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Abstract: The automation of lifespan assays with C. elegans in standard Petri dishes is a challenging
problem because there are several problems hindering detection such as occlusions at the plate edges,
dirt accumulation, and worm aggregations. Moreover, determining whether a worm is alive or dead
can be complex as they barely move during the last few days of their lives. This paper proposes
a method combining traditional computer vision techniques with a live/dead C. elegans classifier
based on convolutional and recurrent neural networks from low-resolution image sequences. In
addition to proposing a new method to automate lifespan, the use of data augmentation techniques
is proposed to train the network in the absence of large numbers of samples. The proposed method
achieved small error rates (3.54% ± 1.30% per plate) with respect to the manual curve, demonstrating
its feasibility.

Keywords: C. elegans; lifespan automation; deep learning; computer vision

1. Introduction

In recent decades, the nematode Caenorhabditis elegans (C. elegans) has emerged as
a biological model for the study of neurodegenerative diseases and ageing. Their size
(approximately 1 mm in length) enables their cultivation and handling in standard Petri
dishes in a cost-effective way, and their transparent body makes it possible to observe their
organs and tissues under a microscope. The complete sequence of the C. elegans genome,
which is similar to that of humans, has been known since 1998 [1]; moreover, its short
lifespan (2 to 3 weeks) allows trials to be run in a short time period.

All these characteristics make this nematode an ideal model for the study of ageing.
Among the assays performed with C. elegans to study ageing, one of the most outstanding
is the lifespan assay [2], which consists of counting live nematodes on test plates periodi-
cally [3]. The experiment starts from the beginning of adulthood and ends when the last
nematode dies. Using this count, survival curves are created, representing the survival
percentage of the population each day. In this way, the different factors affecting life
expectancy can be compared and contrasted.

In general, survival is determined by whether movement is observed (alive) or not
(dead). However, in the last days of the experiment, C. elegans become stationary and only
make small head or tail movements. Therefore, it is necessary to touch the body of the
nematode with a platinum wire to check whether there is a response.

Today, in many laboratories, time-consuming and laborious handling and monitoring
tasks are performed manually. Automation is, therefore, an attractive proposition, saving
time, providing constant monitoring, and obtaining more accurate measurements.

Automatic monitoring of C. elegans cultured in standard Petri dishes is a complex task
due to (1) the great variety of forms or poses these nematodes can adopt, (2) the problem of
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dirt and condensation on the plate, which requires the use of special methods, and (3) the
problem of aggregation of several C. elegans, which requires specific detection techniques.

Furthermore, discriminating between dead and live worms presents difficulties as
they hardly move in the last few days of their lives, requiring greater precision, longer
monitoring times to confirm death and, therefore, higher computational and memory costs.

In the literature [4], major contributions can be found that have proposed solutions
to the problem of automating lifespan experiments with C. elegans. Some outstanding
examples are given below. WormScan [5] was one of the first works to use scanners to
monitor C. elegans experiments and determine whether a nematode is alive or dead on
the basis of its movement; Lifespan Machine [6] also monitors petri dishes with scanners
but with improved optics and systems to control the heat generated by the scanners. In
addition, the authors developed their own software to determine whether nematodes
are alive or dead. To classify dead worms, they identified stationary worms and track
small posture changes to determine the time of death. WorMotel [7] uses specific plates
with multiple microfabricated wells, thus allowing individual nematodes to be analysed
and avoiding the problem of aggregation. Automated Wormscan [8] takes the WormScan
method and makes it fully automatic. WormBot [9] is a robotic system that allows semi-
automatic lifespan analysis. Lastly, a method based on vibration to stimulate C. elegans in
Petri plates, to confirm whether worms are dead or alive, was proposed in [10].

These methods use traditional computer vision techniques that require feature design
and manual adjustment of numerous parameters. In recent years, the rise of deep learning
has led to breakthroughs in computer vision tasks such as object detection, classification,
and segmentation [11–13]. There has been a shift from a feature design paradigm to one of
automatic feature extraction.

