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Abstract: Music videos contain a great deal of visual and acoustic information. Each information
source within a music video influences the emotions conveyed through the audio and video, sug-
gesting that only a multimodal approach is capable of achieving efficient affective computing. This
paper presents an affective computing system that relies on music, video, and facial expression cues,
making it useful for emotional analysis. We applied the audio–video information exchange and
boosting methods to regularize the training process and reduced the computational costs by using
a separable convolution strategy. In sum, our empirical findings are as follows: (1) Multimodal
representations efficiently capture all acoustic and visual emotional clues included in each music
video, (2) the computational cost of each neural network is significantly reduced by factorizing
the standard 2D/3D convolution into separate channels and spatiotemporal interactions, and (3)
information-sharing methods incorporated into multimodal representations are helpful in guiding
individual information flow and boosting overall performance. We tested our findings across several
unimodal and multimodal networks against various evaluation metrics and visual analyzers. Our
best classifier attained 74% accuracy, an f1-score of 0.73, and an area under the curve score of 0.926.

Keywords: channel and filter separable convolution; end-to-end emotion classification; unimodal
and multimodal

1. Introduction

Emotion is a psycho-physiological response triggered by the conscious or unconscious
perception of external stimuli. There is a wide variety of factors associated with emotion,
including mood, physical feeling, personality, motivation, and overall quality of life.
Emotions play a vital role in decision making, communication, action, and a host of
cognitive processes [1]. Music videos are commercial products that pair music with imagery
to promote a song or album. Music videos convey affective states through verbal, visual,
and acoustic cues. Because they blend multiple types of information, a number of different
methods of analysis are needed to understand their contents. In the context of music videos,
identifying emotional cues requires not only analysis of sound, but visual information
as well, including facial expressions, gestures, and physical reactions to environmental
changes (e.g., changes in color scheme, lighting, motion, and camera focus points).

A number of studies have attempted to show how music carries human affective
states [2] and boosts mood and self-confidence [3–5]. Sometimes, this emotional effect
is counterintuitive, as even sad music can evoke pleasure and comfort in listeners [6,7].
Pannese et al. [8] used the conceptual metaphor of a chain of musical emotion that emanates
from a recording or performance and works its way to the audience and listeners. The
performer or composer transmits emotion at the production level. The music, then, evokes
emotion at the level of perception when it is received by the audience or listeners. Finally,
an affective state is brought about in the audience or listener in response to the song at
the induction level. These authors conceived of emotion using a top-down approach, and
were unable to describe psychological changes in affective states when listening to music.
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The fact that the act of listening and responding to music involves subjective assessments
on the part of the listener adds to the complexity and uniqueness of affective computing.
Several musical components, including harmony, tonality, rhythm, mode, timing, melody,
loudness, vibrato, timbre, pitch, and the vocalist’s performance, make each musical work
unique. Visual components further complicate emotional analysis, as performers can add
emotions to their music through body movements, gestures, and facial expressions.

With the rise of the Internet and social media, users are engaging more than before
with multimedia content in order to communicate and explore their affective states. In
this paper, we focused on analyzing music and image sequences produced by either the
music industry or random social media users. Music videos are among the most circulated
types of content on the Internet. Emotion recognition has already been employed by
music streaming services, the video game industry, the advertising industry, the television
industry, and the music industry for audio–video content matching and synchronization [9].
Emotion recognition is also used in mental treatment, meditation, and encouragement
training [10].

Deep learning technology makes our daily lives more convenient across diversi-
fied domains. Numerous success stories have rapidly spread in the domains of animal
sounds [11–14] and music information retrieval [15]. Automatic affective computing of
music using deep neural networks (DNNs) allows for the processing of a large number
of features from multiple modalities. However, DNNs require a large amount of data for
training, and data scarcity has held back research in this field. Other major challenges
for emotional analysis in music videos include the undefined frameworks for emotional
representation, a lack of standard datasets, and difficulties in annotation due to subjective
and affective states that vary across time. Moreover, how individuals demonstrate their
emotions varies across cultural groups, languages, and music makers. To compound the
problem, multiple information sources (audio, video, facial expressions, and lyrics) are
used to communicate information about affective states. Finally, user-generated music
videos may not present a consistent picture of emotion across audio and video sources.
Annotators, in turn, must consider correlated sources to provide precise annotations.

This article seeks to enhance and improve a supervised music video dataset [16].
The dataset includes diversified music video samples in six emotional categories and is
used in various unimodal and multimodal architectures to analyze music, video, and
facial expressions. The unimodal term in this paper is used for a network that uses only
one source of information, such as music, video, or facial expressions. The integrated
structure of more than one unimodal source is termed as multimodal. We conducted an
ablation study on unimodal and multimodal architectures from scratch by using a variety
of convolution filters. The major contributions of this study are listed below:

(a) We extended and improved an existing music video dataset [16] and provided emo-
tional annotation by using multiple annotators of diversified cultures. A detailed
description of the dataset and statistical information is provided in Section 3.

(b) We trained unimodal and multimodal architectures with music, video, and facial
expressions using our supervised data. The networks were designed using 2D and
3D convolution filters. Later, the network complexity was reduced by using a novel
channel and separable filter convolution.

(c) An ablation study was conducted to find a robust and optimal solution for emotion
classification in music videos. Music was found to be the dominant source for emotion-
based content, and video and facial expressions were positioned in a secondary role.

