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Abstract: Road condition evaluation is a critical part of gravel road maintenance. One of the assessed
parameters is the amount of loose gravel, as this determines the driving quality and safety. Loose
gravel can cause tires to slip and the driver to lose control. An expert assesses the road conditions
subjectively by looking at images and notes. This method is labor-intensive and subject to error in
judgment; therefore, its reliability is questionable. Road management agencies look for automated
and objective measurement systems. In this study, acoustic data on gravel hitting the bottom of a car
was used. The connection between the acoustics and the condition of loose gravel on gravel roads
was assessed. Traditional supervised learning algorithms and convolution neural network (CNN)
were applied, and their performances are compared for the classification of loose gravel acoustics.
The advantage of using a pre-trained CNN is that it selects relevant features for training. In addition,
pre-trained networks offer the advantage of not requiring days of training or colossal training data.
In supervised learning, the accuracy of the ensemble bagged tree algorithm for gravel and non-gravel
sound classification was found to be 97.5%, whereas, in the case of deep learning, pre-trained network
GoogLeNet accuracy was 97.91% for classifying spectrogram images of the gravel sounds.

Keywords: gravel roads; loose gravel; ensemble bagged trees; sound analysis; road maintenance; GoogLeNet

1. Introduction

In recent years, research on sound recognition systems has gained momentum and has
been used in a wide range of applied fields, including health informatics, audio surveillance,
illegal deforestation identification, multimedia, animal species identification, and road
classification. Audio modality is beneficial not only in the identification of speech and
music, recognition of environmental sounds but also in many other areas such as road
texture classification can by audio recordings from tires while driving on the roads [1–4].
Most of the studies for road type detection or road defects detection of paved roads have
focused on the paved road [5–7]. Some studies have focused on gravel road defects
such as dust [8,9]. Only one study was found to have focused on ruts formed by loose
gravel [10]. There has been an increase in the deployment of a machine capable of hearing
in the environment, such as mobile phones, hearing aids, camera, robots, and wireless
microphones. These devices surround us with one or more acoustic sensors/microphones.
A microphone is a sensor that converts sound to electrical signals [11]. These sensors can
become a part of an acoustic sensor network and can be exploited to solve many speech
processing and audio recognition tasks [12].

Through machine learning, systems can make sense of what they hear and help
address real-world problems [13–15]. Information obtained from the semantic audio
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analysis can be useful for analyzing, classifying, and predicting an event [16]. Automatic
sound analysis systems might not replace experts, but they can support them by processing
large data sets and yielding results that facilitate the decision-making process [17].

In Sweden, gravel roads are an economical option for connecting rural populations
and providing pathways to recreational locations such as lakes and, most essentially, for
facilitating agriculture and forestry activities. Gravel roads make up 21% of all public roads
in Sweden, covering 20,200 km. Besides, 74,000 km of existing gravel road and forest roads,
out of 210,000 km, are owned by the private sector [18]. On average, these roads have low
traffic volume and low average daily traffic (AADT) of below 200 vehicles/day with an
average speed of 75 km/h. In contrast, the highest traffic volume in Sweden on a paved
road can be found on the E4 Stockholm, with a peak AADT of around 140,000 vehicles/day.
The average traffic growth is 2% per year. Gravel road conditions change dynamically;
therefore, they need maintenance three to four times a year, usually carried out in the
summer when the roads are snow-free [19–21].

Evaluations of road conditions are usually subjective and based on photographs taken
of the roads and written texts describing the roads. Conditions such as cross fall and
road edges are assessed objectively using simple tools like a cross fall meter (2 m long)
and a digital meter. Human subjective assessment is not reliable and is prone to error of
judgment [22–24]. Experts randomly select two 100 m sections over 10 km to decide on
the condition of the 10 km gravel road section [25]. This sample size seems very small
to decide on conditions for a 10 km road. But due to lack of resources, massive length of
gravel roads, and keeping the gravel roads cost-effective, experts do not drive throughout
the length of the road, which is under evaluation. The purpose of these evaluations is to
plan maintenance activities according to the defect present on the road. These activities
could be, blading, treating the road with crushed limestone, removing visibility impair-
ing vegetation, ditching, and salt treatment for dust control. Some expensive objective
methods are available such as laser profilers. Laser profilers are trucks with specialized
equipment attached to the front and rear of the vehicle, with a cost of up to 500,000 euros;
constant availability of such methods is neither economical nor feasible [26]. Smartphone
applications are available, but they only tell the overall roughness of the roads, and no
information about the defect present. Road maintenance agencies are interested in the
defect information to create a customized maintenance plan. Therefore, road maintenance
agencies worldwide are looking for cost-effective and efficient objective solutions [27,28].

