
sensors

Article

Limitations of Foot-Worn Sensors for Assessing Running Power

Tobias Baumgartner 1 , Steffen Held 2, Stefanie Klatt 1,3 and Lars Donath 2,*

����������
�������

Citation: Baumgartner, T.; Held, S.;

Klatt, S.; Donath, L. Limitations of

Foot-Worn Sensors for Assessing

Running Power. Sensors 2021, 21,

4952. https://doi.org/10.3390/

s21154952

Academic Editor: Silvia Fantozzi

Received: 7 June 2021

Accepted: 19 July 2021

Published: 21 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Exercise Training and Sport Informatics, Department of Cognitive and Team/Racket Sport
Research, German Sport University Cologne, 50933 Cologne, Germany; t.baumgartner@dshs-koeln.de (T.B.);
s.klatt@dshs-koeln.de (S.K.)

2 Department of Intervention Research in Exercise Training, German Sport University Cologne,
50933 Cologne, Germany; s.held@dshs-koeln.de

3 School of Sport and Health Sciences, University of Brighton, Eastbourne BN20 7SR, UK
* Correspondence: l.donath@dshs-koeln.de

Abstract: Running power as measured by foot-worn sensors is considered to be associated with
the metabolic cost of running. In this study, we show that running economy needs to be taken into
account when deriving metabolic cost from accelerometer data. We administered an experiment in
which 32 experienced participants (age = 28 ± 7 years, weekly running distance = 51 ± 24 km) ran at
a constant speed with modified spatiotemporal gait characteristics (stride length, ground contact
time, use of arms). We recorded both their metabolic costs of transportation, as well as running power,
as measured by a Stryd sensor. Purposely varying the running style impacts the running economy
and leads to significant differences in the metabolic cost of running (p < 0.01). At the same time, the
expected rise in running power does not follow this change, and there is a significant difference in
the relation between metabolic cost and power (p < 0.001). These results stand in contrast to the
previously reported link between metabolic and mechanical running characteristics estimated by
foot-worn sensors. This casts doubt on the feasibility of measuring running power in the field, as
well as using it as a training signal.

Keywords: accelerometer; running power; running economy; Stryd; metabolic cost of transportation

1. Introduction

In the last decade, foot-worn sensors to assess and meaningfully analyze running
metrics (e.g., step frequency, stride length, ground contact time) have gained increased
attention and popularity [1–5]. These sensors are meant to improve laboratory and in-field
testing and training by delivering key performance data. The data derived from foot-
worn sensors comprise spatiotemporal running parameters, including running power [1,6].
These devices are designed to be independent of factors such as slope, wind resistance,
or fatigue. There has been significant prior research related to the use of foot-worn ac-
celerometers for different purposes: they have been used for and are known to correlate
with ground speed [7], running economy [8], and running power [6,9].

In this research, we aim to clarify whether it is possible to reliably measure running
power using foot-worn sensors and use these data to objectively quantify effort. Being able
to objectively evaluate and compare training effort are considered valuable to improve
training programming and progression [10]. For example, two runners may cover a
certain distance in the same duration, yet they experience different levels of exhaustion
or underlying energy costs of running. This is mainly due to a complex interplay among
the central and peripheral properties of cardiocirculatory, ventilatory, metabolic, and
psychological capacities [11].

In practice, energy demands are measured as the rate of oxygen consumption normalized
to body weight, specified as relative oxygen consumption V̇O2 [mL·min−1·kg−1] [12,13]. A
reliable assessment of such exchange data via spiroergometric systems is applicable to
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in-field, as well as laboratory conditions. However, these systems can be considered a bit
cumbersome and, therefore, require trained professionals to assess and interpret the data.

Thus, the direct assessment of the energy output of an athlete without a spiroer-
gometric mask seems to be promising from the perspective of athletes and coaches. In
cycling, a common measure to evaluate absolute effort is power, measured in Watts. Power
(=work per time) is often determined at a single point in the human–bike interface: the
pedal. This deduction appears reasonable as the energy transferred from an athlete onto the
street passes through this transmission point. Evidence shows that there is a very strong
association between metabolic (measured by oxygen consumed) and mechanical power at
the pedal in cycling (r = 0.97) [14]. With this background, it seems analogously plausible
to measure running power also in a similar setup: The foot serves as the interface where
the athlete’s effort is exerted. Force plates would then be the point of reference to measure
ground reaction force (GRF) and derive power applied to the ground.