(d) The slow–fast network strategy [17] was applied for multimodal emotion classification.
The slow and fast branches were designed to capture spatiotemporal information
from music, video, and facial expression inputs. The learned features of two parallel
branches of a slow–fast network were shared and boosted by using a multimodal
transfer module (MMTM) [18], which is an extension of “squeeze and excitation”
(SE) [19].
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We overcame the difficulties of input processing for multimodal data of large dimen-
sions. Different networks were trained and interpreted by analyzing different information
sources individually and jointly. The network performance was evaluated visually and
statistically by using different evaluators.

The remainder of this article is organized as follows. In Section 2, we present related
past studies on music, video, facial expression, and multimodal processing for affective
computing. Section 3 explains our music video emotion dataset and the proposed deep
neural network architectures. Section 4 includes the statistical and visual test results for
the unimodal and multimodal architectures. Finally, Section 5 concludes the study by
discussing further directions for future research.

2. Related Works

Different approaches to the analysis of emotions in music have been taken in the past
by using data-driven explorations. At the time of writing, the authors were not aware of
any research on deep learning that leveraged affective computing of music videos from
scratch. Some unimodal architectures were studied well by using diverse datasets in the
past. In this section, we discuss some existing techniques for affective computing of music,
video, and facial expressions.

Music emotion recognition (MER) is one research sub-domain of music information
retrieval (MIR) that focuses on the study of the characteristics of music and their correlation
with human thinking. The audio can be dominant information for high-level semantics,
such as emotion, in multimedia content. Lopes et al. [20] showed the importance of sound
in horror movies or video games for the audience’s perception of a tense atmosphere.
Particularly for emotions in music, some research has shown satisfactory results by using
music audio and lyrics. Naoki et al. [21] integrated their analysis of music lyrics and audio
by using a mood trajectory estimation method. Algorithms used to generate these features
from audio and to classify them include k-nearest neighbors, random forests, support
vector machine (SVM), among other regression models. Song et al. [22] proposed a LastFM
dataset classified into four emotional categories (angry, happy, sad, and relaxed) and
used an SVM with polynomial and radial basis function kernels for classification. Other
studies [23–25] used various handcrafted music features for affective computing. The
comprehensive work of [26] proposed a dataset and compared various machine learning
and deep learning methods. Recurrent neural networks [27,28] and convolutional neural
networks (CNNs) [29] generally rely on time–frequency spectral representation for emotion
classification in music. Tsunoo et al. [30] used rhythm and bass-line patterns to classify
the music contained in the Computer Audition Lab 500-song (CAL500) dataset [31] into
five emotional categories. The CAL500 dataset includes 500 popular songs from Western
countries with semantic labels derived from human listeners. One CNN-based music
emotion classification [32] method for the CAL500 dataset, as well as its enriched version
(CAL500exp) [33], was used for the classification of 18 emotion tags in the dataset. Recently,
after music source separation [34] and attention [35], individual music sources were also
applied to improve prediction of emotions in music by using a spectral representation of audio
as the input. The spectrogram was a handcrafted magnitude-only representation without
phase information. Orjesek et al. [36] addressed this problem by using a raw waveform
input for their classifier. Our study used both the real (magnitude) and imaginary (phase
angle) information from audio for emotion classification because several studies [37–39] have
demonstrated that phase information improves the performance of both speech and music
processing.

Video is an ordered sequence of images that include several visual clues for affective
computing. While there is no deep-learning-related research on the visual representation of
emotion in music videos, several studies [40–42] have examined emotion in user-generated
videos. The main challenge in the analysis of these videos is the subjective nature of
emotion and the sparsity of video frames in which emotion is expressed. By using attention
mechanisms, some researchers [43,44] found that it is beneficial to boost the visual cues
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for emotion in video. In sequential data, temporal information is important. Xu et al. [45]
conducted a study on the capture of temporal or motion information by using an optical
flow in parallel with the RGB channel. Spatiotemporal data processing is improved by using
a slow–fast network [17], where the slow branch carries spatial information with fewer
video frames, and the fast branch is responsible for capturing the temporal information
with a large number of video frames. Multiple information processing paradigms have also
been used on movie clips to capture diverse emotional cues with multimodal representation.
Modern music videos use a wide range of filmmaking styles as marketing tools in order
to promote the sale of music recordings. Many music videos present specific images and
scenes from the song’s lyrics, while others take a more thematic approach. To produce a
music video, the director tries to create a visual representation that matches their subjective
analysis of the emotion in the piece of music. The classification of emotions in movies
by using audio and visual information was proposed in [46,47] with the use of low-level
audio–video features. Affective computing of movies was later studied in [48] by using
a neural network and face and speech data. Reinforcement learning was used in [49] for
identifying funny scenes in movies. These techniques can be useful for affective computing
of music videos and dealing with multimedia content.

