Clips D1 D2 D3 D4 D5

R4 Dataset 868 1331 1248 868 1288

Pitch Shifted Audio Clips 1680 1680 1680 1680 1680

GAN Generated Audio Clips 420 420 420 420 420
Total number of records 2968 3431 3348 2968 3388

4. Experimental Setup
4.1. Experiments A.1-2: Drone Detection and Identification Using R2 Drone Audio Dataset

As already noted in Figure 2, we started our experiments by investigating the perfor-
mance of the deep learning models in drone detection and identification as shown in the
experiments A.1 and A.2 in Figure 2. This means that our initial experiment was divided
into two categories, the first, A.1, being the binary classification experiment in which we
assess the deep learning algorithms in their ability to detect whether a drone is present or
not. Hence, we have defined this experiment to handle two use-cases, which are either (a)
a drone was detected or (b) no drone in the area.

The second category, A.2, is the multi-class classification experiment, where we mea-
sured the performance of the deep learning algorithms to identify which type of drone
was detected. In this experiment, there exists three distinct labels, namely Bebop, Mambo
and other Unknown noises, to identify drones based on their type as mentioned in Section
Data Labeling.

The details of the environment setup at which we deployed the algorithms, trained
the models and carried out the experiments are indicated in Table 7.
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Table 7. Experiments A.1-2 Environment Setup Details.

Operating System Ubuntu 18.04-Linux

CPU Intel(R) Xeon(R) x86_64 CPU E5-2695 v4 @ 2.10 GHz

Number of CPU 36

Framework/APIs Python 2.7 and Google TensorFlow API

In order to accomplish these objectives, we chose to evaluate and compare the different
algorithms based on their accuracy, F1 score, precision and recall metrics. Additionally, we
also considered the computational time (CPU time) required to train and test the model as
an attribute in evaluating the performance of the models.

Furthermore, we experimented with several combinations for the ratio of training to
testing datasets and we have deduced from those experiments that the variance of this
ratio had minor effect on the overall performance of the model. Therefore, given that the
difference is negligible, we opted to use the typical combination of 70:30.

Moreover, we have defined the distribution of the labelled data for the binary classifi-
cation as well as the multi-class identification problem as presented in Table 8. The values
of these parameters are defined as a result of a variety of experiments in which we have
observed the model’s output by looking at the F1 Score and the accuracy in the validation
phase and systematically tuned these parameters to find the optimal distribution of the
dataset. It is also worth noting that the optimal learning rate found was 0.01.

Table 8. Details on Data Distribution [38].

Criteria Parameter
Unknown audio files 50%

Binary Classification Problem
Drone audio files 50%

Multi-class Classification Problem
Drone 1-Bebop 25%

Drone 2-Mambo 25%

4.2. Experiments A.3-4 and B.1-2: Drone Detection Using R4, RG, R4A and RGA Drone
Audio Datasets

In this experiment, we aim to determine if adding artificially generated drone audio-
like data to our recorded drone data has an effect on the detection performance. More
specifically, we aim to discover whether the integration of GAN generated drone audio
dataset improve the performance of a deep learning classifier. Our hypothesis is that
the hybrid dataset would add a generalization element which will, consequently, have a
positive impact on the overall performance of the classifier.

To train the CNN classifier on the R4 dataset as mentioned in the experiment A.3 of
Figure 2 for the seen drones experiment, while excluding the unseen drone, the dataset
distribution in Table 9 was used.

Table 9. R4 Drone Audio Dataset.

Data Type Training Validation Testing

Percentage
80%

20%
70% 30%

Table 10 shows the individual proportions of the RG dataset for each of the D experi-
ments conducted in B.1 experiment in an unseen drone scenario. A similar distribution was
used in the experiments A.4 and B.2 for an unseen drone scenario.
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Table 10. RG Drone Audio Dataset.

Experiment
Training

TestingTraining Validation
70% 30%

D1 83% 17%

D2 82% 18%

D3 81% 19%

D4 83% 17%

D5 82% 18%

In order to implement the solution proposed, an environment setup as shown in
Table 11 was used in the training, validation and testing phases of the deep learning models.

