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Abstract: Road condition evaluation is a critical part of gravel road maintenance. One of the 

assessed parameters is the amount of loose gravel, as this determines the driving quality and 

safety. Loose gravel can cause tires to slip and the driver to lose control. An expert assesses 

the road conditions subjectively by looking at images and notes. This method is labor-inten-

sive and subject to error in judgment; therefore, its reliability is questionable. Road manage-

ment agencies look for automated and objective measurement systems. In this study, acoustic 

data on gravel hitting the bottom of a car was used. The connection between the acoustics 

and the condition of loose gravel on gravel roads was assessed. Traditional supervised learn-

ing algorithms and convolution neural network (CNN) were applied, and their performances 

are compared for the classification of loose gravel acoustics. The advantage of using a pre-

trained CNN is that it selects relevant features for training. In addition, pre-trained networks 

offer the advantage of not requiring days of training or colossal training data. In supervised 

learning, the accuracy of the ensemble bagged tree algorithm for gravel and non-gravel 

sound classification was found to be 97.5%, whereas, in the case of deep learning, pre-trained 

network GoogLeNet accuracy was 97.91% for classifying spectrogram images of the gravel 

sounds. 

Keywords: gravel roads; loose gravel; ensemble bagged trees; sound analysis;  
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1. Introduction 

In recent years, research on sound recognition systems has gained momentum 

and has been used in a wide range of applied fields, including health informatics, 

audio surveillance, illegal deforestation identification, multimedia, animal species 

identification, and road classification. Audio modality is beneficial not only in the 

identification of speech and music, recognition of environmental sounds but also in 

many other areas such as road texture classification can by audio recordings from 

tires while driving on the roads [1–4]. Most of the studies for road type detection or 

road defects detection of paved roads have focused on the paved road [5–7]. Some 

studies have focused on gravel road defects such as dust [8,9]. Only one study was 

found to have focused on ruts formed by loose gravel [10]. There has been an in-

crease in the deployment of a machine capable of hearing in the environment, such 

as mobile phones, hearing aids, camera, robots, and wireless microphones. These 
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devices surround us with one or more acoustic sensors/microphones. A microphone 

is a sensor that converts sound to electrical signals [11]. These sensors can become 

a part of an acoustic sensor network and can be exploited to solve many speech 

processing and audio recognition tasks [12]. 

Through machine learning, systems can make sense of what they hear and help 

address real-world problems [13–15]. Information obtained from the semantic au-

dio analysis can be useful for analyzing, classifying, and predicting an event [16]. 

Automatic sound analysis systems might not replace experts, but they can support 

them by processing large data sets and yielding results that facilitate the decision-

making process [17]. 

In Sweden, gravel roads are an economical option for connecting rural popu-

lations and providing pathways to recreational locations such as lakes and, most 

essentially, for facilitating agriculture and forestry activities. Gravel roads make up 

21% of all public roads in Sweden, covering 20,200 km. Besides, 74,000 km of exist-

ing gravel road and forest roads, out of 210,000 km, are owned by the private sector 

[18]. On average, these roads have low traffic volume and low average daily traffic 

(AADT) of below 200 vehicles/day with an average speed of 75 km/h. In contrast, 

the highest traffic volume in Sweden on a paved road can be found on the E4 Stock-

holm, with a peak AADT of around 140,000 vehicles/day. The average traffic growth 

is 2% per year. Gravel road conditions change dynamically; therefore, they need 

maintenance three to four times a year, usually carried out in the summer when the 

roads are snow-free [19–21]. 

Evaluations of road conditions are usually subjective and based on photo-

graphs taken of the roads and written texts describing the roads. Conditions such 

as cross fall and road edges are assessed objectively using simple tools like a cross 

fall meter (2 m long) and a digital meter. Human subjective assessment is not relia-

ble and is prone to error of judgment [22–24]. Experts randomly select two 100 m 

sections over 10 km to decide on the condition of the 10 km gravel road section [25]. 

This sample size seems very small to decide on conditions for a 10 km road. But due 

to lack of resources, massive length of gravel roads, and keeping the gravel roads 

cost-effective, experts do not drive throughout the length of the road, which is un-

der evaluation. The purpose of these evaluations is to plan maintenance activities 

according to the defect present on the road. These activities could be, blading, treat-

ing the road with crushed limestone, removing visibility impairing vegetation, 

ditching, and salt treatment for dust control. Some expensive objective methods are 

available such as laser profilers. Laser profilers are trucks with specialized equip-

ment attached to the front and rear of the vehicle, with a cost of up to 500,000 euros; 

constant availability of such methods is neither economical nor feasible [26]. 

Smartphone applications are available, but they only tell the overall roughness of 

the roads, and no information about the defect present. Road maintenance agencies 

are interested in the defect information to create a customized maintenance plan. 

Therefore, road maintenance agencies worldwide are looking for cost-effective and 

efficient objective solutions [27,28]. 