Facial expressions can provide information about humans’ feelings and thoughts, and
they play a crucial role in interaction and decision making. Facial expressions can have
universal qualities [50] and have potential applications in human–computer interaction,
computer vision, and multimedia entertainment. The facial expressions of a music video
actor are crucial for affective computing because he/she is guided by the video director to
bring their body movement and expressions in line with the emotions expressed by the
music. In relation to other visual cues, such as gestures, background scenery, color, and
camera position, facial expressions provide clearer visual cues for emotional analysis [51,52].
Some deep-learning-based research [53–55] has achieved satisfying results by using facial
expression for different applications. Facial expressions have been extensively studied in
speech recognition and have been found to be beneficial for improving learning networks’
capabilities [56–58]. Seanglidet et al. [59] proposed the use of facial expression analysis in
music therapy; however, facial emotions have not been used in the study of emotions in
music videos.

The wide proliferation of multimedia content that is posted online is increasingly
pushing researchers away from conventional unimodal architectures and towards complex
multimodal architectures. Some multimodal architectures [60,61] have been proposed
for affective computing analysis of music videos by using machine learning technology.
Pandeya and Lee [16] proposed a supervised music video emotion dataset for a data-driven
algorithm and used late feature fusion of audio and video representations after transfer
learning. We extended their dataset and incorporated additional emotional cues from
music, video, and facial expressions. These information sources treat emotions individually
with their own schema of emotion representation. Multimodal representation is one means
of dealing with the complex problem of emotional analysis, where each information source
within a music video influences the emotions conveyed through the acoustic and visual
representation. Affective computing of music videos, however, has not been used to
interpret multiple sources of information. Our model is unique inasmuch as it used music,
video, and facial expression information. We present various architectures, convolution
techniques, and applied information-sharing methods for emotional classification of music
videos.

3. Data Preparations

A number of emotion representation frameworks have been proposed in the last
decade. The categorical model [62] describes human emotions by using several discrete
categories. Conversely, the dimensional model [63–65] defines emotions as numerical val-
ues over two or three psychological dimensions, such as valence, arousal, and dominance.
Some variants of these frameworks have been applied in MER studies [34,35,66,67] on
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music data. Several datasets have previously been proposed for supervised emotional
analysis of music. Some of these datasets [68–70] follow the categorical model, providing
several discrete categories of emotions, and other datasets [24,26,71] used the dimensional
model to represent emotions as values in a 2D valence and arousal space. Similarly to
those of music, some video emotion datasets [72,73] have been proposed that used the
categorical model, and others [74,75] used the dimensional model.

The 2D valence–arousal framework is the most widely used framework for emo-
tion representation in music. While this approach overcomes the problem of categorical
limitations and ambiguities in search tags, the categories are vague, unreliable, and not
mutually exclusive [76]. The categorical representation can be a better approach for an
online streaming service system where the end-user usually makes their demands for their
favorite music videos based on class categories, such as emotion tags, singers, or genres.
We used the framework identified in [16], where cross-correlation among six basic emotions
was explained for music videos, and we extended the dataset. This dataset originally had
720 Excitation, 519 Fear, 599 Neutral, 574 Relaxation, 498 Sad, and 528 Tension data samples.
The training, testing, and validation sets were not defined separately, and multiple samples
were taken from the same music video. This led to a problem of overfitting, as DNNs
are clever in capturing the shortcuts. Shortcuts are decision rules that perform well on
standard benchmarks, but fail to transfer to more challenging testing conditions, such as
real-world scenarios [77]. In the music video, such shortcuts can be the outer frame of the
video, channel logos, and opening or background music. Our updated dataset has nearly
twice as much data, which was derived from a wider variety of samples. Most samples
were not repeated from a single music video, and the training and testing samples were
taken from distinct sources. The statistical layout of our dataset and the number of samples
are presented in Table 1.

Table 1. Music video dataset with various adjectives and statistics in each emotion class.

Emotion
Class Emotion Adjectives Training

Samples
Validation
Samples

Testing
Samples

Excited
Happy, Fun, Love, Sexy, Joy, Pleasure,
Exciting, Adorable, Cheerful,
Surprising, Interest

843 102 50

Fear Horror, Fear, Scary, Disgust, Terror 828 111 50

Neutral Towards (Sad, Fearful, Exciting, Relax)
Ecstasy, Mellow 678 99 50

Relaxation Calm, Chill, Relaxing 1057 148 50

Sad
Hate, Depressing, Melancholic,
Sentimental, Shameful, Distress,
Anguish

730 111 50

Tension Anger, Hate, Rage 652 84 50
Total 4788 655 300

We categorized the dataset into six distinct classes based on their corresponding
emotional adjectives. The “Excited” class usually includes positive emotions. The visual
elements of the “Excited” class include images of a smile on a face, movement of arms,
dancing scenes, bright lighting, and coloring effects. The audio components of this class
include high pitch, large pitch variations, uniform harmony, high volume, low spectral
repetition, and diverse articulations, ornamentation, and vibrato. The visual features of the
“Fear” class reflect negative emotions via a dark background, unusual appearance, wide
eyes, open mouth, a visible pulse on the neck, elbows directed inward, and crossed arms.
Common visual elements in the “Tension” class are fast-changing visual scenes, crowded
scenes, people facing each other, aggressive facial expressions with large eyes and open
mouths, and fast limb movements. The audio elements in the “Tension” and “Fear” classes
include high pitch, high tempo, high rhythmic variation, high volume, and a dissonant and
complex harmony. The visual elements in the “Sad” class are closed arms, a face buried
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in one’s hands, hands touching the head, tears in eyes, a single person in a scene, a dark
background, and slow-changing scenes. The “Relaxation” class includes ethnic music and
is visually represented with natural scenes in slow motion and single-person performances
with musical instruments. The acoustic components of the “Sad” and “Relaxation” classes
include slow tempo, uniform harmonics, soft music, and low volume. The “Natural” class
includes mixed characteristics from all five other classes. The data samples included in
each class reflect diversity in music genres, culture and nation of origination, language,
number of music sources, and mood. Five coworkers were involved in the construction of
the new dataset.