Table 11. Experiments A.3 and B.1 Environment Setup Details.

Operating System Ubuntu 18.04-Linux

GPU Nvidia Titan V

CPU Intel(R) Xeon(R) x8664 CPU E5-2695 v4 @2.10 GHz

Number of CPU 36

Framework/APIs Python 3.7 and Google TensorFlow APIs

5. Performance Evaluation
5.1. Experiments A.1-2: Drone Detection and Identification Using R2 Drone Audio Dataset

In order to ensure that every algorithm is performing at its optimum, we have carefully
chosen the steps below to define the termination condition of the training phase:

1. The algorithm was executed with a very large number of training steps.
2. At an interval of 100 steps, the trained model was tested on the validation-set and the

accuracy was calculated and recorded.
3. The new accuracy of the validation-set was compared against the best accuracy

achieved so far.
4. If the accuracy did not improve over three successive validation tests, we tested the

the trained model on the testing-set and the observed results were reported.

An example of training and validation of CRNN in a single run for the binary classifi-
cation is illustrated in Figure 5. It can be observed from the graphs that the termination
condition selects the model at the best validation accuracy. Hence, the training can termi-
nate before the model overfits the data. The same can be observed in the example of the
multi-class classification training and validation phases for and CRNN in Figure 6.

Given that the training, validation and testing datasets were shuffled randomly at the
start of every execution of learning, we repeated each experiment ten times. Hence, the
values discussed in Sections 5.1.1 and 5.1.2 represent the average results of the ten runs.
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Figure 5. Example of the training and validation phases of CRNN for binary classification in a
single run.
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Figure 6. Example of the training and validation phases of CRNN for multi-class classification in a
single run.

5.1.1. A.1: Drone Detection: Binary Classification Results

In this experiment, we have examined the effectiveness of our proposed system in
detecting drones using their acoustic signatures. We have calculated the evaluation metrics
for the three different models in addition to the corresponding standard deviation values
for the 10 runs as illustrated in Table 12 below.

Table 12. Detection Results [38].

Evaluation Metric RNN CNN CRNN

CPU-Time (s) 333.45 ± 60.90 957.33 ± 320.01 487.53 ± 178.75
Accuracy (%) 75.00 ± 6.60 96.38 ± 0.69 94.72 ± 1.36
Precision (%) 75.92 ± 10.30 96.24 ± 0.81 95.02 ± 1.14

Recall (%) 68.01 ± 7.59 95.60 ± 0.84 93.08 ± 1.98
F1-score (%) 68.38 ± 8.16 95.90 ± 0.78 93.93 ± 1.61
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It can be deduced from Table 12 that CNN have outperformed RNN with a relative
improvement of 21.38% in accuracy, 20.32% in F1 score, 20.32% in precision and 27.59%
recall. However, the average overall training time required for CNN to yield such precise
results was much higher in comparison to RNN. Whereas, it was observed that RNN had
the lowest training time and overall performance among the three model. Additionally,
the performance of CRNN in all evaluation criteria was better than RNN. It is important
to take into consideration that the nature of RNN algorithm is best suited for sequential
data. Even though, CRNN did not perform better than CNN, the difference between the
performance of both models was negligible, in which CNN have shown an improvement
of 1.66% in accuracy, 1.98% in F1 score, 1.21% in precision and 1.98% in recall, yet, CRNN
was noticeably faster than CNN by 49.07%. This is an interesting finding because it can
guide practitioners to consider the model with a lower training time without sacrificing
the performance of the model.

In addition to evaluating the performance of the three different models we proposed to
detect drones, we aimed to compare the output of the system with similar implementations
from the literature. As of the time of writing this paper, only one source [36] was found
that targets the same problem using sound detection approach.