To date, no studies have reported automated lifespan assays with C. elegans using
artificial neural networks. However, there has been an increase in the number of stud-
ies using machine learning and deep learning to solve other problems related to these
nematodes. For example, a C. elegans trajectory generator using a long short-term mem-
ory (LSTM) was proposed in [14]. WorMachine [15] is a tool that uses machine learning
techniques for the identification, sex classification, and extraction of different phenotypes
of C. elegans. A support vector machine (SVM) was used for the automatic detection of
C. elegans via a smartphone app in [16]. A method that classifies different strains of C.
elegans using convolutional neural networks (CNN) was presented in [17]. Methods based
on neural networks have also been proposed for head and tail localisation [18] and pose
estimation [19–21]. Recently, [22,23] used different convolutional neural network models to
estimate the physiological age of C. elegans. A method for the identification and detection
of C. elegans based on Faster R-CNN was proposed in [24]. Lastly, [25] developed a CNN
that classifies young adult worms into short-lived and long-lived. They also used this CNN
to classify worm movement.

This article proposes a method using simple computer vision techniques and neural
networks to automate lifespan assays. Specifically, it is a classifier that determines whether
a C. elegans is alive or dead by analysing a sequence of images. The architecture combines
a pretrained convolutional neural network (Resnet18) with a recurrent LSTM network.
In addition to proposing a method to automate lifespan, the use of data augmentation
techniques (mainly based on a simulator) has been proposed to train the network despite
the lack of a large number of samples. Our method obtained 91% accuracy in classifying C.
elegans image sequences as alive or dead from our validation dataset.

After training and validating the classifier, this method was tested by automatically
counting C. elegans on several real lifespan plates, slightly improving the results of an
automatic method based purely on traditional computer vision techniques.

The article is structured as follows: the proposed method is presented in Section 2, the
experiments are reported in Section 3, and the results are discussed in Section 4.
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2. Materials and Methods
2.1. C. elegans Strains and Culture Conditions (Lifespan Assay Protocol)

The Caenorhabditis Genetics Centre at the University of Minnesota provided the C.
elegans of the strains N2, Bristol (wild-type), and CB1370, daf-2 (e1370) that were used to
perform the lifespan assays.

All worms were age-synchronised and pipetted onto Nematode Growth Medium
(NGM) in 55 mm Petri plates. Temperature was maintained at 20 ◦C. In order to reduce the
probability of reproduction, FUdR (0.2 mM) was added to the plates.

Fungizone was added to reduce fungal contamination [26]. As a standard diet, strain
OP50 of Escherichia coli was used, which was seeded in the middle of the plate as worms
tend to stay on the lawn, thus avoiding occluded wall zones.

The procedure followed by the laboratory operator on every day of the assay was as
follows: (1) He removed the plates from the incubator and placed them in the acquisition
system; (2) before starting the capture, he made sure that there was no condensation on the
lid and removed it if detected; (3) he captured a sequence of 30 images per plate at 1 fps
and returned the plates to the incubator. This reduced the time that the plates were out of
the incubator prevented condensation on the lid. In addition, the room temperature was
maintained at 20 ◦C to prevent condensation.

2.2. Automated Lifespan Algorithm Based on Traditional Computer Vision Techniques

To develop the new method proposed in this article, we took as a starting point the
automatic lifespan method based on traditional computer vision techniques proposed
in [27]. Parts of this method were taken, such as segmentation, motion detection in the
edge zone of the plate, and postprocessing. In addition, this method was used as a baseline
to compare the accuracy of the new method in obtaining the lifespan curves.

2.3. Proposed Automatic Lifespan Method

The problem of counting the number of live C. elegans within a plate, applying deep
learning directly from plate image sequences, is a very interesting regression problem.
However, neural networks require a dataset with a lot of data to feed the learning process
of its millions of parameters. Considering the high cost of obtaining a labelled dataset from
these image sequences, traditional computer vision techniques are proposed to simplify
the problem to be solved by the neural network to a classification problem.

The proposed method solves the problem of classifying whether a C. elegans is alive or
dead from a sequence of C. elegans images. This approach requires processing the image
sequences from the plate, using traditional computer vision techniques to extract the image
sequence of each C. elegans, which is the input to the classifier. Moreover, a cascade classifier
is proposed. Initially, trivial cases of live C. elegans are detected using traditional motion
detection techniques, leaving the solution of the classification problem where live C. elegans
sequences look more similar to dead sequences as a final step for the neural network.