Internationally, to evaluate gravel roads, quality parameters such as road cross-section,
drainage, gradation of gravel, dust, and distress–such as corrugation or wash-boarding,
erosion, loose gravel, and potholes–are assessed. One of the crucial parameters that experts
look at is loose gravel [29,30]. Loose gravel is a vital assessment factor as too much loose
gravel can be dangerous. Loose gravel can slip from under the tires and cause drivers to
lose control, resulting in accidents. In 2017, approximately 600 people died of accidents on
gravel roads in the United States. Most of these accidents were multiple crashes. One reason
for such fatal incidents was excessive loose gravel with other defects such as visibility
impairing dust and lack of traffic signs [9]. It also negatively affects both driving quality
and comfort. Therefore, it is crucial for road maintenance agencies to have up-to-date
information about the condition of gravel roads and plan and execute on-time maintenance
of gravel roads.

In addition to their visual assessment capability, humans can get a notion of the
amount of loose gravel by hearing gravel hitting the bottom of a car while driving, thus
helping them ascertain the condition of the road. We assume that artificial intelligence
algorithms can also perform this task. This study investigates whether loose gravel as-
sessment can be improved using acoustic analysis and machine learning algorithms and,
if it can, in what way. We hypothesized that the sound recordings of gravel hitting the
bottom of the car can provide important information about gravel road conditions. We
explore whether collected audio from gravel roads can serve as a predictor for estimating
both the amount of loose gravel and the condition of the gravel road by applying pattern
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recognition techniques. In-car audios of gravel hitting the bottom of the car were recorded
while driving on gravel roads. A data set was made by extracting 5 s audio clips. An audio
clip where gravel hitting was audible was labeled as gravel sound, and the one with no
gravel sounds was labeled as non-gravel sounds. All these recordings were exclusively
from driving on gravel roads. For the classification of gravel sounds, sound analysis and
machine learning algorithms can be applied to sound recordings from inside the car while
it is being driven on gravel roads. Classification results can be visualized on real-time maps
to show valuable information about loose gravel conditions on unpaved roads.

We investigated and compared both traditional supervised learning and convolutional
neural network (CNN) for the classification of these gravel sounds [31–34]. In the case of
supervised learning, multiple classifiers are evaluated for gravel and non-gravel sound
classification. The pre-trained convolutional neural network GoogLeNet was trained and
evaluated. Both classifications methods are compared. An ensemble bagged tree-based
approach was found to outperform other algorithms in the classification of loose gravel
audio signals for gravel road condition evaluation.

The rest of this article is organized as follows: first, we present the theoretical back-
ground, which covers studies discussing automated methods, conventional gravel road
assessment methods, supervised machine learning algorithms, and convolutional neural
networks. Followed by text about data collection and techniques, and then results and
discussion. Finally, limitations and future work are discussed.

2. Problem Background

The goal of artificial intelligence is to enable computers to make decisions the way
that humans can. One of the important human senses is hearing, which allows us to
perceive our environment and make decisions accordingly. Humans can readily classify
different sounds: music playing, truck engines running, babies crying, people talking, etc.
The research area in which machines are used to recognize and interpret sound is called
machine hearing [35]. In this study, the utilization of machine hearing is explored so that a
different way of assessing loose gravel on gravel roads can be proposed.

Loose gravel can cause tires to slip and the driver to lose control if, for example, they
turn the vehicle too quickly. Similarly, drivers need to avoid slamming on the brakes or
swerving while driving on gravel roads with lots of loose gravel. Loose aggregate or loose
gravel usually results from heavy traffic loads or inferior material, which loosens gravel
on the road and the shoulders of the road. Traffic causes gravel to move from the wheel
path and form linear berms [29,30]. With loose aggregate, berms can be as big as four to six
inches for significant distances along the roadside. Over time, with the accumulation of
loose gravel, longitudinal depressions, called ruts or wheel-tracks, form. These ruts can
retain water, hindering drainage. The width of the ruts depends on the wheel size, which
can vary from a minimum of 6 inches to a maximum of 24 inches [36,37].

Many research studies have been conducted using automated machine learning ap-
proaches for identifying road defects. Most of these studies focus on paved roads, while
few focus on gravel roads. However, they all focus on detecting the overall roughness of
the road and cannot identify the distress type that causes road roughness [38,39]. Moreover,
when it comes to distress detection, potholes and rutting distresses are more prominently
discussed, and there is no visible work on objective loose gravel measurement [40–43].