The results found in detecting drones using our approach contrasts with the results
found in the literature by the authors in [36]. The authors of [36] noted that RNN have
achieved the best performance in comparison to CNN, whereas our results do not support
their observation. In fact, we have deduced from our experimental results that CNN
have outperformed RNN remarkably. There are a number of factors which might have
contributed to the difference of the outcomes between the two approaches such as tuning
the algorithm parameters by the authors on the testing-set directly rather than using a
validation-set to serve this purpose. Moreover, the discrepancies in our findings can be
attributed to the difference of the models’ architectures and design parameters such as the
number of the convolutional layers used in the CNN algorithms in both applications. Due
to the lack of availability of their training and testing datasets, we were not able to perform
a direct comparison between the results of both approaches.

Although the results yielded from our proposed experiment do not align with those
found by the authors [36], it can nevertheless be concluded that both approaches agreed on
the great effectiveness of using deep learning in drone detection using acoustic features.

5.1.2. A.2: Drone Identification: Multi-Class Classification Results

The main goal of this experiment is to examine the effectiveness of the deep learning
methods in identifying drones based on their acoustic signatures. We used the evaluation
metrics mentioned in Section 4.1 to examine the performance of the three models in the
multi-class problem. Moreover, it is worth mentioning that the final results were calculated
by taking the macro-average over all the classes in the experiment. The overall results of
the evaluation metrics are presented in Table 13.

Table 13. Identification results [38].

Evaluation Metric RNN CNN CRNN

CPU-Time (s) 389.02 ± 73.18 807.10 ± 278.09 605.67 ± 252.83
Accuracy (%) 57.16 ± 11.33 92.94 ± 11.89 92.22 ± 1.03
Precision (%) 59.64 ± 13.56 92.75 ± 1.26 92.54 ± 0.95

Recall (%) 57.16 ± 11.27 92.63 ± 1.32 92.23 ± 1.03
F1-score (%) 55.62 ± 13.53 92.63 ± 1.32 92.25 ± 1.01

The findings that emerge from this experiment have shown that the results of both
CNN and CRNN are outstanding with accuracy, precision, recall and F1 score values higher
than 90%. Moreover, we observed that CNN have outstandingly outperformed RNN by an
improvement of 35.78% in accuracy, 37.01% in F1 score, 33.11% in precision and 35.48% in
recall. However, although RNN have shown the worst performance, it converged faster
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than CNN by 51.80% and than CRNN by 35.77%. In addition, it can be observed from the
standard deviation values in Table 13 that RNN was the fastest to converge regardless of the
difficulty of the dataset. Furthermore, it is suspected that the weak performance of RNN
algorithm was due to the nature of algorithm since it is mainly based on time-dependent
trend which is not the case in this experiment as the audio clips used are of a short length
in which they have a constant distance with less variation over time.

Moving on to the comparison between the performance of CNN and CRNN, we
have observed that CNN has also performed better than CRNN by 0.72% in accuracy,
0.39% in F1 score, 0.21% in precision and 0.40% in recall. Although CNN has shown some
improvement in the performance, one can deduce from the standard deviation values
reported in Table 13 that the performance of CRNN is more robust in comparison to the
other algorithms regardless of the data that were fed to the algorithm. Moreover, CRNN
was significantly faster by 24.96% in execution time than CNN. This finding, as illustrated
in Figure 7, provides a conclusive support for the results found in Section 5.1.1, since in both
detection and identification aspects of the problem, it had been observed that practitioners
can still utilize a model with significantly fast computational time without jeopardizing the
overall performance of the model.

Figure 7. CPU time Results [38].

In addition to the results presented in Sections 5.1.1 and 5.1.2, we have observed that
the system was able to identify different drones and other noises while maintaining the
precision in the evaluation matrices per label. Table 14 summarises the average performance
of the 10 runs for each label in terms of F1 score for the CRNN model. The results presented
below suggests that the proposed method has the ability to adjust its identification feature
to accommodate more labels based on its application without sacrificing or degrading the
performance per label.

Table 14. F1 scores per label for CRNN.