However, this setup would not be feasible in the field. Alternative solutions for GRF
measurement using specialized insoles are still expensive and still need to be validated.
Hence, numerous companies have introduced small devices that can be easily attached to
the shoelaces. These compact and consumer-friendly devices contain accelerometers [15].
By using Newton’s second law, the force at the foot can be approximated via F = m·a.

A direct transfer of measurement parameters from cycling to running power, however,
is problematic. The motion on a bike is very constrained, whereas runners move with more
degrees of freedom [16]. Runners additionally use the muscle–tendon unit to regain and,
thereby, conserve energy with each step [17]. These factors can be trained and altered and,
therefore, affect the ratio between metabolic energy consumption and mechanical energy
output. There are a number of factors influencing the relation between energy consumed
and energy expended in propulsion [18,19], commonly referred to as running economy
(RE) [16,20]. In this paper, we try to show that economy-related aspects need to be taken
into account when considering running power.

The primary objective of this work, then, is to clarify the information meant to be
gained from foot-worn sensors and to present the results of a simple experiment that
manipulates athletes’ RE. We investigated the effects on energy intake (V̇O2) and power
produced (PW) when altering running parameters, such as stride length and step frequency.
By keeping the running speed constant while simultaneously altering the efficiency of
energy utilization, we created a gap between V̇O2 and PW as measured by a foot-worn
sensor. We propose that we can alter V̇O2 significantly whilst the power output PW does
not increase accordingly. This finding suggests that we are, in fact, not ready to measure
metabolic running power in daily training with existing ready-to-use consumer products.

2. Methods
2.1. Participants and Study Design

A total of 32 moderate endurance-trained runners (males (n = 22), females (n = 10))
participated in this controlled crossover trial. The participants’ characteristics (mean SD) in-
cluded: age = 28± 7 years, BMI = 21.6± 1.6, running V̇O2max = 58.6± 13.1 mL·min−1·kg−1,
and weekly running distance = 51 ± 24 km over the prior four weeks. All participants
had at least one year of distance running experience and were injury-free for at least the
preceding three months. Participants chose their own footwear to best resemble their
individual training and racing conditions. This study was approved by the local ethics
committee (Ethics Commission German Sport University Cologne, Ethical Proposal No.
017/2021) and was in compliance with the declaration of Helsinki [21]. All participants
were informed about the study design, and they signed informed consent for participation.

The entire test protocol was carried out in a single laboratory visit and was divided
into two parts. First, each subject performed a combined incremental and ramp exercise
test to determine their velocity at the aerobic threshold (AeT) [22]. For this, an incremental
maximal oxygen uptake (V̇O2max) treadmill test was conducted until objective exhaustion
levels were reached [13]. Thereafter, following a 30 min rest, the participants ran another
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25 min on the treadmill with varying predetermined spatiotemporal running parame-
ters. Throughout all tests, the participants wore a heart rate transmitter chest strap and
receiver/watch (Garmin, Olathe, KS, USA). Athletes refrained from intense exercise 48 h
prior to the test.

2.2. Testing Procedures
2.2.1. Combined Incremental and Ramp Exercise Test

In order to determine their V̇O2max, as well as their AeT, the participants performed
a combined incremental and ramp testing protocol. The initial speed of the subjects was
set based on prior running experience and estimated 10 km race time at 2, 2.5, or 3 m·s−1.
The combined protocol then consisted of the following steps: four 3 min stages (0.5 m·s−1

speed increase per stage, 30 s rest in between), immediately followed by 90 s at the same
speed as the last stage, and then a ramp test (0.2 m·s−1 speed increase every 30 s) until
the subjects reached volitional exhaustion [13]. In addition, capillary blood samples were
taken from the earlobe of the participants for lactate analysis (EBIOplus; EKF Diagnostic
Sales, Magdeburg, Germany) during the 30 s rest periods between stages and immediately
after the ramp test.