The raw music video data needed to be processed in an acceptable form prior to
being entered into the neural network. Our processing of the dataset of music, video, and
facial expressions followed a number of steps for each individual data sample. The music
network was trained on the real (magnitude) and imaginary (phase angle) components
of the log magnitude spectrogram. The magnitude of the log Mel spectrogram was kept
to one channel, while the phase angle representation was placed in another in order to
preserve both.

For this work, a 30-second audio waveform xi was converted into mono and then
subsampled with a window size of 2048, a sampling rate of 22,050 Hz, and a time shift
perimeter of 512 samples. The sampling rate varied for the slow–fast network, in which
xi in the slow path was sampled at a rate of 32,000 Hz, while the xi in the fast path
had a sampling rate of 8000 Hz. Fast-Fourier Transform (FFT) was then applied to each
window to transform the xi from a time-domain representation into a time–frequency
(T-F) representation (Xi(t, f)). A total of 128 non-linear Mel scales that matched the human
auditory system were selected from across the entire frequency spectrum. The log Mel
spectrogram offers two advantages over waveform audio; first, it reduces the amount of
data that the neural network needs to process compared with waveform representation,
and second, it is correlated with human auditory perception and instrument frequency
ranges [78].

The serially binned images were collected in a distributed way to preserve the tem-
poral information of the entire video sequence, as shown in Figure 1. Each video was
converted into several-frame sequences, Vi = {vτ, v2τ, v3τ, . . . , vnτ}, where τ represents
equal time intervals in the video sequence. For each sample, τ changes according to the
total number of frames n that were extracted. For the video/face network, 64 frames were
taken in a distributed fashion. The video data were processed in a similar way to the audio
data by varying the frame rate in the slow (eight frames) and fast (64 frames) branches of
the slow–fast network.
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For the face network input, face areas were detected in each video frame by using
the cascade classifier feature of OpenCV (https://opencv.org/ accessed on 7 June 2021)
4.2.0 version. The images were cropped and resized for the network input. Music video
frames may or may not have a face in them, or may depict more than one face. We chose
music videos that contained at least one face. In each video, video frame vt may contain
one face {f1}, more than one face {f1, f2, f3, . . . , fm}, or no faces. After processing all of the
video frames, we counted all of the frames containing faces. If the number of face frames
was less than the face network input size, we repeated these frames until satisfying the
requirement. Additional frames were discarded if the total face frames exceeded the neural
network input. The repeated frames and discarded additional frames lost the temporal
information of video sequences of faces. This is one reason for why our face network had
a relatively small contribution to the overall decision making compared to the video and
music networks.

After the preprocessing, the input for the audio network was AN =
N
∑

i=0
Xi; for the video

network, it was VN =
N
∑

i=0
Vi, and for the face network, it was FN =

N
∑

i=0
Fi, where N is the data

used in one batch. The multimodal input was the integrated form of each unimodal input.

4. Proposed Approach
4.1. Convolution Filter

Several networks were designed and integrated in a numbered way to find the optimal
structure. The general 2D and 3D convolution filters were used in the music and video/face
networks, respectively. Particularly in video processing, 3D convolution has been found to
be better in capturing the spatial and motion information, but it exponentially increases
the system’s complexity. Popular 3D networks [79,80] have a great complexity and, hence,
require large amounts of data for successful training.

In this paper, the complexity of 3D convolution was reduced by using separable
filter and channel convolution. For the separable filter, the 3D convolution filter of size
n × n × n was divided into 2D space as 1 × n × n and n × n × 1. As illustrated in the
right-most column of Figure 2, the 3D convolution filter was split into a 2D space filter
with channel separation. The proposed convolution was an integrated form of separable
channel convolution [81] (second column) and (2 + 1)D convolution [82] (third column).
The idea of the separable filter and channel convolution was also used for the 2D audio
network. The square filter of the 2D convolution was divided into a temporal filter (1 × n)
and a spatial filter (n × 1), as in [83]. The channel size was reduced to one in the sequential
block of the dense residual network for the separable channels. By using a novel separable
channel and filter convolution, we drastically reduced the complexity and improved the
system’s performance for both the music and video networks.