Internationally, to evaluate gravel roads, quality parameters such as road 

cross-section, drainage, gradation of gravel, dust, and distress–such as corrugation 

or wash-boarding, erosion, loose gravel, and potholes–are assessed. One of the cru-

cial parameters that experts look at is loose gravel [29,30]. Loose gravel is a vital 

assessment factor as too much loose gravel can be dangerous. Loose gravel can slip 

from under the tires and cause drivers to lose control, resulting in accidents. In 2017, 

approximately 600 people died of accidents on gravel roads in the United States. 

Most of these accidents were multiple crashes. One reason for such fatal incidents 

was excessive loose gravel with other defects such as visibility impairing dust and 

lack of traffic signs [9]. It also negatively affects both driving quality and comfort. 

Therefore, it is crucial for road maintenance agencies to have up-to-date information 
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about the condition of gravel roads and plan and execute on-time maintenance of 

gravel roads. 

In addition to their visual assessment capability, humans can get a notion of 

the amount of loose gravel by hearing gravel hitting the bottom of a car while driv-

ing, thus helping them ascertain the condition of the road. We assume that artificial 

intelligence algorithms can also perform this task. This study investigates whether 

loose gravel assessment can be improved using acoustic analysis and machine 

learning algorithms and, if it can, in what way. We hypothesized that the sound 

recordings of gravel hitting the bottom of the car can provide important information 

about gravel road conditions. We explore whether collected audio from gravel 

roads can serve as a predictor for estimating both the amount of loose gravel and 

the condition of the gravel road by applying pattern recognition techniques. In-car 

audios of gravel hitting the bottom of the car were recorded while driving on gravel 

roads. A data set was made by extracting 5 s audio clips. An audio clip where gravel 

hitting was audible was labeled as gravel sound, and the one with no gravel sounds 

was labeled as non-gravel sounds. All these recordings were exclusively from driv-

ing on gravel roads. For the classification of gravel sounds, sound analysis and ma-

chine learning algorithms can be applied to sound recordings from inside the car 

while it is being driven on gravel roads. Classification results can be visualized on 

real-time maps to show valuable information about loose gravel conditions on un-

paved roads. 

We investigated and compared both traditional supervised learning and con-

volutional neural network (CNN) for the classification of these gravel sounds [31–

34]. In the case of supervised learning, multiple classifiers are evaluated for gravel 

and non-gravel sound classification. The pre-trained convolutional neural network 

GoogLeNet was trained and evaluated. Both classifications methods are compared. 

An ensemble bagged tree-based approach was found to outperform other algo-

rithms in the classification of loose gravel audio signals for gravel road condition 

evaluation. 

The rest of this article is organized as follows: first, we present the theoretical 

background, which covers studies discussing automated methods, conventional 

gravel road assessment methods, supervised machine learning algorithms, and con-

volutional neural networks. Followed by text about data collection and techniques, 

and then results and discussion. Finally, limitations and future work are discussed. 

2. Problem Background 

The goal of artificial intelligence is to enable computers to make decisions the 

way that humans can. One of the important human senses is hearing, which allows 

us to perceive our environment and make decisions accordingly. Humans can read-

ily classify different sounds: music playing, truck engines running, babies crying, 

people talking, etc. The research area in which machines are used to recognize and 

interpret sound is called machine hearing [35]. In this study, the utilization of ma-

chine hearing is explored so that a different way of assessing loose gravel on gravel 

roads can be proposed. 

Loose gravel can cause tires to slip and the driver to lose control if, for example, 

they turn the vehicle too quickly. Similarly, drivers need to avoid slamming on the 

brakes or swerving while driving on gravel roads with lots of loose gravel. Loose 

aggregate or loose gravel usually results from heavy traffic loads or inferior mate-

rial, which loosens gravel on the road and the shoulders of the road. Traffic causes 

gravel to move from the wheel path and form linear berms [29,30]. With loose ag-

gregate, berms can be as big as four to six inches for significant distances along the 

roadside. Over time, with the accumulation of loose gravel, longitudinal depres-

sions, called ruts or wheel-tracks, form. These ruts can retain water, hindering 
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drainage. The width of the ruts depends on the wheel size, which can vary from a 

minimum of 6 inches to a maximum of 24 inches [36,37]. 

Many research studies have been conducted using automated machine learn-

ing approaches for identifying road defects. Most of these studies focus on paved 

roads, while few focus on gravel roads. However, they all focus on detecting the 

overall roughness of the road and cannot identify the distress type that causes road 

roughness [38,39]. Moreover, when it comes to distress detection, potholes and rut-

ting distresses are more prominently discussed, and there is no visible work on ob-

jective loose gravel measurement [40–43]. 