Diagnostic Standards

Various visual gravel road assessment methods exist worldwide, and these are regu-
lated by the weather and landscape of the country in question. A few prominent methods
are the US Army Corps of Engineering Assessment System (USACE), Pavement Condition
Index (PCI), and Pavement Surface Evaluation and Rating (PASER) [21,30,36,44]. Munici-
palities rely on the visual assessment of gravel road conditions and statistical data from
vehicles outfitted with specialized instruments that take road surface measurements: exam-
ples of such specialized instruments are the laser profiler used in Sweden, the Automated
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Road Analyzer (ARAN) used in Canada, and the Road Measurement Data Acquisition
System (ROMDAS) used in New Zealand [19,21,45]. In Sweden, for gravel road condition
assessment, the regulation “Bedömning av grusväglag” (Assessment of Gravel Road Con-
ditions) is used by the Swedish Transport Administration (Trafikverket) [19]. According to
this regulation, the evaluation of gravel roads for maintenance purposes is entirely sub-
jective. It aims to acquire information about road conditions and to help decision-makers
determine whether or not a gravel road needs maintenance. Photographs of gravel roads
are taken from a moving vehicle and later examined by experts: see Figure 1. In addition,
written text is included that describes the conditions of certain severity levels for loose
gravel: see Table 1 [19].
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Figure 1. Example images of gravel roads for the Swedish gravel road assessment manual defined by Trafikverket showing
the severity level for loose gravel: from 1 “good condition” roads to 4 “worst condition” roads. These images provide a
guideline/ground truth for the experts to compare real-time images with these standard images and assign a rating to
a particular road under observation. Maintenance plans are decided according to these ratings for each road. Detailed
descriptions of each road type are defined in Table 1 [19].

Table 1. In addition to images, some text descriptions are laid in the manual for the Swedish gravel
road assessment method explaining each severity level to aid experts in deciding on a certain road
condition [19].

Severity Level Description

1 No loose gravel on the road, but there may be a small amount along the roadside.

2 A small amount of loose gravel on the road and in small embankments along the
roadside, but this does not affect driving comfort or safety to any notable degree.

3 Loose gravel on the road and in small embankments along the roadside significantly
affects driving comfort and safety.

4 An extensive amount of loose gravel on the road and in marked embankments at the
edge of the road affecting driving comfort and safety.
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3. Materials and Methods

This section presents the methodology used for this study for data mining and model
development. In the summer months, the researchers drove at 50 km/h on gravel roads on
the outskirts of the town of Borlänge and in the village of Skenshyttan, both in Sweden, to
collect data. Two GoPro HERO7 cameras (GoPro Inc, San Mateo, CA, USA) were used to
acquire both sound and visual components. For camera specification details, see Table 2.

Table 2. Audio and video specification of GoPro Hero 7 Black camera(s) used during data collection.

GoPro Hero 7 Black Specifications Used

Video Audio

Supported shooting formats
4K/60 fps, 4K(4:3)/30 fps, 2.7k/120 fps,

2.7K(4:3)/60 fps, 1440p/120 fps,
1080 p/240 fps, 960/240 fps, 720/240 fps

Shooting angles 150◦

Bit rate 164 Kbps
Channels 2 (stereo)

Audio sample rate 48 kHz

One of the cameras was fixed to the windshield inside the vehicle and the other to the
vehicle’s bonnet with a double-clip strong suction cup to keep the camera steady without
obscuring the camera lens: see Figure 2. The purpose of having two cameras was to see if it
was better to record audible gravel sounds inside or outside the vehicle. The data collection
involved two trips in dry and sunny conditions. The total distance covered on gravel
roads for data collection was 13 miles on the first trip and 10 miles on the second trip. This
distance excludes the distance/time to reach the gravel road. Thirty-six minutes of audio
recording were found to be useful for the extraction of audible gravel sound data. This
number of minutes excludes the time it took to travel to the gravel road. The researchers
drove twice in the tracks formed by rutting and twice outside the tracks on the gravel to
establish different audibility levels.
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Figure 2. This photograph was taken using the camera inside the car and shows the camera on the
car’s bonnet. The camera installed inside was intended to record in-car audio recordings of gravel
hitting the bottom. While the camera outside had better video recordings of the gravel road.

Audio data collected using the exterior camera was found to have a lot of wind noise,
and no gravel hitting the bottom of the car was audible in the recording. Therefore, for
further extraction and analysis of sound, only audio data from the interior camera was
used. The video recording from the exterior camera will be used for future studies. The
vehicle used for data collection was a Volkswagen Passat GTE (Volkswagen, Wolfsburg,
Germany). Details of the vehicle are laid out in Table 3. Figure 3 shows the map of selected
gravel roads driven on for sound data collection of in-car gravel sounds.
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Table 3. Specification details of the vehicle used during data collection.