Figure 1 shows the stages of the proposed lifespan automation method. Firstly
(Figure 1a), the image sequence is captured using the intelligent light system proposed
in [28]. Secondly, the image sequences are processed to obtain the images for the classifier
input. Then, the classifier (Figure 1b), which consists of two stages (initial detection of live
C. elegans and alive/dead classification using a neural network) obtains the number of live
and dead C. elegans. Then, a post-processing filter is applied to this result as described
in [27], in order to correct the counting errors that may occur due to different factors
(occlusions, segmentation errors due to the presence of opaque particles in the medium or
the plate lid, decomposition) and, thus, finally obtain the lifespan curve (Figure 1c).
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A Raspberry Pi 3 was used as a processor to control lighting. The distance between the 
camera and the Petri plate was sufficient to enable a complete picture of the Petri plate, 
and the camera lens was focused at this distance (about 77 mm). 

With this image capture and resolution setting (1944 × 1944 pixels), the worm size 
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Figure 1. General overview of the proposed method: (a) capture and processing; (b) classification; (c) obtaining lifespan
curve and postprocessing.

2.4. Image Acquisition Method

Images were captured using the monitoring system developed in [29]. This system
uses the active backlight illumination method proposed in [28], which consists of plac-
ing an RGB Raspberry Pi camera v1.3 (OmniVision OV5647, which has a resolution of
2592 × 1944 pixels, a pixel size of 1.4 × 1.4 µm, a view field of 53.50◦ × 41.41◦, optical size
of 1/4′ ′, and focal ratio of 2.9) in front of the lighting system (a 7′ ′ Raspberry Pi display
800 × 480 at a resolution at 60 fps, 24 bit RGB colour) and the inspected plate in between.
A Raspberry Pi 3 was used as a processor to control lighting. The distance between the
camera and the Petri plate was sufficient to enable a complete picture of the Petri plate,
and the camera lens was focused at this distance (about 77 mm).

With this image capture and resolution setting (1944 × 1944 pixels), the worm size
projects approximately 55 × 3 pixels. Although working under these resolution conditions
makes the problem more difficult, it has advantages in terms of computational time and
memory.

2.5. Processing

The images captured by the system used have two clearly differentiated zones; on
the one hand, there is the central zone, which has homogeneous illumination, and, on the
other hand, there is the wall zone, which has dark areas and noisy pixels. For this reason,
these areas are processed independently using the techniques described in [27].

The central zone (white circle delimited by the orange circumference in Figure 2) was
processed at the worm tracking level (segmentation in red, Figure 2), finally obtaining the
centroids of the C. elegans in the last of the 30 images making up the daily sequence.

In the wall zone, this tracking is impossible due to the presence of dark areas; however,
the capture system generates well-illuminated white rings that allow the characteristic
movements of C. elegans to be partially detected.

Our alive/dead criterion considers a worm to be dead when it remains in the same
position and posture for more than 1 day. One way to analyse whether a nematode is alive
is to compare the image of the current day with the image of the day before and the day
after. Thus, by simply analysing a sequence of three images, it is possible to determine
whether the worm is alive or dead.
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The size of the sub-images was chosen taking into account that the maximum length
of a C. elegans is approximately 55 pixels. In addition, the small displacements and rotations
of the plate that occur when lab technicians place it in the acquisition system each day were
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also taken into account. These displacements are limited because the capture device has
a system for fixing the plates. Measurements were taken experimentally to estimate the
possible small displacements, obtaining a maximum displacement of 15 pixels.

The problem of plate displacements can be addressed using traditional techniques;
however, achieving an alignment that works for all sequences is complicated due to
potential variability of noise, illumination changes, and aggregation. For this reason, we
decided not to perform alignments, but to increase the sub-image size to ensure that it
appears completely within the three sub-images if the C. elegans is stationary.

Therefore, taking into account the maximum worm length, the maximum estimated
displacement of the plate, and a safety margin of 10 pixels, the final size of the sub-images
was 80 × 80 pixels, as shown in Figure 3.

2.6. Classification Method

From these input sequences, various approaches using traditional computer vision
techniques can be considered to determine whether a C. elegans is alive or dead. These
traditional methods require image alignment and feature design to identify the worm in
cases of aggregation or fusion with opaque particles (for example, dust spots on lids) that
cause segmentation errors. In addition, C. elegans perform small head or tail movements in
the last few days, which are difficult to detect.

Our approach was based on using a two-stage cascade classifier. The aim of this
cascade processing was to first classify the sequences that are clearly from live C. elegans
and let the network decide which cases cannot be determined by the simple motion
detection rules.