V̇O2max data were collected, using a breath-by-breath spirometric system (Zan 600,
Zan Messgeräte, Oberthulba, Germany). This spirometric system was calibrated prior to
each test, following the manufacturer’s recommendations. The highest consecutive oxygen
uptake values within 30 s during the final part were considered as V̇O2max. V̇O2max and
objective exhaustion were verified for each participant following the criteria by Midgley
and colleagues [13]. All participants were verbally encouraged and motivated in the same
way towards the end of V̇O2max testing, and they fulfilled objective exhaustion criteria (i.e.,
at least 4 out of 6 criteria). During a 30 min rest period between the all-out exhaustion test
and the second part of the study, the athletes’ AeT was determined using the minimum
lactate equivalent (Lmin) method [22]. In order to do this, we fit an exponential function to
the lactate measures and the velocities measured during the four stages. Thereafter, we
determined Lmin as the minimum of the ratio between this function and the velocity, using
custom-built Python functions.

Running power during all tests was measured using a Stryd sensor (Stryd Summit
Powermeter, firmware 2.1.16; https://www.stryd.com/, Stryd, Inc., Boulder, CO, USA).
This sensor was attached to an athlete’s shoe using a clip in the shoelaces and connected
to a watch via Bluetooth. This device is lightweight (8.5 g), unobtrusive (4 cm length),
and did not impact the athlete’s running form [15]. It was independently validated to
strongly correlate with V̇O2 in a recent study by Cerezuela-Espejo et al. [6]. In their study,
which included two foot-worn and three additional sensors, the Stryd sensor resulted in
the strongest correlation between displayed power and the metabolic cost of running. The
sensor was used in accordance with the manufacturer’s instructions, was reset between
participants, and set to the weight and height of each athlete. It was attached to the bottom
laces of the left foot and stayed fixed for a single subject between tests.

Data from the Stryd sensor and the heart rate monitor were sampled at 1 Hz and syn-
chronized during the recording by a Garmin watch. Spirometric data were also recorded at
a 1 Hz frequency and aligned manually during analysis. Potential errors due to misalign-
ment were mitigated through data pooling.

2.2.2. Modulation of Running Economy

In the second part of the study, the subjects ran for 25 min at a constant pace at their
AeT, as calculated in the previous test. Before the test, each subject was instructed on the
interrelation among step frequency, step length, and ground contact time while keeping a
steady pace. They were also familiarized with the metronome (Weird Metronome, David
Johnston, http://www.weirdmetronome.com, cf. [23]). After a brief warm-up period of
2 min, the next 3 min were used to determine the subject’s self-selected preferred step
frequency (SF) at that pace. Next, at the same pace, the participants were instructed to

https://www.stryd.com/
http://www.weirdmetronome.com
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perform four different variations to their running style for 3 min each. Between variations,
the participants ran in their own unrestricted running form for 1 min. The four conditions
in this experiment were as follows (order randomized between participants):

• SF+10%: an increase of the step frequency by 10%. This was prescribed using a digital
metronome. Participants were also verbally encouraged and supported when the
target frequency was not met;

• SF−10%: a decrease in step frequency by 10%. Again, a metronome was used to help
the participants keep this running form. As additional mental help, the participants
were instructed to lengthen their stride, as if they were gliding;

• GCT: reduction of ground contact time. The participants were instructed to reduce
the time spent in contact with the ground by around 20 ms. They were told the GCT
during their self-selected running and a target GCT for this variation. Participants
were instructed regularly to either keep their step exactly as is or to try and decrease
their GCT further. As a mental image, participants were encouraged to imagine the
treadmill to be covered in hot coals;

• Arms: The participants were instructed to run without arm swing and, thus, without
counterbalance to their running motion. The arms were either held above the head or
in the neck in order to avoid effective use as a counterweight to rotational movement.

After completing the four conditions, the participants continued running in their own
running style for another 5 min. We used the V̇O2 towards the end of this cool-down, to
approximate fatigue. Assuming a linear relationship between time on the treadmill and
fatigue, we then used this level of oxygen consumption to remove drift from the data of
the four conditions, thus avoiding data artifacts due to randomization. Additionally, we
used these data to investigate a “fatigued” condition.

Figure 1 shows a model protocol of the experiment and the relevant collected data for
a single subject. Panel (a) on the top displays the raw V̇O2 and PW values over time. The
vertical lines and alternating background colors signify the different phases of the test, as
noted on the very top of Panel (a). These data rows were converted into single values by
pooling over the last minute of each phase, displayed here as the horizontal bars.