Label Unknown Bebop Mambo
F1 Score 92.766% 93.780% 90.192%

Based on the findings in this experiment, where CNN have outperformed while being
the most stable algorithm among the other two deep learning algorithms in drone detection
using acoustic features, we will proceed with CNN as our selected deep learning algorithm
for the experiments A.3, A.4, B.1 and B.2.
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5.2. Experiment A.3 and B.1: Drone Detection Using R4 vs. RG Drone Audio Dataset
5.2.1. A.3: Drone Detection Using R4 Dataset

In this experiment, ten CNN models were trained on R4 dataset then tested in every D
partition using the testing dataset described in Section 4.2. The first testing dataset included
exclusively drones types that the model has seen during the training phase. Whereas, the
second scenario consisted of the remaining previously unseen drone types as the testing
dataset. This type of testing was necessary in order to better understand how the model
performs when faced with a completely new drone which it was not exposed to, during
the training phase. For this reason, we have extended our experiments to study such
behaviour. Furthermore, in order to ensure the optimal performance of each CNN model,
we have followed the same four steps mentioned in Section 5.1 that defines the termination
condition of training the model. The outcome of this series of experiments is illustrated
in Figure 8.
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Figure 8. The performance,in terms of recall, of the average CNN models trained on the R4 drone
dataset and tested on known (recorded) drone types (which the model has seen during the training
phase). Whereas, the yellow bars are when tested on new and unknown types of drones.

The results presented in Figure 8 clearly indicate that there was a negative performance
hit when the model is used to detect the presence of a drone it has never seen before (not
included in the training set) which could be attributed to the lack of diversity in the training
set. This behaviour can be clearly observed in the D4 experiment where it yielded the worst
classifier’s performance when met with the unknown drone, the Mambo. To understand
the reason behind this performance hit, we have conducted human-hearing experiments
with numerous volunteers. It was apparent that there was a substantial difference in the
sound generated from the propellers of the Mambo drone to the human-ears, this difference
is attributed to it being the smallest in size, in comparison to the rest drones in the training
dataset of the D4 experiment. Therefore, one can deduce that the influence of the size
of the drone on the performance of the CNN model is significant and a variety of drone
recordings from various drone sizes is required to enhance the performance of the classifier.
Hence, it had been deduced from this experiment that the findings are consistent with our
initial problem statement. Therefore, in the next experiment, B.1, we attempt to improve
the performance of the CNN model on unseen drone by using the hybrid dataset, RG.

5.2.2. B.1: Drone Detection Using RG Dataset

As observed from the experiment A.3 previously, there is a noticeable degradation of
the CNN model performance when faced with an unseen drone, hence, what we aim for
by conducting this experiment is to investigate and understand whether a hybrid dataset
such as RG which consists of GAN-generated drone-like audio and an actual recorded
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drone would have an positive impact, if any, on the overall performance of the deep
learning models.

In order to guarantee the optimal performance of the CNN models, we have followed
the steps mentioned in Section 5.1 to terminate the training phase of the model. It is impor-
tant to note that, as of the time of writing this paper, no work was found on using GAN
generated data to improve the performance of deep learning models in audio applications,
hence, we put forward a novel concept to explore.

Following our initial hypothesis in which we assume that the hybrid dataset RG would
improve a generalisation of our classifier, hence, it would improve the overall performance
of the classifier, we divided this experiment into two sections which enable us to compare
the performance of the CNN models trained on drone audio dataset without GAN, using
the R4 dataset, and with GAN generated audio dataset using RG dataset.

In the experiment A.3, we carried out the performance evaluation experiment of
the CNN models on R4 dataset to acquire the performance of the CNN model for drone
detection through training and testing the proposed solution on R4 drone audio testing
dataset. The outcome of this experiment will be used in evaluating the performance of the
proposed hybrid RG dataset through a quantitative comparison.

Moreover, we have designed two scenarios for evaluating the CNN models on both
R4 and RG datasets; the first is where the drone detected is one of the seen drones in which
the performance of the model was examined on the same types of drones it was exposed to
throughout the training phase. Whereas, the second scenario is the detection of an unseen
drone; the drone type which was never used during the training phase. In testing the
performance on an unseen drone, we assessed the significance of using the CNN models
trained on the RG drone audio dataset to detect the new unseen drone described in Section 5
in comparison to the CNN models trained on the R4.