In the first stage, information from the wall zone was processed, and live C. elegans
in this zone were estimated using simple motion detection methods. Conversely, in the
central zone, sequences of live worms in which C. elegans did not appear in any of the
images or moved substantially were detected using simple rules.

The remaining more complex cases (stationary C. elegans or with little displacement;
images with noise (opaque particles causing segmentation errors)), which would require
more advanced techniques and were difficult to adjust, went on to the second stage, which
used a neural network to classify these cases as alive or dead.

2.7. Initial Detection of Live Worms

At this stage, the inputs of the different plate areas (centre and wall) were processed
separately.

The wall zone was processed using the motion detection algorithm described in [27].
The irregular lighting conditions in this area made it necessary to apply movement detection
techniques based on temporal analysis of changes in the segmented images. A movement
was considered to correspond to C. elegans if the intensity changes of the pixels occurred
with low frequency and exceeded an area threshold.

For the central zone, the initial detection algorithm analysed each sequence and, in
each of the frames, found all the blobs that met a chosen minimum area, taking into account
the minimum area that a C. elegans can have (area 20 pixels).

In the images for the current day, C. elegans was always found centred in the sub-image
(except when there were segmentation errors); thus, it was easy to identify the blob and
obtain its centroid. In the remaining frames, the system detected the blobs whose centroid
was at a distance from the centroid of the blob of the central frame (current day) of less
than a threshold of 20 pixels. This threshold was chosen taking into account the plate
displacements (estimated at 15 pixels and with a safety margin of 5).

After obtaining the centroids of the blobs (if any) fulfilling the distance constraint,
a first classification (live sequences or sequences to be processed by the neural network)
was performed, taking into account the following logic: (1) if, in frame 1 (previous day)
or in frame 3 (later day), no blob was found meeting the minimum area and distance
to the centre constraints, it signified that the C. elegans moved more than the maximum
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distance (Figure 4a) or was not in the image (Figure 4c) and, therefore, it could be assured
that it corresponded to a live worm; (2) otherwise, it may not have moved in any of the
three images or it may have made small displacements (Figure 4b) or it may have fused
with noise, producing a segmentation error (Figure 4d) causing non-C. elegans blobs to be
detected.
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With this simple processing method, the first stage classified the live C. elegans in
the wall zone and the live C. elegans in the central zone, being easily detectable following
simple rules. The remaining stationary C. elegans and images with noise, which were more
complex to classify using traditional techniques, went on to the next classification stage
with a neural network.

2.8. Alive/Dead Classification with the Neural Network

One of the most common approaches to designing neural network architectures for
image sequence analysis is to combine convolutional neural networks with recurrent
networks [30]. In this case, the convolutional network does the feature extraction and the
recurrent network processes the temporal dynamics.

Based on this technique, we decided to employ an architecture using a pretrained
convolutional network (Resnet18) as feature extractor, combined with a recurrent network
(LSTM) and a fully connected layer to perform the classification.

The Pytorch implementation of the Resnet18 [31] was used as a pretrained convo-
lutional network, by removing the last fully connected layer. Thus, at the output of the
convolutional network, a feature vector of size 512 was obtained for each input channel
to the network. For initialisation, we started from the pretrained weights in the Imagenet
dataset, which contained 1.2 million images of 1000 classes. Nevertheless, these weights
were not fixed, but the network was completely retrained. The unidirectional LSTM net-
work employed had a single layer and a hidden size of 256. Lastly, the features extracted
by the LSTM were passed to a fully connected layer for classification. A schematic repre-
sentation of the architecture used is shown in Figure 5 and details of the different layers
are given in Table 1.
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Table 1. Resnet18-LSTM architecture used. The output size shows the size of the feature maps and
the details of the resnet layers show the filter size, number of feature maps, and number of block
repetitions.