Figure 1. Protocol for the running economy variation test, all performed at a fixed speed. Example of a
single subject. Raw values for all measurements are plotted over time (measured at 1 Hz). (a) Oxygen
consumption and power output during the running conditions. (b) Spatiotemporal running parame-
ters in reaction to instructions for the experimental conditions. V̇O2 for self-selected SF, 4 conditions
and cool-down (average for last minute of each phase, cf. horizontal lines, * = significant difference):
2.06, 2.36 *, 2.49 *, 2.08, 2.47 *, 2.07. PW: 160.62, 159.84, 170.88, 156.34, 155.62, 160.58. Best viewed
in color.
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In Figure 1b, we show the changes in the spatiotemporal running parameters that the
subject adopted in order to fulfill the given instructions. As expected, the values changed
in accordance with each other. Notably, this subject implemented the condition GCT by
increasing the cadence. Other elucidations of this condition included highly elongated
strides or shorter step lengths at the runner’s usual cadence.

2.3. Statistics

We calculated all the statistics in Python-3.6.8 using the scipy.stats-1.2.1 library. Through-
out the evaluations, significance levels of p < 0.05 were set. We performed a repeated
measures analysis of variance (ANOVA) to investigate the changes in V̇O2 in response to
the varying instructions during the six conditions (baseline, SF+, SF−, arms, GCT, fatigue).
We further modeled the adaptations in V̇O2 by the participants in an unambiguous way
as follows.

2.3.1. Oxygen Consumption during Altered Running Conditions

The raw data for V̇O2 and PW were recorded at 1 Hz. For each subject, we took
the last 1 min of a condition to calculate the average V̇O2 and PW for further analysis.
We determined significant changes in V̇O2 by analyzing the noise during the recording
process. For this, we normalized each data row of the baseline condition (Minutes 3–5 of
running) to its mean and fit a Student t-distribution to the resulting combined noise for all
participants. This noise incorporated both errors stemming from the inaccuracies of the
recording device, as well as fluctuations in the breathing patterns or other physiological
changes. The resulting model described the variation in V̇O2 that we expected to see in
every measurement. We could then compare the baseline data rows for each subject with
the data for all the conditions. If more than 10% of the data points in a condition were
within the 95% confidence interval (CI) of the baseline measurement, we considered this
condition to not be a significantly different V̇O2. This perspicuous process corresponded
exactly to a t-test for significance with p < 0.05 with the added benefit that we could directly
mark the nonsignificant data points (cf. Figure 3, hollow points).

2.3.2. Difference in Slope of Power to Oxygen

For conditions where the V̇O2 significantly differed from the baseline, we were in-
terested in the relation between V̇O2 and PW, as opposed to the absolute changes. We
calculated the followings statistics for the slope of the relation between the change in V̇O2
and PW during the test conditions and compared it to the expected slope of the change in
V̇O2 to PW during regular running (i.e., the incremental/ramp test).

Let S be the set of all participants in the study. For each subject s, the baselines
VOs

base and Pws
base were determined at Minute 5 of the experiment (cf. Figure 1 (left-most

horizontal bar)). For altered running conditions c1 . . . c5, we calculated the relation between
V̇O2 and PW, i.e., the slope of change, as follows:

slopeci
=

{
VOs

ci
−VOs

base
Pws

ci
− Pws

base

}
s∈S

, i ∈ 1 . . . 5, (1)

where VOs
ci

and Pws
ci

again correspond to the average of the respective range in the raw
data (cf. Figure 1 (horizontal bars)). The resulting distribution slopeci for each condition
was then compared to the expected distribution of the relationship between V̇O2 and PW
during regular running, as determined in the incremental/ramp test.

We tested the resulting distributions for normality using D’Agostino and Pearson’s
omnibus test of normality [24]. We confirmed variance homogeneity between the incremen-
tal/ramp baseline and conditions using the Levene test. Lastly, we performed an ANOVA
to show that there were significant differences in the expected slope and the measured
results in our test conditions.
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3. Results
3.1. Relation of VO2 and Power during the Incremental/Ramp Test

Figure 2 displays changes in V̇O2 and PW for all stages of the exercise test in com-
parison to each individual’s initial stage. A larger change in V̇O2 implies a larger change
in power, and we further analyzed the slope of this relationship. Each point in Figure 2
describes the normalized average oxygen consumption and power output during the last
minute of each of the stages for a single subject (cf. Equation (1)). The points in the scatter
plot for Stage 1 culminate in the coordinate origin (0, 0). Linear regressions for each of the
participants separately revealed a very strong linear relationship between the four different
speeds and the increases in PW with respect to V̇O2 (r = 0.99, cf. light gray lines Figure 2).
For each subject, the 4 ∆V̇O2 −∆PW had a linear relation. The difference between the
participants is expressed in the slope of these lines.