4.2. Proposed Networks

We propose four basic architectures for the music, video, and face emotion networks.
The architecture A0 in Figure 3 only used 2D/3D convolution, and the other architectures
(A1 to A3), which are shown in Figure 4, were designed with a separable 2D/3D channel and
filter convolution. A3 was a slow–fast network designed to capture the spatial and temporal
information of audio/video. The basic architecture of our proposed network and a detailed
view of each block are shown in Figures 3 and 4. In addition to the proposed networks, the
well-known C3D network [79], which was trained on the sport-1M dataset [84], was also
used for video and facial expression recognition. The numbers of filters in each of the five
convolution layers (1–5) were 64, 128, 256, 512, and 512, respectively. The dimensions of the
input network (height, width, channel, number of frames or depth) were equal to 112, 112,
3, and 32. The original C3D network was modified in a bottleneck layer with a dropout
value of 0.2. The modified C3D network was the same as the one in [16], which helped
us to make a fair comparison with this study based on the parameters and evaluation

https://opencv.org/
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scores. For a detailed look at the architecture, the reader is invited to refer to the original
paper [79]. The pre-trained network for music video emotion classification was not found
to be beneficial in terms of performance and complexity.
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Figure 3. The block diagram of the proposed music video emotion classification network A0 with the
2D/3D convolution. The acronyms DRB2DSC and DRB3DSC are detailed views of the dense residual
block with the standard 2D and 3D convolution for the music network and the video/face network,
respectively. The symbol A represents the network architecture, M represents the dense residual
block defined in the detailed view, S represents the Softmax function, GAP is global average pooling,
and MMTM is the multimodal transfer module. Similarly, the symbols N, i, j, and k with values in
the lower case represent the values of the items, as illustrated in the respective detailed views.

The basic block of the unimodal architecture, which is shown in Figures 3 and 4,
was further integrated for the multimodal representations. The feature information from
multiple branches was merged to enhance top-level decision processing. A review [85]
illustrated early, late, and mid-level fusion in multimodal affective computing. Differently
from this research, our network learned information and integrated it after each block of
the dense residual network by using MMTM. The MMTM and SE networks were used for
information sharing and boosting during training. In the ablation study, we performed
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an analysis of these blocks with several unimodal and multimodal architectures. At the
decision level, all of the branch information was globally aggregated and computed for
the class-wise probability. The Softmax function was used in the final layer of the neural
network, which mapped the output nodes in a probability value range between 0 and
1. We used the categorical cross-entropy loss function for a one-hot vector target. This
function was used to separately compute the binary cross-entropy for each class and then
sum them up for the complete loss.
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5. Experimental Results

To make this report understandable and comparable with those of different research
groups, we consistently report our experimental data. Several networks are compared
based on the evaluation score, complexity, and visual analysis by using a confusion matrix
and a receiver operating characteristic (ROC) curve. We define accuracy as the probabil-
ity of correct classification within a dataset. Accuracy indicates better evaluations in a
balanced dataset. The F-measure is the harmonic mean of precision and recall; when the
precision increases, the recall decreases, and vice versa. The F-score handles imbalanced
data and provides a measure of the classifier’s performance across different significance
levels. A confusion matrix presents the number of correct and erroneous classifications
by specifying erroneously categorized classes. A confusion matrix is a good option for
reporting results in multi-class classification. The area under the ROC curve is a measure
of how well a parameter can distinguish between a true positive and a true negative. An
ROC is a probability curve that provides a measure of a classifier’s performance in two-
dimensional space. The area under the ROC curve (AUC) measures the degree of separabil-
ity across multiple classification thresholds. These evaluation metrics were used to evaluate
the effectiveness of our system for emotional classification in music videos. The data
(https://zenodo.org/record/4542796#.YCxqhWgzaUk accessed on 7 June 2021) and code

https://zenodo.org/record/4542796#.YCxqhWgzaUk
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(https://github.com/yagyapandeya/Supervised-Music-Video-Emotion-Classification
accessed on 7 June 2021) used to produce these experiments are publicly available
(in Supplementary Materials).

5.1. Results of the Unimodal Architectures

The unimodal architectures for music, video, and facial expressions were separately
trained and tested. The testing dataset included 300 music video samples that were
never used in the training process. These samples were equally distributed in six musical
categories for a fair comparison. To measure the performance in terms of our evaluation
metrics, the respective ground truth was provided for each test sample. An ablation study
was performed to find an optimal network architecture that used both the unimodal and
multimodal architectures. The system performance varied with the networks that used SE
and MMTM. The SE network was proven to boost system performance. We only used the
SE block in our unimodal architecture. In the A0 unimodal architecture, the SE block proved
to be beneficial. In the other networks, however, it was not found to be effective. The
separation in the channel and convolution filter diversified the focal points of the network.
The MMTM is an extended form of the SE block that allows more than one modality to
share and enhance the information that it learns. The A3 unimodal architectures were tested
with the MMTM, and the results are illustrated in Tables 2–4. In the A3 music architecture,
the slow and fast paths did not properly synchronize due to their different sampling rates.
Therefore, the music networks with or without MMTM showed poor performance. The A3
face network showed poor performance because the temporal patterns of the face/video
sequence were lost due to repeated or discarded frames. The MMTM block was found to be
useful in the case of the A3 video architecture. In this architecture, the temporal information
was preserved and synchronized with spatial information during training. Each unimodal
architecture was evaluated here in relation to multiple networks. The effects of the MMTM
and SE blocks were evaluated for each network. These blocks placed increased complexity
on the system, but were found to be more efficient in some cases.

Table 2. Test results using facial expression.