Layer Name Output Size Layer Details

conv1 [Batch_size × seq_length, 64, 112 × 112] 7 × 7, 64, stride 2
maxpool [Batch_size × seq_length, 64, 56 × 56] 3 × 3, stride 2

layer1 [Batch_size × seq_length, 64, 56 × 56]
[

3× 3, 64
3× 3, 64

]
×2

layer2 [Batch_size × seq_length, 128, 28 × 28]
[

3× 3, 128
3× 3, 128

]
× 2

layer3 [Batch_size × seq_length, 256, 14 × 14]
[

3× 3, 256
3× 3, 256

]
×2

layer4 [Batch_size × seq_length, 512, 7 × 7]
[

3× 3, 512
3× 3, 512

]
× 2

av pool [Batch_size × seq_length, 512, 1 × 1] -

LSTM [Batch_size, seq_length, 256] In_features = 512
Hidden size = 256

linear [Batch_size, 2] In_features = 256
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softmax [Batch_size, 2] -

We created a repository on github: https://github.com/AntonioGarciaGarvi/C.-ele
gans-alive-dead-classification-using-deep-learning (accessed on 19 July 2021) with a demo
to show some examples of how our model classifies a C. elegans as alive or dead using a
sequence of three images corresponding to the current day, the day before, and the day
after.

https://github.com/AntonioGarciaGarvi/C.-elegans-alive-dead-classification-using-deep-learning
https://github.com/AntonioGarciaGarvi/C.-elegans-alive-dead-classification-using-deep-learning
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2.9. Dataset

The original dataset was obtained from images captured from 108 real assay plates
containing 10–15 nematodes each using the acquisition method described.

To carry out labelling (Figure 6), the sequence of 30 images was first visualised,
and possible C. elegans were identified. Depending on whether they met the nematode
characteristics (colour, length, width, and sinusoidal movement), they were analysed in
detail. If the C. elegans moved during the 30-image sequence, it was labelled as alive.
If not, it was checked whether it was in the same position and posture on the previous
and subsequent days. If no variation was observed, it was labelled as dead; otherwise, it
was labelled as alive. As can be seen, this procedure is very laborious; hence, the cost of
generating a labelled dataset is high.
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Table 2. Number of sequences of each class (alive/dead) in the original dataset.

Alive Dead

5696 847

This dataset, as demonstrated in the experiments and results section, was insufficient
for the neural network to learn to solve the proposed classification task. To solve this
drawback, different types of synthetic images were generated to increase the size of the
dataset. This work experimentally demonstrated that this increase in data helped to
improve the results.

The first types of synthetic sequences were generated with a C. elegans trajectory
simulator (Figure 7). This simulator is based on the following components: (a) set of real
images of empty Petri dishes; (b) real C. elegans trajectories obtained with a tracker stored in
xml files; (c) colour and width features obtained from real images; (d) random positioning
algorithm of the trajectories within the dish; (e) static noise generator similar to the one
appearing in the original sequences.
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As parameters, the simulator received the number of sequences to be generated, the
number of C. elegans per plate, and the speed of the movement (variation between poses).
To make the network learn to detect small differences between poses, the sequences that
were generated had small pose changes between the previous day’s pose and the current
pose, whereas the subsequent day’s was is the same as the current day’s pose. In addition,
static blobs were added to these images, which also helped the network to distinguish C.
elegans from other dark blobs which may appear in the image. Lastly, small rotations and
translations were applied to the images to simulate the displacements occurring when the
real plates were placed in the acquisition system. This simulator allowed us to obtain the
number of sequences shown in Table 3.

Table 3. Number of synthetic sequences of each class (alive/dead) generated with the simulator.

Alive Dead

11,220 11,220

As shown in Table 2, the number of dead C. elegans sequences was significantly lower
than the number of live C. elegans. This is because there could only be one sequence for
each dead C. elegans, whereas, for the live sequence, there was the whole lifespan. To train
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the classifier, the number of samples in each class must be balanced; therefore, a large part
of the alive C. elegans sequences could not be used to train the network.

In order to take advantage of these remaining sequences, a second type of synthetic
image was designed. These consisted of replicating the image of a C. elegans, thus obtaining
a sequence of three images in which there was no movement or change in posture (dead
C. elegans sequence). Small translations and rotations were applied between frames to
simulate plate placement shifts.

2.10. Neural Network Training Method

The network was implemented and trained using the Pytorch deep learning frame-
work [32] on a computer with an Intel® Core™ i7-7700K processor and NVidia GeForce
GTX 1070 Ti graphics card. The network was trained for 130 epochs using the cross-entropy
loss cost function and Adam’s optimiser [33] with a learning rate of 0.0001 for 120 epochs
and 0.00001 for the last 10 epochs. The batch size chosen was 64 samples taking into account
memory constraints. As a regularisation and data augmentation technique, rotations (90◦,
180◦, and 270◦) were used. The original images were resized to 224 × 224 pixels using
bilinear interpolation to adapt them to the resnet input.