Combining the data points for all the participants also resulted in a strong correlation
of r = 0.95 (cf. blue thick line, Figure 2). The two dashed-dotted thick dark blue lines in
Figure 2 show slopes with a difference of 2 · σ from the main correlation effect, i.e., the
uncertainty of the slope of this regression. The likelihood for a ∆V̇O2 −∆ PW pair to lie
outside of this cone is < 5%.

Figure 2. Change in respiratory V̇O2 vs. change in running power, as measured by the Stryd
sensor, during the combined incremental and ramp exercise test. The first stage was used as the
baseline for each of the participants (Point 0, 0). Orange circle = Stage 2; green triangle = Stage 3;
red square = Stage 4. Between stages, the treadmill speed was increased by 0.5 m·s−1. There was a
strong correlation between V̇O2 and power (cf. blue line, r = 0.95). Dashed-dotted blue lines show a
slope error of 2 standard deviations. Best viewed in color.

3.2. Running Economy

The running economy between the stages during the exercise test varied, on average,
by 3.12% for each participant, whereas it varied by 6.21% for the conditions during the
second part of the study. There was a significant difference between the observed variances
in the two parts of our study (F(1, 60) = 39.04, p < 0.001).

Repeated measures ANOVA revealed a significant time effect for changes in V̇O2
(F(5, 155) = 23.51, p < 0.01) for the different conditions and changed running parameters.
In Section 2.3, we directly test the results for each of the participants that displayed a
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significant difference from the baseline. Nonsignificant data points were omitted for the
subsequent analysis and are displayed with hollow points in Figure 3. For the last 5 min of
the running test, we observed significantly different oxygen consumption for some of the
participants due to fatigue.

(a) SF-10% (b) SF+10%

(c) arms up (d) fatigue

(e) shortened GCT

Figure 3. Relation of change in V̇O2 and PW in reaction to altered running conditions or fatigue (a–e).
The dark-blue dotted-dashed lines indicate the expected range for these points, as determined by
the incremental/ramp test. Trend lines show the main direction of a linear regression, with r and
the mean squared error (mse). Hollow points indicate a nonsignificant change in V̇O2 (the number
of participants with significant changes in V̇O2 for each condition shown in the respective legend).
The number of subjects with significant changes in V̇O2 for each condition was: (a) 26, (b) 16, (c) 25,
(d) 11, and (e) 27.

3.3. Relation between Metabolic Cost of Running and Running Power

Figure 3 demonstrates that the significant changes in V̇O2 do not imply similar changes
in PW. Each dot in Figure 3 denotes the average V̇O2 and PW during the last minute of
each condition in the running economy test (cf. Figure 1 (horizontal bars). Statistics only
include participants with a significant change in V̇O2 for each of the conditions (indicated
by filled dots; the number of significant changes in the legend).

In Table 1, we show the ANOVA values for comparing the condition results vs.
the expected values. For all of the conditions, there is a highly significant difference in
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the relation between V̇O2 and PW. This means, there is a <0.1% probability (effectively
p < 1.6 ×10−8) that there is no effective difference between the expected distribution and the
measured values and that these values were observed due to noise. This same relationship
is illustrated in Figure 3: The dashed-dotted cone delineates the area in the plot that all
values should have fallen in, according to the incremental/ramp test. The chance for a
single outlier measurement to fall outside of this cone is <5%. As athletes were independent
of each other, accumulating the data yielded even the lower p-values as shown in Table 1.
The trend lines in Figure 3 point at the effect strengths of these discrepancies as well.

Table 1. Independent ANOVA results for the relation between V̇O2 and PW for each condition vs.
the expected distribution as determined in the incremental/ramp test. We give a visual interpretation
of these results in Figure 3 as trend lines through the measured data points. Effect strengths are given
as the standardized mean difference (SMD) and η2

p as compared to the expected baseline.