Model Test Accuracy F1-Score ROC AUC Score Parameters

C3D 0.3866 0.39 0.731 57,544,966

A0 without SE
(Face_A0_noSE) 0.460 0.45 0.778 19,397,078

A0 with SE
(Face_A0_SE) 0.516 0.51 0.820 19,409,478

A1 without SE
(Face_A1_noSE) 0.4933 0.46 0.810 11,876,982

A1 with SE
(Face_A1_SE) 0.490 0.46 0.794 11,924,566

A2 without SE
(Face_A2_noSE) 0.430 0.37 0.769 845,670

A2 with SE
(Face_A2_SE) 0.403 0.37 0.755 849,406

A3 without MMTM
(Face_A3_noMMTM) 0.449 0.42 0.781 24,083,846

A3 with MMTM
(Face_A3_MMTM) 0.419 0.41 0.782 24,174,918

The bold number represents the highest evaluation score and lightweight network architecture (rightmost
column).

https://github.com/yagyapandeya/Supervised-Music-Video-Emotion-Classification
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Table 3. Test results using music information.

Model Test Accuracy F1-Score ROC AUC Score Parameters

A0 without SE
(Music_A0_noSE) 0.5900 0.58 0.863 3,637,142

A0 with SE
(Music_A0_SE) 0.5766 0.61 0.852 3,659,782

A1 without SE
(Music_A1_noSE) 0.5366 0.51 0.859 3,946,949

A1 with SE
(Music_A1_SE) 0.6466 0.62 0.890 3,994,533

A2 without SE
(Music_A2_noSE) 0.6399 0.61 0.897 261,297

A2 with SE
(Music_A2_SE) 0.6266 0.61 0.878 267,369

A3 without MMTM
(Music_A3_noMMTM) 0.3166 0.22 0.635 4,208,240

A3 with MMTM
(Music_A3_MMTM) 0.2433 0.17 0.610 7,941,004

The bold number represents the highest evaluation score and lightweight network architecture (rightmost
column).

Table 4. Test results using video information.

Model Test Accuracy F1-Score ROC AUC Score Parameters

C3D 0.3266 0.19 0.723 57,544,966

A0 without SE
(Video_A0_noSE) 0.4233 0.36 0.742 19,397,078

A0 with SE
(Video_A0_SE) 0.4833 0.46 0.806 19,409,478

A1 without SE
(Video_A1_noSE) 0.4099 0.39 0.754 11,876,982

A1 with SE
(Video_A1_SE) 0.3666 0.35 0.736 11,922,518

A2 without SE
(Video_A2_noSE) 0.3633 0.33 0.710 845,670

A2 with SE
(Video_A2_SE) 0.3866 0.34 0.727 849,406

A3 without MMTM
(Vodeo_A3_noMMTM) 0.4666 0.44 0.774 12,722,646

A3 with MMTM
(Vodeo_A3_MMTM) 0.5233 0.53 0.837 24,174,918

The bold number represents the highest evaluation score and lightweight network architecture (rightmost
column).

We evaluated the emotions in facial expressions based on the facial information of
the music video actors. The face network performed poorly in relation to the music and
video network because it could not deal with video frames with no faces or multiple faces.
Uncertainty appeared in the system when it was presented with faces from an audience or
supporting actors. Additionally, the system could not comprehend faces that were blurry
and that were presented with low resolution, and this confusion reduced the performance.
The emotional cues of the face, however, were still found to be important because they
could boost the overall system’s decisions. Table 2 shows the evaluation scores of the
various face network architectures that we tested.
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The musical analysis focused on the objective aspect of musicality. The neural net-
work determined the changes in the spectral representations according to the emotional
category. The unimodal architecture, which used only music information, performed the
best compared to the face and video networks. The success of the network was related to
the smooth changes in the musical patterns over time. Uncertainty in the music processing
network, however, could arise due to the subjectivity of musical components and expres-
sive techniques. We tested various music network architectures for emotion in music, and
they are illustrated in Table 3. The A3 music networks with and without MMTM had low
performance rates because the spectral representation with varying sampling rates could
not be synchronized. The single-branch network (2D, slow and fast) performed better
with fewer parameters. Both positive and negative effects were found when using the
squeeze-and-excitation blocks with the music networks.

The results of the video network were better than those of the face network, but not as
good as those of the music network. The video network had a smooth temporal pattern that
could not occur in the face network because a non-face frame would break the sequence.
Compared to the music, the visual scenes abruptly changed according to time, which
could affect the system’s performance. Uncertainties in the video network could occur
with user-generated videos, which may not have industry standards of recording, camera
movement, and focus. We used the slow–fast network architecture (A3) to capture the
spatial and temporal information of videos with varying frame rates on each branch. The
learned information of each branch was boosted and shared by using the MMTM block.
Table 4 reports the various architectures and their scores on the evaluation metrics. Even
though it had relatively large training parameters, the slow–fast network with MMTM
performed the best when compared to the performance of the other architectures.

5.2. Result of the Multimodal Architecture

This study integrated several unimodal architectures for an efficient and optimal
solution for emotion classification in music videos. The multimodal architecture was
designed in two ways: using music and video information and using music, video, and
facial information. We tested several combinations and obtained effective results.

Several combinations of music and video networks are possible; the best-performing
multimodal architectures are shown in Table 5. While multimodal architectures that use
the face network with audio or video were a possible network option, the contributions of
the face network were minimal, and hence, the results are not discussed. The video and
music architectures were found to be the dominant sources for overall prediction. With the
multimodal video architecture, the MMTM block guided the two parallel branches of the
slow–fast network by maintaining the proper synchronization of the learned information.
The A0 audio network outperformed the others in integration with video and achieved
the same accuracy as our best multimodal architecture that used music, video, and facial
information, as shown in Table 6.