2.11. Postprocessing

As discussed above, there are different situations (occlusions, dirt, decomposition,
reproduction, and aggregation) that can lead to errors in the daily live count of the lifespan
curve. To alleviate these problems, the postprocessing algorithm proposed in [27] was em-
ployed. This algorithm is based on the premise that lifespan curves must be monotonically
decreasing functions and, therefore, errors can be detected if the current day’s count is
higher than the previous day’s count.

This correction takes into account that in the first days the errors are most likely to be
false negatives due to worm occlusions at the edge and aggregations, whereas, in the last
days, the errors are mostly likely due to false positives caused by plate dirt.

In this way, the lifespan cycle was divided into two periods. This division was made
on the basis of the mean life, which was usually 14 days for the N2 strain. In the first cycle,
the curves were corrected upwards, i.e., if the current day’s count was higher than the
previous day’s count, the previous day’s count was changed to the current value. In the
second cycle, they were corrected downwards, i.e., the current day’s count was decreased
to the previous day’s value if it was lower.

2.12. Validation Method

To evaluate the proposed method, the available dataset was classified using the
following validation metrics:

• The confusion matrix (Table 4), showing the number of correct and wrong predictions
during model validation for each of the classes.

Table 4. Confusion matrix for our model.

Label Prediction Dead Prediction Alive

dead TD FA
alive FD TA

TD represents the actual (true) dead worms, FA represents the false live worms, FD
represents the false dead worms, and TA represents the actual (true) live worms.

• The hit ratio (Equations (1) and (2)), which measure the percentage of correct predic-
tions for a class out of all samples in that class.

True dead rate =
TD

TD + FA
(1)
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True live rate =
TA

TA + FD
(2)

After evaluating the classification method, the error in the lifespan curves was tested
by calculating the error between the percentage survival of the manual count and the
automatic count. In addition, the results obtained were compared with those of the
traditional automatic computer vision algorithm used as a reference.

The percentage of live C. elegans on each day of the experiment was calculated using
Equation (3). The error in one day (e (d)) was the difference in absolute value between
the percentage of live C. elegans from the manual curve and the curve from the automatic
method (Equation (4)). The error per plate was the average of the errors over the days of
the experiment (Equation (5)).

% live C. elegans =
live C. elegans current day

initial live C. elegans
×100 (3)

e(d) =
∣∣∣% live_manual(d) − % live_automatic(d)

∣∣∣ (4)

ep =
∑

days
d=1 e (d)

days
(5)

The error per condition was calculated analogously, by adding up the count of all the
plates for that condition, calculating the survival rates, and averaging the absolute value of
the errors for each day.

3. Results
3.1. Initial Classification of the Original Dataset

First, the sequences of the original dataset (Table 2) were processed with the initial
detection algorithm (first stage of the classifier).

As Table 5 shows, 81.18% of the live C. elegans image sequences were classified by the
initial detection algorithm as a trivial live case. The remaining 18.82% were determined
by the initial detection algorithm to be C. elegans sequences to be classified by the neural
network. In the case of dead C. elegans, 1.65% of cases were misclassified.

Table 5. Results obtained by applying the initial detection algorithm to the original dataset.

Label Prediction Stationary/Noisy Prediction Alive

dead 833 14
alive 1072 4624

The sequences that were not classified as alive by the first stage of the classifier were
those used to build the training and validation dataset (Table 6) of the neural network.

Table 6. Size of the original training and validation datasets.

Dataset Sequences

Training 666
Validation 1000

3.2. Analysis of the NN Classifier Using Different Datasets

In this experiment, the described network was trained using (a) an original training
dataset taken from the original sequences that were not classified as alive in the previous
stage (1072 live sequences and 833 dead sequences), (b) a dataset generated with the
simulator (Table 3), and (c) a mixed dataset, consisting of the original images, those
generated by the simulator, and those generated by replicating images of live C. elegans.
However, all models were evaluated using the original validation dataset.
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Since the number of sequences from each class had to be balanced, 833 sequences from
each class could be used, leaving 239 live sequences unused.