Figure 3 Condition F p η2
p SMD

a SF − 10% 36.89 <0.0001 0.24 1.15
b SF + 10% 193.47 <0.0001 0.64 3.33
c arms up 368.93 <0.0001 0.76 4.62
d fatigued 160.18 <0.0001 0.61 4.98
e GCT 429.89 <0.0001 0.78 4.72

4. Discussion

The goal of this study was to clarify whether it is possible to reliably measure run-
ning power using foot-worn sensors. We provide evidence for the shortcomings of these
sensors when the running economy is altered. The reason for this discrepancy is that
the accelerometer-based sensors approximate force applied to the ground [15], which is
then used to calculate mechanical power. The energy demands on the athlete, i.e., the
metabolic power, on the other hand, is the work, over time, performed in the muscle cells
and cardiovascular system. During running, oxygen is consumed to contract muscles.
Metabolic energy from oxygen usage is transformed into mechanical power in order to
produce propulsion. The efficiency of this process is expressed in the form of RE.

Under the assumption of a fixed running economy, changes in mechanical power
are directly proportional to changes in metabolic power. In the first part of our study, the
combined incremental and ramp exercise test, we show that this relation holds true and
validates prior work (cf. [6,9], Figure 2). Since athletes ran the exercise test in their own
running style and with fairly consistent RE (cf. Section 3.2), the mechanical power measured
at the foot correlates well with the metabolic power measured at the spiroergometric mask.

This assumption of a fixed RE cannot be made in practice, as it changes over time and
with training [16,25,26]. By purposely altering the participants’ running economy in our ex-
periments, we were able to show the disconnect between metabolic and mechanical power.
We focused on alterations to the running form that were proven to affect the metabolic
cost of running at a constant speed, i.e., the running economy. Increasing or decreasing
the step frequency has been shown to significantly change the RE for experienced runners
(cf. [23,27])). The same holds true for varying the ground contact time [28]. Reducing the
ground contact time additionally alters both step length and frequency. Removing arm
movement makes compensating for rotational motion more strenuous [16]. We reproduced
the findings from prior work and showed that altering the runner’s self-chosen biomechan-
ical parameters leads to a deteriorated running economy. At the same time, the changes in
metabolic cost were not reflected in the running power measured by the foot-worn sensor.
We thereby show that PW only correlates with V̇O2 under steady RE. It is therefore only a
useful measure in situations where the athlete’s running style does not vary or change.

For single bouts of exercise, running power, as measured by foot-worn sensors, is
a valid tool to keep an even effort under changing external conditions, e.g., wind or
inclination [6]. Organizing long-term training using these devices cannot be expected
to have the intended effects. According to the widely used model by Joyner, running
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performance consists of metabolic capacity, fractional usage, and RE [29]. We showed
that Stryd does not measure metabolic expenditure independently of RE. A change in RE
can, therefore, have arbitrary effects on the displayed power. With more training, RE and
metabolic capacity at a certain pace can both change [25].

A fixed prescription of power outputs to aim for during a workout might not relate in a
reasonable way to the original indicator workout: Assume an athlete improves his/her RE
between Day 1 and Day 100. Running the same course in the same time on both days might
yield different power readings P1

w and P100
w . Since we assumed the RE to be improved, the

relation between metabolic cost between Day 1 and Day 100 should be: VO1
2 > VO100

2 . As
there is no well-defined correlation between V̇O2 and PW under a changing RE, the change
between P1

w and P100
w could be zero or a change in either direction. We could expect the

athlete to require less power to run the same course at the same time. Following a training
schedule that increases measured running power PW over time can have arbitrary effects.
We, therefore, do not recommend using running power for training programming, as it
does not correlate with the actual metabolic cost of running when the running economy
changes. Here, it might be tempting to assume the opposite and conclude that similar
power outputs, but different speeds, imply an improved RE. However, our results do not
allow for this deduction. We showed that the relation between V̇O2 and PW is arbitrary
whenever the RE is changed; therefore, this comparison must be avoided.

In the existing literature, running power and economy based on foot-worn sensors
have been carefully examined, but there is contradicting evidence: (1) In the accompanying
white paper to their sensor by Stryd [9], power PW is correlated with the cost of running
V̇O2. The same findings were independently validated by Cerezuela-Espejo et al. [6].
(2) A study by Muniz-Pardos et al. investigated the relation between the magnitude of
acceleration and the running economy in elite athletes, finding a strong correlation of
r = 0.872 [8]. The work by Austin et al. looked at the relation between power and economy
as measured by a Stryd sensor, without manually altering economy [30]. (3) In a third
direction of application for foot-worn sensors, Falbriard et al. investigated the feasibility of
accelerometers towards determining the ground speed of the athlete, again resulting in a
strong relation (accuracy = 0.00 ± 0.01 m·s−1, precision = 0.09 ± 0.06 m·s−1) [7].