Diagnostic Standards 

Various visual gravel road assessment methods exist worldwide, and these are 

regulated by the weather and landscape of the country in question. A few promi-

nent methods are the US Army Corps of Engineering Assessment System (USACE), 

Pavement Condition Index (PCI), and Pavement Surface Evaluation and Rating 

(PASER) [21,30,36,44]. Municipalities rely on the visual assessment of gravel road 

conditions and statistical data from vehicles outfitted with specialized instruments 

that take road surface measurements: examples of such specialized instruments are 

the laser profiler used in Sweden, the Automated Road Analyzer (ARAN) used in 

Canada, and the Road Measurement Data Acquisition System (ROMDAS) used in 

New Zealand [19,21,45]. In Sweden, for gravel road condition assessment, the reg-

ulation “Bedömning av grusväglag” (Assessment of Gravel Road Conditions) is 

used by the Swedish Transport Administration (Trafikverket) [19]. According to 

this regulation, the evaluation of gravel roads for maintenance purposes is entirely 

subjective. It aims to acquire information about road conditions and to help deci-

sion-makers determine whether or not a gravel road needs maintenance. Photo-

graphs of gravel roads are taken from a moving vehicle and later examined by ex-

perts: see Figure 1. In addition, written text is included that describes the conditions 

of certain severity levels for loose gravel: see Table 1 [19]. 

  

1 2 

  

3 4 
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Figure 1. Example images of gravel roads for the Swedish gravel road assessment manual defined by Trafikverket 

showing the severity level for loose gravel: from 1 “good condition” roads to 4 “worst condition” roads. These 

images provide a guideline/ground truth for the experts to compare real-time images with these standard images 

and assign a rating to a particular road under observation. Maintenance plans are decided according to these ratings 

for each road. Detailed descriptions of each road type are defined in Table 1 [19]. 

Table 1. In addition to images, some text descriptions are laid in the manual for the Swedish gravel road assessment 

method explaining each severity level to aid experts in deciding on a certain road condition [19]. 

Severity Level Description 

1 No loose gravel on the road, but there may be a small amount along the roadside. 

2 
A small amount of loose gravel on the road and in small embankments along the 

roadside, but this does not affect driving comfort or safety to any notable degree. 

3 
Loose gravel on the road and in small embankments along the roadside 

significantly affects driving comfort and safety. 

4 
An extensive amount of loose gravel on the road and in marked embankments at 

the edge of the road affecting driving comfort and safety. 

3. Materials and Methods 

This section presents the methodology used for this study for data mining and 

model development. In the summer months, the researchers drove at 50 km/h on 

gravel roads on the outskirts of the town of Borlänge and in the village of Skenshyt-

tan, both in Sweden, to collect data. Two GoPro HERO7 cameras (GoPro Inc, San 

Mateo, CA, USA) were used to acquire both sound and visual components. For cam-

era specification details, see Table 2. 

Table 2. Audio and video specification of GoPro Hero 7 Black camera(s) used during data 

collection. 

GoPro Hero 7 Black Specifications Used 

Video Audio 

Supported shooting formats 

4K/60 fps, 4K(4:3)/30 fps, 2.7k/120 fps, 2.7K(4:3)/60 

fps, 1440p/120 fps, 1080 p/240 fps, 960/240 fps, 

720/240 fps 

Shooting angles 150° 

Bit rate 164 Kbps 

Channels 2 (stereo) 

Audio sample rate 48 kHz 

One of the cameras was fixed to the windshield inside the vehicle and the other 

to the vehicle’s bonnet with a double-clip strong suction cup to keep the camera 

steady without obscuring the camera lens: see Figure 2. The purpose of having two 

cameras was to see if it was better to record audible gravel sounds inside or outside 

the vehicle. The data collection involved two trips in dry and sunny conditions. The 

total distance covered on gravel roads for data collection was 13 miles on the first 

trip and 10 miles on the second trip. This distance excludes the distance/time to 

reach the gravel road. Thirty-six minutes of audio recording were found to be useful 

for the extraction of audible gravel sound data. This number of minutes excludes 

the time it took to travel to the gravel road. The researchers drove twice in the tracks 

formed by rutting and twice outside the tracks on the gravel to establish different 

audibility levels. 
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Figure 2. This photograph was taken using the camera inside the car and shows the camera 

on the car’s bonnet. The camera installed inside was intended to record in-car audio record-

ings of gravel hitting the bottom. While the camera outside had better video recordings of 

the gravel road. 

Audio data collected using the exterior camera was found to have a lot of wind 

noise, and no gravel hitting the bottom of the car was audible in the recording. 

Therefore, for further extraction and analysis of sound, only audio data from the 

interior camera was used. The video recording from the exterior camera will be used 

for future studies. The vehicle used for data collection was a Volkswagen Passat 

GTE (Volkswagen, Wolfsburg, Germany). Details of the vehicle are laid out in Table 

3. Figure 3 shows the map of selected gravel roads driven on for sound data collec-

tion of in-car gravel sounds. 

Table 3. Specification details of the vehicle used during data collection. 