To build the original training and validation dataset (Table 6), it was considered that
at least a validation sample of 1000 sequences, i.e., 500 of each class, should be available.
Therefore, 333 images of each class remained to train the neural network.

The mixed dataset (Table 7) was formed using the images from the simulated dataset,
images from the original dataset, the original live images that were not used in order to
keep the dataset balanced (239), and the same number of dead images generated from the
live images.

Table 7. Mixed dataset.

Dataset Live Worm Sequences Dead Worm Sequences

Original 572 333
Simulated 11,220 11,220
Replicated - 239

Total 11,792 11,792

The results obtained (Table 8) when evaluating the different models with the original
validation dataset showed how using synthetic data improved the results by 10.40% and
how mixing original and synthetic data further increased the hit rates.

Table 8. Comparison of model accuracy when trained with different datasets and validated with the
original validation set.

Training
Dataset

Training
Size

Validation
True Dead

Rate

Validation
True Live

Rate
Mean Improvement

Original 666 78.60% 65.40% 72.00% -
Simulated 22,440 81.40% 83.40% 82.40% 10.40%

Mixed 23,584 86.00% 85.20% 85.60% 3.20%

Table 9 shows the confusion matrix obtained by validating the model trained with the
mixed dataset with the original dataset.

Table 9. Confusion matrix of the validation sequences classified by the neural network with the
model trained with a mixed dataset.

Label Prediction Dead Prediction Alive

Dead 430 70
Alive 74 426

3.3. Overall Accuracy Analysis of the Cascade Classifier

The confusion matrix of all C. elegans sequences classified by the proposed method,
i.e., live C. elegans classified at the initial detection stage (4624), and live and dead C. elegans
from the validation dataset classified by the network, is shown below (Table 10). The hit
ratio is shown in Table 11.

Table 10. Total confusion matrix.

Label Prediction Dead Prediction Alive

Dead 430 84
Alive 74 5050
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Table 11. Final results of the full classification method with the validation data.

True Dead Rate True Live Rate Mean

83.66% 98.56% 91.11%

3.4. Validation of the Lifespan Method

In order to properly validate the automatic lifespan method, it was not enough to
analyse the hit ratio of the classifier; indeed, it was necessary to measure the final error on
the lifespan curves.

For this purpose, a lifespan assay was performed with eight plates following the
culture and acquisition procedures described in this article. These plates were independent
of the data used in the training and validation of the classification method. Each plate had
between nine and 20 C. elegans of the N2 strain, for a total of n = 111.

The manual count performed following the labelling method described above was
taken as ground truth. In addition to comparing the results of the proposed method with
the manual results, it was compared with the automatic method proposed in [27] to obtain
a comparison with another lifespan automation method.

The curve obtained with the proposed method showed an average error in the analysis
per plate of 3.54% ± 1.30%, while the traditional algorithm obtained 3.82% ± 1.76%. In the
analysis of the error per condition (Figure 8), an average error was obtained on each day of
2.30% ± 2.31%, compared to 3.20% ± 3.96% for the traditional algorithm.

Sensors 2021, 21, 4943 14 of 17 
 

 

3.3. Overall Accuracy Analysis of the Cascade Classifier 
The confusion matrix of all C. elegans sequences classified by the proposed method, 

i.e., live C. elegans classified at the initial detection stage (4624), and live and dead C. elegans 
from the validation dataset classified by the network, is shown below (Table 10). The hit 
ratio is shown in Table 11. 

Table 10. Total confusion matrix. 

Label Prediction Dead Prediction Alive 
Dead 430 84 
Alive 74 5050 

Table 11. Final results of the full classification method with the validation data. 

True Dead Rate True Live Rate Mean 
83.66% 98.56% 91.11% 

3.4. Validation of the Lifespan Method 
In order to properly validate the automatic lifespan method, it was not enough to 

analyse the hit ratio of the classifier; indeed, it was necessary to measure the final error on 
the lifespan curves. 

For this purpose, a lifespan assay was performed with eight plates following the cul-
ture and acquisition procedures described in this article. These plates were independent 
of the data used in the training and validation of the classification method. Each plate had 
between nine and 20 C. elegans of the N2 strain, for a total of n = 111. 

The manual count performed following the labelling method described above was 
taken as ground truth. In addition to comparing the results of the proposed method with 
the manual results, it was compared with the automatic method proposed in [27] to obtain 
a comparison with another lifespan automation method. 