Specification of the Vehicle Used during Data Collection

Manufacturer Volkswagen
Model Passat GTE 2018
Weight 1806 kg
Power 115 kW

Engine type Plugin hybrid engine
Engine size 1395 cm3/1.4 L

Tire type Summer tires
Tire dimensions 215/55 R17 94V

Ground clearance 14.5 cm/5.71 inches
Sound level 70 dB still and 73 dB while driving

Maximum speed 225 km/h
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3.1. Supervised Machine Learning Algorithms

Multiple classifiers were evaluated in this study. All the classifiers used in this study
are discussed below and are also shown in Figure 4.
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3.1.1. Support Vector Machines (SVMs)

A support vector machine is a supervised machine learning algorithm. It is used for
classification and regression tasks. The geometric explanation of support vector classifica-
tion (SVC) is that the algorithm searches for the optimal separating surface, namely the
hyperplane, equidistant from the two classes. First, SVC is drawn for the linearly separable
case. For non-linear decision surfaces, kernel functions are introduced. A kernel function
is a mathematical function that allows SVM to perform a two-dimensional classification
of a set of one-dimensional data or else projects data from a low dimensional space to a
higher-dimensional space. There are various kernel functions, including linear, polynomial,
radial basis, sigmoid, and gaussian. Finally, slack variables are added to allow for training
errors when the complete separation of the two variables is not required, for example,
for noisy data. SVMs are memory efficient as they use a subset of training points in the
decision function, also called support vectors [46–49]. The SVMs used for this study are
linear, quadratic, cubic, fine, medium, and coarse Gaussian.

3.1.2. Decision Trees

Decision tree (DT) learning is one of the approaches used to predict statistics, machine
learning, and data mining. A decision tree is used for classification and regression expressed
as a recursive partition of the instance space. Classification and Regression Tree (CART) is
a term used for both purposes. With classification, data is assigned to a particular class,
whereas with regression, the predicted outcome can be considered in numerical form. A
decision tree is a method to drive rules from data. Such rule-based techniques are helpful to
explain how a model should work to estimate a dependent variable value [50]. A decision
tree is a directed tree with a node called a root with no incoming edges. A node with
the outgoing edge is called an internal or test node. Nodes other than the internal nodes
are called leaves. Each leaf is assigned one class label (decision taken after computing all
attributes). Instances are classified by navigating through the root of the tree down to the
leaf according to the test results along the path. The paths from the root to leaf represent
classification rules [51]. Construction of DT is done by examining a set of training data
for which the class labels are already known. DT performs very well on high-quality data.
Fine, medium, and coarse trees were used for classification purposes in this study. The
maximum number of the splits of these trees is 100, 20, and 4, respectively [52–54].

3.1.3. Ensemble Classification

The ensemble-based or multiple classifier techniques are more desirable than the
single classifier counterparts as they reduce weak selection possibility [55]. Ensemble
methods train multiple classifiers to have a final decision. The ensemble classification
method is inspired by the human behavior of considering many experts for a final decision.
Many algorithms have been proposed to achieve ensemble learning systems (ELS), such as
bagging, boosting, and random forest [56,57]. Ensemble classifiers are categorized into two
groups:

(i) Classifier selection: The classifier performing best is selected.
(ii) Classifier fusion: The output of all the classifiers is combined for the final decision.

Rules are defined so that a class label can be assigned to each instance or, in this case,
sound. These rules include weighted majority voting, Borda counting, and behavioral
knowledge space common. Ensemble learning has several approaches [58–60], such as:

(i) Random subspace randomizes the learning algorithm and selects subsets of features
from a chosen subspace before training the model. The outputs from the classifiers
are combined by majority voting [61,62].

(ii) Boosting is a general ensemble method that creates a strong classifier from a number
of weak classifiers. A model is built from the training data, and then a second model
is created that corrects errors from the first model. Models are added until the training
set is predicted perfectly or a maximum number of models are added [63,64].
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(iii) Bootstrap aggregating is also called bagging. It involves having each model in the
ensemble vote with equal weight. To promote model variance, bagging trains each
model in the ensemble using a randomly drawn subset of the training set: e.g., the
random forest algorithm combines random decision trees with bagging to achieve
very high classification accuracy [65,66].

(iv) Rotation forest, where every decision tree is trained by applying principal component
analysis (PCA) to a random subset of input features [57].