To achieve this aim, we have carried out the experiment as demonstrated in Figure 9
where the following steps were carefully selected for each of the five D partitions:

1. Train a CNN model on the R4 dataset of the D partition;
2. Train a CNN model on the RG dataset (composed of the selected R4 of the same D

partition and GAN generated from the same R4 dataset of the D partition);
3. Test the models trained in (1) on the seen drones testing set from the selected D partition;
4. Test the models trained in (1) using the unseen drone testing set in the selected D partition;
5. Repeat (3) and (4) for the models trained in (2).

The above experiment is repeated for each of the D partitions ten times.

CNN

D1 D2 D3 D4 D5

R4 RG

Seen Unseen Seen Unseen

Figure 9. Breakdown of Experiment 2.

Additionally, it is important to note that for drone detection application, the most
crucial evaluation metric is recall. As in typical intrusion detection scenario, false positive
predictions are tolerated more than false negatives, where drones pass by undetected.

Testing on seen Drones

To asses whether the performance of CNN model would be improved when trained
using RG dataset and tested on the seen drones, we conducted ten experiments for each of
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the D as mentioned in the introduction of this section. The results in Table 15 show that
the CNN model trained on the RG dataset have outperformed, in terms of precision, the
model trained on the R4 dataset with an increase of 0.49% in D1, 0.15% in D2, 0.10% in D3,
0.27% in D4 and 0.64% in D5. The bold values in Table 15 illustrate that, in addition to the
fact that the model had better performance in terms of precision, the standard deviation is
also lower.

Table 15. The average results of the testing on Seen Drones for every D experiments.

Experiment
Performance of the CNN Classifier

Precision Recall F1 Score Accuracy

D1 R4 0.9773 ± 0.0100 0.9509 ± 0.0189 0.9638 ± 0.0113 0.8630 ± 0.0171
RG 0.9821 ± 0.0058 0.9111 ± 0.0401 0.9448 ± 0.0220 0.8269 ± 0.0364

D2 R4 0.9883 ± 0.0045 0.9636 ± 0.0202 0.9756 ± 0.0094 0.8740 ± 0.0183
RG 0.9898 ± 0.0040 0.9575 ± 0.0378 0.9730 ± 0.0194 0.8686 ± 0.0343

D3 R4 0.9859 ± 0.0050 0.9633 ± 0.0171 0.9744 ± 0.0085 0.8735 ± 0.0155
RG 0.9869 ± 0.0040 0.9450 ± 0.0182 0.9654 ± 0.0098 0.8569 ± 0.0165

D4 R4 0.9884 ± 0.0037 0.9815 ± 0.0097 0.9849 ± 0.0044 0.8908 ± 0.0088
RG 0.9911 ± 0.0025 0.9782 ± 0.0102 0.9846 ± 0.0051 0.8878 ± 0.0092

D5 R4 0.9853 ± 0.0044 0.9553 ± 0.0130 0.9700 ± 0.0058 0.8665 ± 0.0118
RG 0.9916 ± 0.0036 0.9401 ± 0.0236 0.9649 ± 0.0115 0.8527 ± 0.0214

However, it can be deduced from this experiment that RG is not useful in the appli-
cation where the model was already exposed to the different drone types during training
given that it did not show any improvement in the other matrices, specifically recall. In fact,
the models trained on RG had worse performance, in terms of recall, compared to those
trained on R4 as illustrated in Figure 10. A more plausible explanation for such behaviour
would be that although the performance of the CNN classifier was worst when trained on
RG dataset and tested on seen drones, it is worth noting that the performance degradation
was very minor.
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Figure 10. The performance of the average CNN models trained on R4 Vs. RG drone dataset and
tested on seen drones of in terms of recall.