Specification of the Vehicle Used during Data Collection 

Manufacturer Volkswagen 

Model Passat GTE 2018 

Weight 1806 kg 

Power 115 kW 

Engine type Plugin hybrid engine 

Engine size 1395 cm3/1.4 L 

Tire type Summer tires 

Tire dimensions 215/55 R17 94V 

Ground clearance 14.5 cm/5.71 inches 

Sound level 70 dB still and 73 dB while driving 

Maximum speed 225 km/h 
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Figure 3. Map showing the trip where data collection took place on gravel roads on the out-

skirts of Borlänge and in Skenshyttan, Sweden. 

3.1. Supervised Machine Learning Algorithms 

Multiple classifiers were evaluated in this study. All the classifiers used in this 

study are discussed below and are also shown in Figure 4. 

 

Figure 4. Algorithms used for classification by supervised learning. 

3.1.1. Support Vector Machines (SVMs) 

A support vector machine is a supervised machine learning algorithm. It is 

used for classification and regression tasks. The geometric explanation of support 

vector classification (SVC) is that the algorithm searches for the optimal separating 

surface, namely the hyperplane, equidistant from the two classes. First, SVC is 

drawn for the linearly separable case. For non-linear decision surfaces, kernel func-

tions are introduced. A kernel function is a mathematical function that allows SVM 

to perform a two-dimensional classification of a set of one-dimensional data or else 

projects data from a low dimensional space to a higher-dimensional space. There 

are various kernel functions, including linear, polynomial, radial basis, sigmoid, 

and gaussian . Finally, slack variables are added to allow for training errors when 

the complete separation of the two variables is not required, for example, for noisy 

data. SVMs are memory efficient as they use a subset of training points in the deci-

sion function, also called support vectors [46–49]. The SVMs used for this study are 

linear, quadratic, cubic, fine, medium, and coarse Gaussian. 
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3.1.2. Decision Trees 

Decision tree (DT) learning is one of the approaches used to predict statistics, 

machine learning, and data mining. A decision tree is used for classification and 

regression expressed as a recursive partition of the instance space. Classification 

and Regression Tree (CART) is a term used for both purposes. With classification, 

data is assigned to a particular class, whereas with regression, the predicted out-

come can be considered in numerical form. A decision tree is a method to drive rules 

from data. Such rule-based techniques are helpful to explain how a model should 

work to estimate a dependent variable value [50]. A decision tree is a directed tree 

with a node called a root with no incoming edges. A node with the outgoing edge 

is called an internal or test node. Nodes other than the internal nodes are called 

leaves. Each leaf is assigned one class label (decision taken after computing all at-

tributes). Instances are classified by navigating through the root of the tree down to 

the leaf according to the test results along the path. The paths from the root to leaf 

represent classification rules [51]. Construction of DT is done by examining a set of 

training data for which the class labels are already known. DT performs very well 

on high-quality data. Fine, medium, and coarse trees were used for classification 

purposes in this study. The maximum number of the splits of these trees is 100, 20, 

and 4, respectively [52–54]. 

3.1.3. Ensemble Classification 

The ensemble-based or multiple classifier techniques are more desirable than 

the single classifier counterparts as they reduce weak selection possibility [55]. En-

semble methods train multiple classifiers to have a final decision. The ensemble 

classification method is inspired by the human behavior of considering many ex-

perts for a final decision. Many algorithms have been proposed to achieve ensemble 

learning systems (ELS), such as bagging, boosting, and random forest [56,57]. En-

semble classifiers are categorized into two groups: 

(i) Classifier selection: The classifier performing best is selected. 

(ii) Classifier fusion: The output of all the classifiers is combined for the final deci-

sion. 

Rules are defined so that a class label can be assigned to each instance or, in 

this case, sound. These rules include weighted majority voting, Borda counting, and 

behavioral knowledge space common. Ensemble learning has several approaches 

[58–60], such as: 

(i) Random subspace randomizes the learning algorithm and selects subsets of 

features from a chosen subspace before training the model. The outputs from 

the classifiers are combined by majority voting [61,62]. 

(ii) Boosting is a general ensemble method that creates a strong classifier from a 

number of weak classifiers. A model is built from the training data, and then a 

second model is created that corrects errors from the first model. Models are 

added until the training set is predicted perfectly or a maximum number of 

models are added [63,64]. 

(iii) Bootstrap aggregating is also called bagging. It involves having each model in 

the ensemble vote with equal weight. To promote model variance, bagging 

trains each model in the ensemble using a randomly drawn subset of the train-

ing set: e.g., the random forest algorithm combines random decision trees with 

bagging to achieve very high classification accuracy [65,66]. 

(iv) Rotation forest, where every decision tree is trained by applying principal com-

ponent analysis (PCA) to a random subset of input features [57]. 

(v) We used ensemble bagged tree (EBT) based classification in this study. Bagging 

is considered highly accurate and the most efficient of ensemble approaches. 