Table 5. Test results using music and video information.

Model Test Accuracy F1-Score ROC AUC Score Parameters

Vodeo_A3_MMTM +
Music_A0_noSE 0.7400 0.71 0.938 27,812,054

Vodeo_A3_MMTM +
Music_A1_noSE 0.6733 0.66 0.919 28,121,861

Vodeo_A3_MMTM +
Music_A2_noSE 0.6399 0.64 0.896 24,436,209

The bold number represents the highest evaluation score and lightweight network architecture (rightmost
column).
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Table 6. Integrated test results using music, video, and facial expressions.

Model Test Accuracy F1-Score ROC AUC Score Parameters

Vodeo_A3_MMTM +
Music_A0_SE +

Face_A2_SE
0.74000 0.73 0.926 28,660,878

Vodeo_A3_MMTM +
Music_A0_SE +
Face_A2_noSE

0.73333 0.72 0.942 28,589,478

Vodeo_A3_MMTM +
Music_A0_noSE +

Face_A2_noSE
0.73333 0.71 0.939 28,657,718

Vodeo_A3_MMTM +
Music_A0_SE +
Face_A1_noSE

0.6899 0.69 0.917 39,369,624

Vodeo_A3_MMTM +
Music_A0_noSE +

Face_A1_noSE
0.71666 0.71 0.931 39,689,030

Video_A1_noSE +
Music_A0_noSE +

Face_A2_noSE
0.69666 0.70 0.912 16,356,198

Video_A2_noSE +
Music_A0_noSE +

Face_A2_noSE
0.68666 0.67 0.915 4,587,350

Video_A2_noSE +
Music_A2_noSE +

Face_A2_noSE
0.610 0.59 0.873 1,433,649

Video_A1_noSE +
Music_A1_noSE +

Face_A1_noSE
0.63666 0.63 0.860 19,432,869

Video_A1_noSE +
Music_A1_noSE +

Face_A2_noSE
0.69999 0.69 0.925 11,942,805

The bold number represents the highest evaluation score and lightweight network architecture (rightmost
column).

The integrated network of music, video, and facial expressions was trained in an
end-to-end manner by using supervised data. Table 6 reports the integrated results for
music, video, and facial expression information. The multimodal architecture that only
used 3D convolution has extensive parameters, but the performance did not exceed that
of the best unimodal music or video architecture. The slow–fast video network (A3) with
MMTM performed the best with the integrated architecture. The music network with 2D
convolution (A0) was found to be better than the network with the rectangular filter (A1
and A2). The first row of Table 6 shows our top-performing networks. The multimodal
architecture using the A2 network with music, video, and facial expressions (eighth row)
had the lowest number of parameters, but the performance was even lower when using the
best unimodal music architecture. The A2 face network with SE was found to be effective
in the integrated architecture with both music and video networks. For example, the A2
face network with the A1 music and video network (last row of Table 6) performed better
than the A1 face network (penultimate row). In the overall analysis, the visual clues that
used face expression were found to be supportive for the classifier, with a small increment
in network complexity.
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5.3. Analysis Based on Visual Predictions

We validated the results of our experiments by using two visual evaluation methods:
a confusion matrix and a ROC curve plot. The confusion matrix counted the number of
samples in classes that were confused with each other. The confusion matrix in Figure 5
shows that the “Neutral” class was highly confusing for our classifier because it held data
that were similar to those of more than one class. The classifier result showed confusion on
the samples from the “Fear” and “Tension” classes because both classes held similar music
structures (mostly rock and metal music). The rock and metal music samples also had
common visual characteristics, such as angry facial expressions, dark backgrounds, and
unique gestures and appearances. This number of commonalities confused the classifier.
The “Sad” and “Relaxation” music videos had a similarly silent nature, so the classifier
also confused these classes.
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The ROC curves obtained when using our various multimodal architectures are
shown in Figure 6. The multimodal architecture with music, video, and facial expression
information performed the best. All of the classifiers showed similar ROC curves, with
a small difference in the area under the curve (AUC) scores. Networks with similar
performance and relatively fewer parameters obtained higher ROC-AUC scores.

Human emotions can be connected to each other, and these connections also appear in
music videos. We analyzed the correlation of our six emotional categories in music videos.
The class-wise probability was computed by using the sigmoid function at the end of the
neural network. The class correlation results of test samples from each class are illustrated
in Table 7. A single frame from each sample is provided for illustration. The results show
that “Neutral” class carried various common features of the other remaining emotional
classes. In addition, the samples from the “Fear” and “Tension” classes were found to be
correlated with each other in this experiment, while the samples from the “Excited” and
“Sad” classes were not found to be correlated.
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highest-activated class is illustrated with the highest score, and the second or third most
probable classes are further down on the vertical axis. One video frame is illustrated at
the bottom according to the time for illustration, but the musical components were also
responsible for the final decision.
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5.4. Comparisons with Past Studies

Our research proposes a new deep learning method and prepares a new dataset for
emotion classification in music videos. The past studies were conducted for affective
computing on low- and mid-level audio and video feature classification using conventional
classifiers, such as SVM. No study has implemented a deep learning method that can
collectively use audio, video, and facial expression information in a single network with
end-to-end training.