Testing on unseen Drone

We aim through this experiment to improve the performance degradation of the
classifier when it is met with an unseen drone which was observed in Section 5.2.1 by
training the CNN models on RG dataset. To examine the model’s performance, we tested
the CNN models trained on the RG dataset and R4 dataset separately using the unseen
drone. This is in order to evaluate the generalization capabilities of the CNN models and
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whether the integration of artificial drone acoustic data would have any positive effect
on the overall performance of the model in comparison to the observations of seen drone
experiment in Section Testing on seen Drones. The results yielded from this experiment are
further illustrated in Table 16.

Table 16. The average results of testing each D experiment on an Unseen Drone.

Experiment
Performance of the CNN Classifier

Precision Recall F1 Score Accuracy

D1 R4 0.9826 ± 0.0055 0.8365 ± 0.1097 0.8996 ± 0.0685 0.7600 ± 0.0996
RG 0.9861 ± 0.0025 0.8455 ± 0.1150 0.9059 ± 0.0722 0.7682 ± 0.1045

D2 R4 0.9790 ± 0.0252 0.5287 ± 0.2239 0.6602 ± 0.1962 0.4792 ± 0.2030
RG 0.9892 ± 0.0124 0.6609 ± 0.1807 0.7767 ± 0.1462 0.5990 ± 0.1638

D3 R4 0.9774 ± 0.0106 0.6890 ± 0.1347 0.8011 ± 0.0915 0.6237 ± 0.1219
RG 0.9836 ± 0.0082 0.7047 ± 0.0987 0.8172 ± 0.0701 0.6379 ± 0.0893

D4 R4 0.9363 ± 0.0128 0.1860 ± 0.0747 0.3045 ± 0.0960 0.1690 ± 0.0679
RG 0.9552 ± 0.0198 0.2574 ± 0.1824 0.3791 ± 0.1912 0.2338 ± 0.1657

D5 R4 0.9752 ± 0.0128 0.4836 ± 0.1421 0.6358 ± 0.1128 0.4396 ± 0.1292
RG 0.9882 ± 0.0048 0.5521 ± 0.1442 0.6980 ± 0.1131 0.5019 ± 0.1311

Our study revealed that in the situation where the drone is completely new to the
classifier, the average performance of the CNN model trained on the RG dataset has
outperformed, in all evaluation matrices, the average performance of the model that was
trained only on the R4 dataset as illustrated in Table 16. The shaded cells represent the
occurrences where the model trained on the RG drone dataset has higher performance in
comparison to the model trained on the R4 dataset in all five D experiments, whereas the
bold text shows the improvement, if any, in the performance and/or standard deviation
for each of the four evaluation matrices.

In a similar vein, Figure 11 demonstrates the comparison between the average perfor-
mance of CNN models trained on RG drone audio dataset versus the average performance
of CNN model trained on R4 drone audio dataset, in terms of recall, when met with an
unseen drone. It can be observed from the graph that there was a noticeable improvement
in recall by 1.08% in D1, 25% in D2, 2.28% in D3, 38.39% in D4 and 14.16% in D5. Fur-
thermore, this suggests that the adding GAN generated dataset to the training of a model
further enhances the performance of the model in comparison to the one trained on the
R4 drone dataset, particularly in recall due to the generalisation that GAN data adds to
the training. Furthermore, this addition led to having a more diverse training dataset
which improved the generalisation. Hence, this is a clear demonstration that using GAN in
the hybrid dataset, RG, adds a significant improvement in detection of unseen drones in
comparison to unseen drone detection using the recorded drone data, R4. Thus, the benefits
of training CNN model on RG and using it in the unseen scenario outweigh the costs in the
seen scenario.
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Figure 11. The performance of the average CNN models trained on the R4 vs. RG drone dataset and
tested on unseen drones of in terms of recall.

This interesting finding confirms our hypothesis that the integration of the artificially
generated dataset through GAN with an actual drone audio dataset not only fills the gap
of drone audio shortage but it also boosts the generalization of the trained classifier for the
cases of detecting completely new and unseen drones.