Bagged decision trees can improve the performance of decision trees since they 
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aggregate the results of multiple decision trees. In a given data set, boot-

strapped subsamples are drawn, and a decision tree is established on each 

bootstrapped sample. The result of each decision tree is aggregated to yield a 

robust and accurate predictor [67,68]. 

3.2. Data Preparation and Pre-Selection of Gravel and Non-Gravel Sound Events 

First, the audio signal was extracted from the mp4 video files and stored in 

.wav format, which had a 44,100 Hz sampling frequency with 16-bit per sample. We 

applied audio pre-segmentation, which is generally the task of separating a contin-

uous audio stream into small audio portions, also called segments. The length of 

each segment was set to 5 s to provide the necessary information to perform the 

experiments. In the next step, all the audios were sorted into two classes labeled as 

gravel or non-gravel. We describe these audio groups as follows: 

3.2.1. Gravel Sound 

Gravel sound is an audio recording in which gravel hitting the bottom of the 

car is audible. These audio clips are obtained from gravel roads with conditions 

shown in images 1 and 2 of Table 1. 

3.2.2. Non-Gravel Sound 

Non-gravel sound is an audio recording in which gravel hitting the bottom of 

the car is either not audible or is audible once or twice. These recordings are pri-

marily obtained more from road-types 3 and 4 of Table 1. Therefore, we can say that 

these audio clips represent the same roads. 

Both gravel and non-gravel sounds were from audio recordings from gravel 

roads exclusively. Audio clips disturbed by non-static background noise, such as 

speech, environmental sounds, the sound of the car indicator, or the sound of the 

horn, were excluded. A sound recording was discarded whenever a gravel or non-

gravel acoustic could not be extracted from the original recording. Both of the clas-

ses consist of audio recordings from gravel roads only. In this study, 237 audio clips 

were used, comprising 133 gravel sounds (56%) and 104 non-gravel sounds (44%). 

Variants of supervised learning algorithms (SVMs, trees, ensemble algorithms) 

were trained for classification tasks. Feature extraction was done in the R statistical 

computing language [69]. All classification and visualization tasks were performed 

in the Matlab classification learner app, an interactive app, and provides an oppor-

tunity to test several classifiers with a graphical user interface (GUI). Because of its 

interactive GUI, Matlab was used to train and test. Feature extraction, training, and 

testing can also be completely done in R. 

3.3. Signal Processing and Feature Selection 

The audio data is by default in the time domain. It was converted to the fre-

quency domain by Fast Fourier Transform (FFT) to look for patterns [70]. Compu-

ting the Fast Fourier Transform (FFT) on the whole sound or a single section might 

not be informative enough. An intuitive solution is a Short-Time Fourier Transform 

(STFT) that computes the Discrete Fourier Transform (DFT) on subsequent sections 

along with the signal. 

A window is then sided along with the signal, and a DFT is calculated at each 

slide or jump [32]. STFT was performed on audio data in this study. One of the 

drawbacks of performing STFT is that it introduces artifacts such as side frequency 

lobes at the edges while sliding through the signal. A windowing function called 

the Hamming window was used for our data with a 50% overlap to avoid any spec-

tral leakages. The Hamming window is a taper formed by raised cosine with non-
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zero endpoints optimized to minimize the nearest side lobe, which provides a more 

accurate idea of the original signal’s frequency spectrum. 

Figure 5 below shows signals from both sound classes, i.e., gravel and non-

gravel, in the frequency domain. Most of the audio information exists within the 2 

kHz range as other non-speech audio. Amplitude differences can be seen between 

the two sample sounds. With audio of gravel, more frequencies with higher ampli-

tudes can be observed. 

  

(a) (b) 

Figure 5. Example of processing of the recorded signals. Sound signal of gravel (a) and non-gravel (b) in the fre-

quency domain. More high magnitude frequencies are observed in gravel sounds. 

We extracted 79 spectral/frequency domain features, such as spectral centroid, 

amplitude, harmonics-to-noise ratio, mean frequency, and peak frequency (mean, 

median, and standard deviation). 

A t-test was performed for dimensionality reduction of the features and for the 

selection of features that show a significant difference between the classes. Some of 

the features, having a significance value below the p-value 0.05, were selected for 

model training purposes. A response variable class (gravel, non-gravel) and 36 pre-

dictors were picked with a p-value below 0.05. Features with a p-value of greater 

than 0.05 were not selected in the classification process. 

Principal component analysis (PCA) was also tested for dimensionality reduc-

tion. With PCA, nine features were selected. These nine features achieved a classi-

fication accuracy of 56% to 58%. Hence, feature selection by the t-test was finally 

chosen. 

Ten-fold cross-validation was used to assess the accuracy of each model. This 

method partitions the data into ten subsets while maintaining the proportionality 

of each class. Nine subsets were used to train the models, and the tenth subset was 

used to test accuracy. This method was repeated until all the subsets were used as 

training and test sets. 