(v) We used ensemble bagged tree (EBT) based classification in this study. Bagging is
considered highly accurate and the most efficient of ensemble approaches. Bagged
decision trees can improve the performance of decision trees since they aggregate the
results of multiple decision trees. In a given data set, bootstrapped subsamples are
drawn, and a decision tree is established on each bootstrapped sample. The result of
each decision tree is aggregated to yield a robust and accurate predictor [67,68].

3.2. Data Preparation and Pre-Selection of Gravel and Non-Gravel Sound Events

First, the audio signal was extracted from the mp4 video files and stored in .wav
format, which had a 44,100 Hz sampling frequency with 16-bit per sample. We applied
audio pre-segmentation, which is generally the task of separating a continuous audio
stream into small audio portions, also called segments. The length of each segment was set
to 5 s to provide the necessary information to perform the experiments. In the next step, all
the audios were sorted into two classes labeled as gravel or non-gravel. We describe these
audio groups as follows:

3.2.1. Gravel Sound

Gravel sound is an audio recording in which gravel hitting the bottom of the car
is audible. These audio clips are obtained from gravel roads with conditions shown in
images 1 and 2 of Table 1.

3.2.2. Non-Gravel Sound

Non-gravel sound is an audio recording in which gravel hitting the bottom of the car
is either not audible or is audible once or twice. These recordings are primarily obtained
more from road-types 3 and 4 of Table 1. Therefore, we can say that these audio clips
represent the same roads.

Both gravel and non-gravel sounds were from audio recordings from gravel roads
exclusively. Audio clips disturbed by non-static background noise, such as speech, envi-
ronmental sounds, the sound of the car indicator, or the sound of the horn, were excluded.
A sound recording was discarded whenever a gravel or non-gravel acoustic could not be
extracted from the original recording. Both of the classes consist of audio recordings from
gravel roads only. In this study, 237 audio clips were used, comprising 133 gravel sounds
(56%) and 104 non-gravel sounds (44%).

Variants of supervised learning algorithms (SVMs, trees, ensemble algorithms) were
trained for classification tasks. Feature extraction was done in the R statistical computing
language [69]. All classification and visualization tasks were performed in the Matlab
classification learner app, an interactive app, and provides an opportunity to test several
classifiers with a graphical user interface (GUI). Because of its interactive GUI, Matlab was
used to train and test. Feature extraction, training, and testing can also be completely done
in R.

3.3. Signal Processing and Feature Selection

The audio data is by default in the time domain. It was converted to the frequency
domain by Fast Fourier Transform (FFT) to look for patterns [70]. Computing the Fast
Fourier Transform (FFT) on the whole sound or a single section might not be informative
enough. An intuitive solution is a Short-Time Fourier Transform (STFT) that computes the
Discrete Fourier Transform (DFT) on subsequent sections along with the signal.
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A window is then sided along with the signal, and a DFT is calculated at each slide
or jump [32]. STFT was performed on audio data in this study. One of the drawbacks
of performing STFT is that it introduces artifacts such as side frequency lobes at the
edges while sliding through the signal. A windowing function called the Hamming
window was used for our data with a 50% overlap to avoid any spectral leakages. The
Hamming window is a taper formed by raised cosine with non-zero endpoints optimized
to minimize the nearest side lobe, which provides a more accurate idea of the original
signal’s frequency spectrum.

Figure 5 below shows signals from both sound classes, i.e., gravel and non-gravel,
in the frequency domain. Most of the audio information exists within the 2 kHz range
as other non-speech audio. Amplitude differences can be seen between the two sample
sounds. With audio of gravel, more frequencies with higher amplitudes can be observed.
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We extracted 79 spectral/frequency domain features, such as spectral centroid, ampli-
tude, harmonics-to-noise ratio, mean frequency, and peak frequency (mean, median, and
standard deviation).

A t-test was performed for dimensionality reduction of the features and for the
selection of features that show a significant difference between the classes. Some of the
features, having a significance value below the p-value 0.05, were selected for model
training purposes. A response variable class (gravel, non-gravel) and 36 predictors were
picked with a p-value below 0.05. Features with a p-value of greater than 0.05 were not
selected in the classification process.

Principal component analysis (PCA) was also tested for dimensionality reduction.
With PCA, nine features were selected. These nine features achieved a classification
accuracy of 56% to 58%. Hence, feature selection by the t-test was finally chosen.

Ten-fold cross-validation was used to assess the accuracy of each model. This method
partitions the data into ten subsets while maintaining the proportionality of each class.
Nine subsets were used to train the models, and the tenth subset was used to test accuracy.
This method was repeated until all the subsets were used as training and test sets.