Taking these prior works in combination, a sensor placed at the foot would be able to
extract information about all aspects of the running form: (1) energy usage (V̇O2), (2) energy
efficiency (RE), and (3) energy output (∝ speed). The information gathered from the foot
of an athlete would, thereby, carry information about underlying bodily processes, from
respiration to propulsion.

It is self-evident that not all of the statements can be true at the same time. In this
work, we also provide evidence for contradicting statements (1): We created conditions
in which V̇O2 changed significantly, but changes in power PW measured by foot-worn
sensors did not change accordingly. We, thus, conclude that these sensors do not correlate
metabolic and mechanical power, and so, metabolic running power is not measured.

Building ever-more complex models based on high-dimensional data streams intro-
duces structural errors and logical inconsistencies as stated above. On the other hand,
wearable sensors that provide a valid measurement of the metabolic cost of running in
the field need to be investigated further as well. We showed that the current solutions are
not sufficient to account for changes in the running conditions. This insight casts doubt
over the usefulness of measuring running power using a foot-worn, accelerometer-based
sensor. The promise of these sensors is to normalize running efforts between different
external running conditions; instead of pace, which could be varying due to slope, running
form, fatigue, and wind, power was meant to measure the actual metabolic demand on the
athlete V̇O2. The sensors do not correlate with this measure. Even simple fatigue, which
can be expected to occur during most training runs, resulted in changes in the demand on
the athlete (V̇O2) that was not reflected in an uptick in PW.

In this study, we examined the behavior of a single consumer product, when RE is
changed. This product, the Stryd sensor, had previously been shown to provide a superior
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correlation under different conditions compared to other products [6]. Our aim was not
to invalidate the previous studies. Instead, we demonstrated that an important factor of
variance was missing in these investigations. Prior studies have not taken into account
running economy. RE is an important factor in approximating metabolic cost from force
measured at the athlete’s foot. The claim of foot-worn sensors for running power is that
they can measure metabolic parameters under all conditions and thereby equalize between
efforts. We demonstrated that there exists a variation for which this is not the case. The
results of this investigation would be similar when using a different consumer product that
relies on the same underlying physics.

As already pointed out by Willems [18], RE is the exact factor that determines the rela-
tion between the metabolic cost of running and the output of external power. Therefore, RE
should always be included in validation studies for products that measure metabolic cost
based on externally measured data. Foot-worn sensors alone do not provide a promising
avenue for the development of a valid device for measuring running power. Instead, multi-
ple sources and modalities of data should be combined, ideally from different positions of
the athlete’s body (e.g., foot, wrist, and heart rate strap).

For the main part of this study, some of the participants did not have significantly
different V̇O2 from their respective baselines during some of the conditions (cf. hollow
points in Figure 3). The reason for this is that the participants were able to follow the
instructions to varying degrees. Some participants could not alter their step frequency at
all, while others had trouble matching the metronome. Compliance with the instructions
was not instrumental in this experiment, as we only considered the effects of changes in
the running style and not the changes themselves. Naturally, it is not to be expected that
athletes alter their running form in this way during a single training run, but rather over
longer periods of time. With training, athletes improve and adapt their running form to
require less energy for the same speed, i.e., they improve their individual RE, over time [25].
This could be reflected in shorter ground contact time, higher cadence, or a collection of
other factors [16,26].

In this study, we demonstrated the limitations of foot-worn, accelerometer-based
sensors to measure metabolic running performance as expressed by V̇O2. Running power
PW, as provided by foot-worn sensors, has gained popularity in recent years and was
meant to help normalize between training efforts. These sensors express the running
performance in Watts and supposedly correlate with the metabolic cost of running. The
difference between metabolic energy consumed and mechanical energy produced, i.e., the
efficiency of motion, is expressed as running economy (RE). We were able to show that
altered RE leads to a disconnect between V̇O2 and PW. Since RE changes with training and
experience, we question the usefulness of foot-worn sensors for long-term programming
of training.
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