3.4. Classification of Audio Spectrograms Using Convolutional Neural Networks (CNN) 

In addition to investigating traditional supervised learning methods, we will 

also investigate loose gravel sound classification using Convolutional Neural Net-

work (CNN). This investigation will compare both methods. 

Gravel acoustics were converted to spectrogram images by Fast Fourier Trans-

form (FFT). A pre-trained network GoogLeNet was trained using these images with 

some fine-tuning to the network. GoogLeNet is a 22-layer deep convolutional neu-

ral network. It is a variant of the Inception Network, a deep convolutional neural 

network developed by researchers at Google [31,33]. We will discuss GoogLeNet 

later in this section. The details of the technologies are discussed in this section. 

Spectrograms 
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Sound waves are made up of high and low-pressure regions moving through 

a medium. Such pressure patterns make the sound distinguishable. These waves 

have characteristics such as wavelength, frequency, speed, and time. Machines can 

classify sounds based on such characteristics, just as humans do [70,71]. 

A spectrogram is a way to visualize a sound wave frequency spectrum when 

it varies over time. We can say it is a photograph of the frequency spectrum that 

shows intensities by varying colors or brightness. One way to create a spectrogram 

is through the use of FFT, a digital process. We have used this method to generate 

spectrograms in this study. Digitally sampled data in the time domain is broken 

into segments, usually using overlap and Fourier transformed data to calculate the 

magnitude of the frequency spectrum for each chunk. Each chunk corresponds to a 

vertical line in the spectrogram. These spectrums are laid side by side to form the 

image or three-dimensional surface with information of the time, frequency, and 

amplitude [72]. Amplitude is shown by using intensities of colors; brighter colors 

show higher frequencies of sound waves. Spectrograms of gravel and non-gravel 

sound are shown in Figure 6. 

  

Figure 6. Spectrogram images of non-gravel and gravel sound. 

Neural networks (NN) are inspired by the human brain. A neural network 

comprises many artificial neurons containing weights and biases. These networks 

learn feature presentation, thus eliminating the process of manual feature selection 

process [63]. The training process involves backpropagation to minimize a loss of 

function,  � = �(�, �, �)  through the tuning of parameters, �. A loss function is cal-

culated as the difference between observed and actual values. The cross-entropy 

loss function is often a choice in classification problems. The loss function is opti-

mized iteratively through the calculation of the gradient descent by learning rate. 

The learning rate is an important parameter; it is the rate at which the gradients of 

each neuron are updated. A higher learning rate can reach the goal quickly but risks 

reaching a local minima [73–77]. The goal of the loss function is to reach a global 

minimum acceptable value for the loss function. The most common optimizers are 

stochastic gradient descent and its variants. These networks are composed of con-

nected layers, each layer having many neurons. Deep neural networks (DNNs) are 

referred to as NNs with many layers. Multiple layers enable them to solve complex 

problems that their relatively shallow networks usually cannot solve . The network 

depth seems to contribute to the improved classification [78,79]. 

In several studies, CNNs classify spectrograms for musical onset detection, 

classification of acoustic scenes and events, emotion recognition, or identification of 

dangerous situations in underground car parking to activate an automatic alert 

from sound [80–84]. Convolutional neural networks (CNNs) have become popular 

in machine learning research. CNN’s are widely applied to visual recognition and 

audio analysis. CNN’s consist of specialized layers for feature extraction images 

called convolutional layers. Convolutional layers have filters to learn features such 
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as edges, circles, or textures. Each convolutional layer convolves the input and 

passes the result to the next layer, resulting in a complex feature map of the image 

[85]. 

One of the first CNNs was LeNet. It was used to recognize digits and charac-

ters. LeNet architecture includes two convolutional layers and two fully connected 

layers [86]. One reason for the success of CNNs is their ability to capture spatially 

local and hierarchical features from images. Later, a deeper CNN was proposed 

called AlexNet, which achieved record-breaking accuracy on the Imagenet large-

scale visual recognition challenge (ILSVRC-2010) classification task [87]. In addition 

to having increased depth, AlexNet also has a rectified linear unit (ReLU) as its ac-

tivation function and overlapping max pooling to downsample the features of the 

layers. 

Training CNNs requires a considerable amount of data and time, which in 

most cases are not available. Using a pre-trained network with transfer learning is 

typically much faster and easier than training a network from scratch. Pertained 

networks are CNNs with descriptors that are extracted by training on large sets. 

These descriptors from pre-trained networks can help in many visual recognition 

problems with high accuracy [88]. 

Many pre-trained networks are developed over time, such as a residual neural 

network (ResNet), AlexNet, GoogLeNet, FractalNet, VGG, etc. These networks are 

trained on different data sets and have variants depending on the number of layers 

in the architecture. Pre-trained networks are trained on millions of images from data 

sets that are publicly available. The training requires a considerable amount of com-

putational power and may take weeks of training depending on the network archi-

tecture’s complexity. By taking advantage of transfer learning from pre-trained net-

works, other classification problems can often be solved by fine-tuning pre-trained 

networks. Fine-tuning is the task of training and tweaking a pre-trained network 

with a small data set and fewer classes than the pre-trained network [89]. 