3.4. Classification of Audio Spectrograms Using Convolutional Neural Networks (CNN)

In addition to investigating traditional supervised learning methods, we will also
investigate loose gravel sound classification using Convolutional Neural Network (CNN).
This investigation will compare both methods.

Gravel acoustics were converted to spectrogram images by Fast Fourier Transform
(FFT). A pre-trained network GoogLeNet was trained using these images with some fine-
tuning to the network. GoogLeNet is a 22-layer deep convolutional neural network. It is
a variant of the Inception Network, a deep convolutional neural network developed by
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researchers at Google [31,33]. We will discuss GoogLeNet later in this section. The details
of the technologies are discussed in this section.

Spectrograms

Sound waves are made up of high and low-pressure regions moving through a
medium. Such pressure patterns make the sound distinguishable. These waves have
characteristics such as wavelength, frequency, speed, and time. Machines can classify
sounds based on such characteristics, just as humans do [70,71].

A spectrogram is a way to visualize a sound wave frequency spectrum when it varies
over time. We can say it is a photograph of the frequency spectrum that shows intensities
by varying colors or brightness. One way to create a spectrogram is through the use of
FFT, a digital process. We have used this method to generate spectrograms in this study.
Digitally sampled data in the time domain is broken into segments, usually using overlap
and Fourier transformed data to calculate the magnitude of the frequency spectrum for
each chunk. Each chunk corresponds to a vertical line in the spectrogram. These spectrums
are laid side by side to form the image or three-dimensional surface with information
of the time, frequency, and amplitude [72]. Amplitude is shown by using intensities of
colors; brighter colors show higher frequencies of sound waves. Spectrograms of gravel
and non-gravel sound are shown in Figure 6.
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Neural networks (NN) are inspired by the human brain. A neural network comprises
many artificial neurons containing weights and biases. These networks learn feature
presentation, thus eliminating the process of manual feature selection process [63]. The
training process involves backpropagation to minimize a loss of function, L = g(x, y, θ)
through the tuning of parameters, θ. A loss function is calculated as the difference between
observed and actual values. The cross-entropy loss function is often a choice in classification
problems. The loss function is optimized iteratively through the calculation of the gradient
descent by learning rate. The learning rate is an important parameter; it is the rate at
which the gradients of each neuron are updated. A higher learning rate can reach the goal
quickly but risks reaching a local minima [73–77]. The goal of the loss function is to reach a
global minimum acceptable value for the loss function. The most common optimizers are
stochastic gradient descent and its variants. These networks are composed of connected
layers, each layer having many neurons. Deep neural networks (DNNs) are referred to as
NNs with many layers. Multiple layers enable them to solve complex problems that their
relatively shallow networks usually cannot solve. The network depth seems to contribute
to the improved classification [78,79].

In several studies, CNNs classify spectrograms for musical onset detection, classifi-
cation of acoustic scenes and events, emotion recognition, or identification of dangerous
situations in underground car parking to activate an automatic alert from sound [80–84].
Convolutional neural networks (CNNs) have become popular in machine learning research.
CNN’s are widely applied to visual recognition and audio analysis. CNN’s consist of spe-
cialized layers for feature extraction images called convolutional layers. Convolutional
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layers have filters to learn features such as edges, circles, or textures. Each convolutional
layer convolves the input and passes the result to the next layer, resulting in a complex
feature map of the image [85].

One of the first CNNs was LeNet. It was used to recognize digits and characters.
LeNet architecture includes two convolutional layers and two fully connected layers [86].
One reason for the success of CNNs is their ability to capture spatially local and hierarchical
features from images. Later, a deeper CNN was proposed called AlexNet, which achieved
record-breaking accuracy on the Imagenet large-scale visual recognition challenge (ILSVRC-
2010) classification task [87]. In addition to having increased depth, AlexNet also has a
rectified linear unit (ReLU) as its activation function and overlapping max pooling to
downsample the features of the layers.

Training CNNs requires a considerable amount of data and time, which in most cases
are not available. Using a pre-trained network with transfer learning is typically much
faster and easier than training a network from scratch. Pertained networks are CNNs with
descriptors that are extracted by training on large sets. These descriptors from pre-trained
networks can help in many visual recognition problems with high accuracy [88].