From Table 16, it is worth noting that the model trained on D1 distribution had the
best performance of around 90% in F1 score among the other experiments. This suggests
that if the model was trained on DJI Phantom 4, 3DR Solo, Mambo and AR Drone, testing
it on Bebop becomes a simple classification problem to the CNN classifier. A further
explanation to this performance is that the Bebop drone is of a similar physical size to the
majority of the drones used in the training phase. The inverse of this performance was
observed in D4 experiment, where Mambo drone was used in testing the performance of
the model. The experiment revealed that the CNN model had the weakest performance
in terms of recall, F1 score and accuracy as discussed in Section 5.2.1. Hence, one can
conclude that the influence of the size of the drone on the performance of the CNN model
is indisputable and a variety of drone recordings from various drone sizes is needed to
further enhance the GAN model.

Concluding this section, we can say that in applications were it is expected to detect
explicit types of drones that are available to train the model on, using a recorded dataset
with those types of drones without GAN would be sufficient. However, in applications
where detection of any type of drone is required, a hybrid dataset with GAN would be
highly effective.

5.3. Experiment A.4 and B.2: Enhanced Drone Detection Using R4A vs. RGA Drone
Audio Dataset

In this experiment, we aim to evaluate the performance of the classifier on R4A and
RGA datasets. In order to achieve this, we seek through this experiment to answer three
main question: (1) How does the addition of synthetic audio augmentation using pitch
shifting, R4A, effect the performance of the classifier in detecting unseen drone. (2) What
are the effects on the performance of the classifier in detecting an unseen drone when using
the synthetic audio augmentation using pitch shifting in training the GAN model, RGA,
to generate a more diverse dataset. (3) What is the difference in terms of performance
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between the classifier trained on RGA and the classifier trained on R4A in detecting an
unseen drone.

Table 17 represents the comparison between the average performance of CNN model
trained on RGA dataset versus the average performance of CNN model trained on R4A
dataset when met with an unseen drone. The shaded cells represent the occurrences where
the model trained on the RGA dataset outperformed the model trained on the R4A dataset,
whereas the bold text shows the improvement, if any, in either the overall performance, the
standard deviation or both.

Table 17. The average results of testing each D experiment on Unseen Drone using R4A and
RGA datasets.

Experiment
Performance of the CNN Classifier

Precision Recall F1 Score Accuracy

D1 R4A 0.9874 ± 0.0041 0.9644 ± 0.0362 0.9753 ± 0.0175 0.9563 ± 0.0300
RGA 0.9886 ± 0.0028 0.9695 ± 0.0453 0.9784 ± 0.0239 0.9621 ± 0.0400

D2 R4A 0.9916 ± 0.0108 0.9207 ± 0.0559 0.9538 ± 0.0292 0.9208 ± 0.0487
RGA 0.9989 ± 0.0034 0.9161 ± 0.0878 0.9534 ± 0.0493 0.9229 ± 0.0788

D3 R4A 0.9891 ± 0.0066 0.8581 ± 0.1268 0.9136 ± 0.0730 0.8626 ± 0.1112
RGA 0.9783 ± 0.0147 0.9738 ± 0.0488 0.9753 ± 0.0260 0.9564 ± 0.0436

D4 R4A 0.9609 ± 0.0148 0.3032 ± 0.1121 0.4508 ± 0.1234 0.3568 ± 0.1011
RGA 0.0.9645 ± 0.0126 0.4701 ± 0.2160 0.6034 ± 0.2031 0.5049 ± 0.1936

D5 R4A 0.9883 ± 0.0065 0.6850 ± 0.1954 0.7926 ± 0.1408 0.7058 ± 0.1750
RGA 0.9782 ± 0.0148 0.8579 ± 0.1671 0.9039 ± 0.1059 0.8526 ± 0.1462

It can be deduced that the addition of the pitch shifted audio clips enhances the
performance of the classifier. Furthermore, it can be observed that in D1 and D4, the
addition of the pitch shifted drone audio in RGA to generate a new dataset through GAN
has improved the performance of the classifier in all evaluation metrics. We speculate that
this improvement could be attributed to the fact that the pitch shifted audio records help
the GAN to generate a dataset that is more diverse and could be closer to the unseen drone,
in this case, the Bebop and Mambo, respectively.