For this study, the dataset is considerably small (i.e., 237 spectrograms images) 

for training a network from scratch. We can still take advantage of pre-trained con-

volutional networks. Data augmentation is a technique used to artificially create 

new training data from existing training data [90]. We also used data augmentation 

techniques, such as image resize, horizontal flip, and random rotation. We increased 

the image data set four times with data augmentation and fed it to the CNN as four 

different sets of images. Each image's dimensions were 224 × 224 pixels, as it is the 

default input images size required by GoogLeNet. 

We used GoogLeNet for the classification of spectrograms of gravel acoustics. 

GoogLeNet or Inceptionv1 was proposed by Google research in collaboration with var-

ious universities. GoogLeNet architecture outperformed its counterpart in classification 

and detection challenges in the ImageNet Large-Scale Visual Recognition Challenge 

2014 (ILSVRC14). It provided a lower error rate than AlexNet, the previous winner of 

the challenge in 2012. GoogLeNet architecture consists of 22 layers. It introduced vari-

ous features such as 1 × 1 convolution and global average pooling that reduce the num-

ber of parameters and create a deeper architecture. GoogLeNet is a pre-trained network 

trained on the ImageNet dataset, comprising over 100,000 images across 1000 classes. 

The large data set of ImageNet contains abundant examples of a variety of images. Fea-

ture knowledge gained by GoogLeNet could be practical in the classification of the im-

ages of other data sets. In this study, we leverage this knowledge of GoogLeNet gained 

from training on larger data sets of images to help classify spectrograms of gravel au-

dios with a relatively small data set of 237 audio spectrograms. This method can help 

in achieving better results. More details about GoogLeNet architecture can be found in 

the paper in the following reference [91]. 

4. Results 
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We used both classical machine learning algorithms and convolutional neural 

networks (CNN) for classification purposes. In this section, we discuss the results 

from both methods. 

4.1. Results from Supervised Learning 

The extracted audio recording consists of the sound of gravel hitting the bot-

tom of the vehicle. Data sets of extracted audios were labeled gravel and non-gravel 

sounds. Features were extracted and saved into a .csv file and were analyzed by t-

test. Features that had significant differences between the classes were selected for 

training. Selected features were fed for training and classifications to the classifiers. 

Classification results by different classifiers are presented in Table 4, which 

shows the accuracy of the algorithms used. Accuracy can easily be defined as 

Accuracy =  
�� � ��

�� � �� � �� � ��
, where TP is the true positive rate, and TN is the true 

negative rate (TN = 1 − FP) [80]. Ensemble bagged trees (EBT) outperform all other 

algorithms with 97% accuracy. Accuracy is the number of correct predictions made 

divided by the total number of predictions made, multiplied by 100 to turn it into a 

percentage. EBT also performs better than others in classifying both positive and 

negative classes, i.e., it has an accuracy of 99% in classifying gravel class and 94% 

for non-gravel sounds, as shown in Figure 7. In EBT, the misclassification of non-

gravel is almost five times greater than that of gravel audio, but still, the classifica-

tion rate is incredible. This misclassification could result from some non-gravel au-

dio having few gravel-hitting sounds that could be classified as gravel sounds. 

Table 4. Accuracy of various algorithms used in this study for the classification of gravel and 

non-gravel sounds. 

Model Accuracy (%) 

Decision Trees 

Fine Tree 93.2 

Medium Tree 93.2 

Coarse Tree 92.4 

Support Vector Machine 

Linear SVM 92.8 

Quadratic SVM 93.7 

Cubic SVM 92.8 

Medium Gaussian SVM 93.2 

Coarse Gaussian SVM 91.1 

Ensemble Classification 

Boosted Tree 95 

Bagged Tree 97 

RUSBoosted Tree 90.3 

Convolutional neural network (CNN) 97.91 
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Figure 7. Classification performance of the classical algorithm. The figure shows the true pos-

itive rate of detection of both classes. EBT outperforms all the other algorithms in classifying 

instances of both classes. 

Quadratic SVM performed the best in the SVM group, and fine trees performed 

with almost the same accuracy. Figure 7 shows a comparison of the performance of 

algorithms and presents the true positive detection rate of all the classifiers/algo-

rithms for both gravel and non-gravel. A true positive is an outcome where the 

model correctly predicts the positive class. Similarly, a false positive is an outcome 

where the model incorrectly predicts the positive class. 

4.2. Results from CNN 

The use of the convolution layers helps avoid the feature extraction process 

necessary for classical ML algorithms. However, these still require a lot of data to 

avoid over-fitting. When the training data is scarce, alternative methods are needed. 