The curve obtained with the proposed method showed an average error in the anal-
ysis per plate of 3.54% ± 1.30%, while the traditional algorithm obtained 3.82% ± 1.76%. In 
the analysis of the error per condition (Figure 8), an average error was obtained on each 
day of 2.30% ± 2.31%, compared to 3.20% ± 3.96% for the traditional algorithm. 

 
Figure 8. Comparison of manual counting (blue curve), automatic counting traditional method 
(orange curve), and counting with the proposed method (grey curve). The horizontal axis shows 
the days of the experiment, and the vertical axis shows the proportion of live C. elegans. Capture 
was performed until day 21, and the remaining days were approximated using a Kaplan–Meier 
estimator. 

Figure 8. Comparison of manual counting (blue curve), automatic counting traditional method
(orange curve), and counting with the proposed method (grey curve). The horizontal axis shows the
days of the experiment, and the vertical axis shows the proportion of live C. elegans. Capture was
performed until day 21, and the remaining days were approximated using a Kaplan–Meier estimator.

A statistical significance analysis was carried out with the aim of (1) analysing the
differences between the manual curve and the curve obtained with the new method based
on neural networks, and (2) analysing whether the improvements obtained with the new
method with respect to the traditional automatic method were statistically significant.

The open-source tool OASIS [34] was used to perform the analysis. The results are
included in the Supplementary Materials.

As shown in Table S2 (Supplementary Materials), very similar results were obtained
for the manual and NN curves with a p-value of 0.7454.

When comparing the curve obtained with the traditional automatic method with the
curve obtained with the new method (NN), a p-value of 0.6075 was obtained; therefore, the
improvements were not statistically significant.
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4. Discussion

This paper proposed a method to automate lifespan assays, which, by combining
traditional computer vision techniques with a neural network-based classifier, enables the
number of live and dead C. elegans to be counted, despite low-resolution images.

As mentioned above, detecting dead C. elegans is a complex problem, since, in the
last days of life, they hardly move, and these movements are only small changes in head
posture and/or tail movements. This is compounded by other difficulties such as dirt
appearing on the plate, hindering detection, and the slight displacements occurring when
the plates are placed in the acquisition system.

These difficulties mean that solving the problem using traditional techniques requires
image alignment in addition to manual adjustment of numerous parameters, making the
use of neural networks an attractive proposition.

By using our method based on neural networks, we avoid having to perform align-
ments and feature design. Despite the advantages of neural networks, they have the
difficulty of requiring large datasets to train them. In this work, we addressed this diffi-
culty by manually labelling a small dataset (108 plates) and applying data augmentation
techniques.

To generate a considerable increase in data, a simulator was implemented to scale the
initial training dataset (666 sequences) to a final dataset on the order of 23,000 sequences.
The results obtained showed that training the model with only the simulated dataset led to
an improvement in the hit ratio of 10.40% compared to the baseline of the model, trained
with the original dataset available. Furthermore, it was shown that training the model
with a mixed dataset of simulated and original data improved the hit ratio by a further
3.20%, reaching a 83.66% hit rate in the classification of dead C. elegans and a 98.56% hit
rate for live C. elegans. Errors in this method were mostly due to noise problems. These
errors included cases such as stains that merged with the worm body, stains that caused
the worm body to appear split, worm images in the border area, and worm aggregations.
Examples of such noise cases are presented in Figure S1 (Supplementary Materials).

Regarding the final error on the lifespan curves, the proposed method achieved small
error rates (3.54% ± 1.30% per plate) with respect to the manual curve, demonstrating
its feasibility and, moreover, with slightly better results than the traditional vision tech-
niques used as a reference. When obtaining the lifespan curves, several problems were
encountered. In the first days, worms could be lost due to occlusions in the plate walls
and aggregations; in the last days, false positives could occur due to plate soiling. These
problems were reduced by using an edge motion detection technique and a postprocessing
algorithm.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/1
0.3390/s21144943/s1, Table S1: Survival analysis, Table S2: Log-rank test obtained with the open
source tool OASIS [34], Figure S1: Noise examples, Figure S2: N2 lifespan curve, Figure S3: Daf-2
lifespan curve.
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a demo to show some examples of how our model classifies a C. elegans as alive or dead using a
sequence of three images corresponding to the current day, the day before, and the day after.
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