Many pre-trained networks are developed over time, such as a residual neural network
(ResNet), AlexNet, GoogLeNet, FractalNet, VGG, etc. These networks are trained on
different data sets and have variants depending on the number of layers in the architecture.
Pre-trained networks are trained on millions of images from data sets that are publicly
available. The training requires a considerable amount of computational power and may
take weeks of training depending on the network architecture’s complexity. By taking
advantage of transfer learning from pre-trained networks, other classification problems can
often be solved by fine-tuning pre-trained networks. Fine-tuning is the task of training and
tweaking a pre-trained network with a small data set and fewer classes than the pre-trained
network [89].

For this study, the dataset is considerably small (i.e., 237 spectrograms images) for
training a network from scratch. We can still take advantage of pre-trained convolutional
networks. Data augmentation is a technique used to artificially create new training data
from existing training data [90]. We also used data augmentation techniques, such as
image resize, horizontal flip, and random rotation. We increased the image data set four
times with data augmentation and fed it to the CNN as four different sets of images. Each
image’s dimensions were 224 × 224 pixels, as it is the default input images size required
by GoogLeNet.

We used GoogLeNet for the classification of spectrograms of gravel acoustics. GoogLeNet
or Inceptionv1 was proposed by Google research in collaboration with various universi-
ties. GoogLeNet architecture outperformed its counterpart in classification and detection
challenges in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). It
provided a lower error rate than AlexNet, the previous winner of the challenge in 2012.
GoogLeNet architecture consists of 22 layers. It introduced various features such as 1 × 1
convolution and global average pooling that reduce the number of parameters and create a
deeper architecture. GoogLeNet is a pre-trained network trained on the ImageNet dataset,
comprising over 100,000 images across 1000 classes. The large data set of ImageNet con-
tains abundant examples of a variety of images. Feature knowledge gained by GoogLeNet
could be practical in the classification of the images of other data sets. In this study, we
leverage this knowledge of GoogLeNet gained from training on larger data sets of images
to help classify spectrograms of gravel audios with a relatively small data set of 237 au-
dio spectrograms. This method can help in achieving better results. More details about
GoogLeNet architecture can be found in the paper in the following reference [91].

4. Results

We used both classical machine learning algorithms and convolutional neural net-
works (CNN) for classification purposes. In this section, we discuss the results from
both methods.
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4.1. Results from Supervised Learning

The extracted audio recording consists of the sound of gravel hitting the bottom of the
vehicle. Data sets of extracted audios were labeled gravel and non-gravel sounds. Features
were extracted and saved into a .csv file and were analyzed by t-test. Features that had
significant differences between the classes were selected for training. Selected features
were fed for training and classifications to the classifiers.

Classification results by different classifiers are presented in Table 4, which shows the accu-
racy of the algorithms used. Accuracy can easily be defined as Accuracy = TP + TN

TP + FP + FN + TN ,
where TP is the true positive rate, and TN is the true negative rate (TN = 1 − FP) [80].
Ensemble bagged trees (EBT) outperform all other algorithms with 97% accuracy. Accuracy
is the number of correct predictions made divided by the total number of predictions made,
multiplied by 100 to turn it into a percentage. EBT also performs better than others in classi-
fying both positive and negative classes, i.e., it has an accuracy of 99% in classifying gravel
class and 94% for non-gravel sounds, as shown in Figure 7. In EBT, the misclassification of
non-gravel is almost five times greater than that of gravel audio, but still, the classification
rate is incredible. This misclassification could result from some non-gravel audio having
few gravel-hitting sounds that could be classified as gravel sounds.

Table 4. Accuracy of various algorithms used in this study for the classification of gravel and
non-gravel sounds.

Model Accuracy (%)

Decision Trees

Fine Tree 93.2

Medium Tree 93.2

Coarse Tree 92.4

Support Vector Machine

Linear SVM 92.8

Quadratic SVM 93.7

Cubic SVM 92.8

Medium Gaussian SVM 93.2

Coarse Gaussian SVM 91.1

Ensemble Classification

Boosted Tree 95

Bagged Tree 97

RUSBoosted Tree 90.3

Convolutional neural network (CNN) 97.91

Quadratic SVM performed the best in the SVM group, and fine trees performed with
almost the same accuracy. Figure 7 shows a comparison of the performance of algorithms
and presents the true positive detection rate of all the classifiers/algorithms for both gravel
and non-gravel. A true positive is an outcome where the model correctly predicts the
positive class. Similarly, a false positive is an outcome where the model incorrectly predicts
the positive class.
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Figure 7. Classification performance of the classical algorithm. The figure shows the true positive
rate of detection of both classes. EBT outperforms all the other algorithms in classifying instances of
both classes.