Transfer learning is a machine learning technique that transfers knowledge learned 

from a source domain to a target domain [77]. It is an advantageous method to avoid 

over-fitting when the task-related data is small. There have been successful attempts 

in the literature to apply transfer learning in classification tasks [89]. We also em-

ploy transfer learning to train our CNN. Spectrograms of audio data were generated 

for both classes of gravel and non-gravel sounds. Data augmentation techniques 

such as random horizontal flip, random rotation, and resize were applied to the 

data set. After each augmentation technique is applied, a new set of images is cre-

ated to be submitted to CNN [92]. It improved the performance in terms of accuracy 

of the pre-trained CNN, in this case, GoogLeNet. The accuracy achieved was 97.91% 

using GoogLeNet pre-trained network, as visualized in Figure 8. Changes were 

made to the last fully connected layer of the pre-trained architecture to classify only 

two classes in our case, i.e., the gravel and non-gravel. The network was trained for 

100 epochs with a learning rate of 1 × 10−3. Decreasing the learning rate also im-

proved the accuracy. Figure 8 shows that the architecture showed some overfitting 

at the beginning of the training process, but after 20 epochs, the accuracy became 

stable. Using convolutional networks also shows good accuracy as supervised 

learning algorithms. The benefit of using CNN for classification in this case and in 

general is that the neural network is responsible for extracting and selecting appro-

priate features for training the CNN for classification, making the process simpler 

and more efficient. 
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GoogLeNet—Training and validation accuracy GoogLeNet—Training and validation loss 

  

Figure 8. Training and validation accuracy and loss plots obtained from CNN. 

In terms of computational cost, classical methods were trained on core i5, and 

it took around 40 s for the training and testing of each algorithm. In addition, the 

feature extraction process took 30 min. A better machine would cut this time signif-

icantly. GoogLeNet was trained on Google Colaboratory with graphical user inter-

face (GPU) Nvidia K80/T4 to avoid hours of training on the same machine. It took 

around 30 min to get training and validation results. Google Colaboratory is a cloud 

disseminating machine learning and research service. It lets the users use GPU/TPU 

through cloud services. The run time of Google lab is configured with artificial in-

telligence (AI) libraries. The service is linked to google drive [93]. CNN is more com-

putationally expensive than EBT or other algorithms. On the other hand, the benefit 

of using CNN over the other algorithms used in the study would be that it takes 

care of feature extraction and feature selection processes. Any of the methods of 

EBT or CNN can be used depending on the availability of computational resources. 

5. Conclusions, Limitations, and Future Work 

A great deal of literature includes studies on road condition monitoring sys-

tems and primarily focuses on paved roads. Gravel road condition assessments also 

need to be considered. In automated systems, road condition distresses are mainly 

identified by images or accelerometer data. However, applications using acoustic 

data have not been comprehensively explored. This study shows that an objective 

assessment of gravel roads for loose gravel through acoustic data is promising. 

Acoustic signals collected by driving on gravel roads render valuable information 

about road conditions when the loose gravel parameter is considered. Moreover, 

this can be achieved by cost-efficient methods involving acoustic sensor/mic of sim-

ple equipment such as a camera or other portable recording device. 

Applications with such machine models can classify gravel sounds. These clas-

sification results can be visualized on gravel roads on maps to show the extent of 

loose gravel along the gravel roads. Citizens can also use such applications to share 

real-time data and plan their trips. They can know the road conditions in advance. 

People frequently using gravel roads may be interested in such applications and 

can provide data of longer length by just using the app on their drive. These appli-

cations can also help maintenance agencies have real-time data and plan for timely 

and defect-specific road maintenance plans. 

Both supervised learning and CNN were used, and results were compared for 

this study. In classical algorithms, ensemble bagged tree-based classifiers perform 

best for classifying gravel and non-gravel sounds among various classifiers. EBT 

performance is good in reducing the misclassification of non-gravel sounds. The use 

of CNNs also showed 97.91%. Using CNN makes the classification process more 

intuitive as the network architecture takes the responsibility of selecting relevant 

training features. The classification results can be visualized on road maps, which 
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can help road monitoring agencies assess road conditions and plan road mainte-

nance activities for a particular road. 

The gravel sounds were easily detected when the vehicle was driven outside 

the tracks or ruts on the loose gravel. For accurate recordings of gravel audio, driv-

ing outside the tracks during data collection is to be recommended. 

In this study, one limitation is that all the recordings were made using one ve-

hicle, a Volkswagen Passat GTE. Other vehicles might produce more or less engine 

sound, and as such, the results might vary. Therefore, the addition of more record-

ings from different vehicles will most likely provide deeper insight into how the 

proposed system detects gravel sounds for audio recording from other vehicles. As 

a continuation of this work, research will be conducted using machine vision to 

classify loose gravel by applying deep neural networks. A fusion of video and 

sound data could be researched for better results. This method can be used on 

gravel roads in countries with similar terrain and weather conditions as Sweden. 
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