In D2, although the classifier trained on RGA did not show an improvement in terms
of recall and F1 score, the classifier performance was negligibly better in terms of precision
and accuracy. This could suggest that the unseen drone, DJI Phantom 4, sounded very close
to the pitch shifted audio records such that the addition of the GAN generated data did
not provide a significant additional diversity in the dataset and hence did not contribute
towards an enhancement in the classifier’s performance.

When investigating the performance of the classifier in D3, one can deduce that there
was a significant improvement in the performance of the classifier when trained on RGA
dataset while being more stable as can be seen from the standard deviation values in
all evaluation metrics apart from precision. The same findings were found for D5. One
possible explanation for this behaviour is that the unseen drones, 3DR Solo and AR Drone,
respectively, do sound different than those provided in D3 and D5, respectively. Hence,
the increased diversification in RGA dataset provides more generalisation to the dataset
that aids in detecting of these unseen drones.

Finally, we conclude this experiment with the observation that the addition of GAN
generated dataset enhances the performance of the classifier in the majority of the cases
and in cases where no significant improvement is observed, the classifier performs in the
same manner as to when GAN is not being used.

5.4. Further Analysis

Figure 12 expresses the overall results of all the experiments conducted in this paper
in terms of recall. From the graph presented in Figure 12 below, it is apparent that the
manual increase in the dataset size and diversity through altering the original drone
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audio clips using pitch shifting contributes towards a significant increase in the classifier’s
performance in detecting an unseen drone. This phenomena is shown in the difference of
performance between R4 and R4A datasets in the graph below. Furthermore, in cases where
the unseen drone sounds significantly different than those seen previously by the classifier,
the classifier trained on the RGA dataset outperforms the others as it was observed in D1,
D3, D4 and D5. We speculate that this is due to the generalisation effect added by the GAN
generated data. Therefore, we conclude that in this application where the drone audio
datasets is scarce, integrating GAN as another method of data augmentation is useful to
enhance the performance of the classifier or in worst cases perform as well as those trained
on recorded and synthetically augmented using pitch shifting data. Hence, the benefits of
utilising GAN for this purpose outweigh the shortcoming of not using it.
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Figure 12. The performance of the average CNN models trained on all proposed drone datasets and
tested on unseen drones of in terms of recall.

6. Conclusions

In this paper, we address the issue of illegal use of drones in malicious activities by
proposing a novel approach that automates the drone detection and identification processes
using the drone’s acoustic features with different deep learning algorithms. However, the
lack of acoustic drone datasets restricts the ability to implement an effective solution
using deep learning algorithms. Therefore, our work targets this gap by introducing a
hybrid drone acoustic dataset, RG, composed of recorded drone audio clips and artificially
generated drone audio clips using the Generative Adversarial Network (GAN). From the
experiments conducted throughout this work, it was found that CNN have outperformed
both RNN and CRNN in detecting and identifying drones of familiar, seen during training,
types of drones.

Furthermore, when presented with seen drones, the CNN classifier trained on the
recorded drone acoustic dataset, R4, outperformed the CNN classifier trained on RG dataset.
However, when met with completely new drone types, the classifier was less effective and
the classifier trained on RG dataset was outstandingly better. Thus, the benefits of RG
dataset in the unseen scenario outweigh the costs in the seen scenario.

Additionally, when it comes to the applications where the drone audio datasets is
scarce, we deduced that integrating GAN as another method of data augmentation is
effective in enhancing the performance of the classifier as it will result in better or similar
performance than those trained on recorded and synthetically augmented using pitch
shifting data. Therefore, this suggests that the benefits of utilising GAN in such applications
outweigh the shortcoming of not using it.
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The proposed approach of using GANs to generate real-like drone audio clips illus-
trates a promising way to fulfill the gap imposed by the lack of drone acoustic dataset while
also contributing to an improvement in the classifier’s performance. These findings are
aimed to help the research community to use GAN generated drone audio clips along with
recorded drone audio dataset, which we are releasing publicly, in various deep learning
applications for further analysis.
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