4.2. Results from CNN

The use of the convolution layers helps avoid the feature extraction process necessary
for classical ML algorithms. However, these still require a lot of data to avoid over-fitting.
When the training data is scarce, alternative methods are needed. Transfer learning is
a machine learning technique that transfers knowledge learned from a source domain
to a target domain [77]. It is an advantageous method to avoid over-fitting when the
task-related data is small. There have been successful attempts in the literature to apply
transfer learning in classification tasks [89]. We also employ transfer learning to train our
CNN. Spectrograms of audio data were generated for both classes of gravel and non-gravel
sounds. Data augmentation techniques such as random horizontal flip, random rotation,
and resize were applied to the data set. After each augmentation technique is applied, a
new set of images is created to be submitted to CNN [92]. It improved the performance in
terms of accuracy of the pre-trained CNN, in this case, GoogLeNet. The accuracy achieved
was 97.91% using GoogLeNet pre-trained network, as visualized in Figure 8. Changes
were made to the last fully connected layer of the pre-trained architecture to classify only
two classes in our case, i.e., the gravel and non-gravel. The network was trained for
100 epochs with a learning rate of 1 × 10−3. Decreasing the learning rate also improved the
accuracy. Figure 8 shows that the architecture showed some overfitting at the beginning of
the training process, but after 20 epochs, the accuracy became stable. Using convolutional
networks also shows good accuracy as supervised learning algorithms. The benefit of using
CNN for classification in this case and in general is that the neural network is responsible
for extracting and selecting appropriate features for training the CNN for classification,
making the process simpler and more efficient.
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In terms of computational cost, classical methods were trained on core i5, and it took
around 40 s for the training and testing of each algorithm. In addition, the feature extraction
process took 30 min. A better machine would cut this time significantly. GoogLeNet was
trained on Google Colaboratory with graphical user interface (GPU) Nvidia K80/T4 to
avoid hours of training on the same machine. It took around 30 min to get training
and validation results. Google Colaboratory is a cloud disseminating machine learning
and research service. It lets the users use GPU/TPU through cloud services. The run
time of Google lab is configured with artificial intelligence (AI) libraries. The service is
linked to google drive [93]. CNN is more computationally expensive than EBT or other
algorithms. On the other hand, the benefit of using CNN over the other algorithms
used in the study would be that it takes care of feature extraction and feature selection
processes. Any of the methods of EBT or CNN can be used depending on the availability
of computational resources.

5. Conclusions, Limitations, and Future Work

A great deal of literature includes studies on road condition monitoring systems
and primarily focuses on paved roads. Gravel road condition assessments also need to
be considered. In automated systems, road condition distresses are mainly identified
by images or accelerometer data. However, applications using acoustic data have not
been comprehensively explored. This study shows that an objective assessment of gravel
roads for loose gravel through acoustic data is promising. Acoustic signals collected by
driving on gravel roads render valuable information about road conditions when the loose
gravel parameter is considered. Moreover, this can be achieved by cost-efficient methods
involving acoustic sensor/mic of simple equipment such as a camera or other portable
recording device.

Applications with such machine models can classify gravel sounds. These classifica-
tion results can be visualized on gravel roads on maps to show the extent of loose gravel
along the gravel roads. Citizens can also use such applications to share real-time data and
plan their trips. They can know the road conditions in advance. People frequently using
gravel roads may be interested in such applications and can provide data of longer length
by just using the app on their drive. These applications can also help maintenance agencies
have real-time data and plan for timely and defect-specific road maintenance plans.

Both supervised learning and CNN were used, and results were compared for this
study. In classical algorithms, ensemble bagged tree-based classifiers perform best for
classifying gravel and non-gravel sounds among various classifiers. EBT performance
is good in reducing the misclassification of non-gravel sounds. The use of CNNs also
showed 97.91%. Using CNN makes the classification process more intuitive as the network
architecture takes the responsibility of selecting relevant training features. The classification
results can be visualized on road maps, which can help road monitoring agencies assess
road conditions and plan road maintenance activities for a particular road.

The gravel sounds were easily detected when the vehicle was driven outside the tracks
or ruts on the loose gravel. For accurate recordings of gravel audio, driving outside the
tracks during data collection is to be recommended.

In this study, one limitation is that all the recordings were made using one vehicle,
a Volkswagen Passat GTE. Other vehicles might produce more or less engine sound, and
as such, the results might vary. Therefore, the addition of more recordings from different
vehicles will most likely provide deeper insight into how the proposed system detects
gravel sounds for audio recording from other vehicles. As a continuation of this work,
research will be conducted using machine vision to classify loose gravel by applying deep
neural networks. A fusion of video and sound data could be researched for better results.
This method can be used on gravel roads in countries with similar terrain and weather
conditions as Sweden.
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