A previous study [16] attempted to use a similar music video dataset and a multimodal
architecture (MVMM) to analyze music and video. The study implemented a two-stage
process in which audio and video features were classified after transfer learning. The
model resulted in a good evaluation score, as their test samples were taken from similar
training samples. However, the pre-trained C3D network used in [16] had a relatively large
number of parameters to which even more parameters were added by our combination of
this network with other audio networks (a more detailed comparison of the performance
and complexity of our network with those of the C3D network appears in Section 5). Our
model reduced the network complexity and was evaluated with a more diverse set of test
samples.

Some studies have proposed the use of a diverse dataset for affective computing of
music videos. One study concerning emotional analysis of music that used a recurrent
neural network with an SVM on top [28] achieved a classification accuracy of 0.542 with
the LastFM dataset. CNN-based music emotion classification [32] achieved the highest
F1-scores when using the CAL500 (0.534) and CAL500 exp (0.709) datasets with 18 emotion
tags. The authors of [25] used an SVM for low-level feature classification of music, and
ultimately attained the highest F1-score of 0.764. The results of this study were based
on this research team’s self-developed dataset, which consisted of 900 audio clips and
associated subjective annotations that were applied consistently with Russell’s emotion
quadrants.

In Table 8, we quantitatively compare the current study with past related research.
The proposed classifier could not outperform the quantitative results, but they were
qualitatively robust because the networks were trained on a relatively large data sample
with three sources of input. Hence, the network’s capabilities were more diverse and
applicable for real-world applications. The results of the visual analysis support this claim.

Table 8. Comparison with past studies.

Method Dataset Data Type Emotion Class Score

RNN [25] LastFM Music 4 0.542 (Accuracy)

CNN [22]
CAL500 Music 18 0.534 (F1-score)

CAL500 exp Music 18 0.709 (F1-Score)

SVM [21] Own Music 4 0.764(F1-Score)

GMM [56] DEAP120 Music and video 8 0.90 (Accuracy)

CLR [50] CAL500 Music and video 18 0.744 (Accuracy)

MM [50] Own Music and video 6 0.88 (F1-Score)

Our Own Music and video 6 0.71 (F1-Score)

Our Own Music, video
and Face 6 0.73 (F1-Score)

A number of possible multimodal architectures that use music-related audio and
video information have also been studied for affective computing. The study in [66] used
low-level video features (lighting key, shot boundary, color, motion) and audio features
(zero crossing, MFCC, delta MFCC) for emotion classification by using Gaussian mixture
model (GMM) classifiers. This research team used the DEAP120 dataset with an eight-class
category and reached 90% accuracy. The team behind [60] used 140 annotated music video
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samples from the CAL500 dataset in a model that had the highest level of accuracy when
used on audio and video with additional optical flow features (74.4%) or with audio and
ImageNet features, as well as the Calibrated Label Ranking (CLR) classifier (72.24%). Two
additional studies [60,66] were performed with a high accuracy despite the limited number
of data samples that they were tested against. In each of these cases, emotion annotation
was provided by the video or audio audience, a fact that differentiates our labeled video
clips. Moreover, these methods used conventional emotion classification methods, unlike
our end-to-end deep neural network, which accounts for multimodal information.

In this research, first, we analyzed the unimodal representations of music, video,
and facial expression information from music videos by using end-to-end training. The
unimodal architectures were further integrated into a multimodal architecture to develop a
robust and optimal classifier. Compared to past research, our dataset is more diversified;
the networks were trained and tested on real data domains and not on features. We reduced
the system’s complexity and enhanced the performance of the architecture by using novel
convolution and information-boosting methods. The results were statistically evaluated by
using various evaluation metrics.

6. Conclusions

Affective computing enables AI systems to interpret human emotions. This area
of computing is inherently interdisciplinary, though the analysis of emotions in music
videos remains a particularly unexplored area within the field of computer engineering.
Our system classifies music videos by using a dataset that was introduced for supervised
training. Several unimodal and multimodal architectures have been proposed to analyze
music, video, and facial expressions from scratch. Our proposed architectures, including
the slow–fast network, were designed to use 2D and 3D convolution, as well as a novel
separable channel and filter convolution. Our best multimodal architecture achieved
74.00% accuracy, an F1-score of 0.73, and an area under the curve (AUC) score of 0.923.

Future researchers have space for improvement in terms of the performance, the
dataset, the emotion representation framework, and the evaluation measures. In this study,
we only included music, video, and facial expression networks. Music lyrics are another
vital source of information that can be integrated in further studies for more accurate
affective computing.

Supplementary Materials: The music video dataset used in this paper is available online at
https://zenodo.org/record/4542796#.YCxqhWgzaUk (accessed on 7 June 2021) and code for music
video emotion using multimodal system of music, video and face expression is available online at
https://github.com/yagyapandeya/Supervised-Music-Video-Emotion-Classification (accessed on
7 June 2021).
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MER Music Emotion Recognition
DNN Deep Neural Network
CNN Convolutional Neural Network
GMM Gaussian mixture model
SVM Support Vector Machine
CLR Calibrated Label Ranking
MVMM Music Video Multi-Modal
C3D Convolutional 3 Dimensional
CAL500 Computer Audition Lab 500-song
DEAP120 Database for Emotion Analysis using Physiological signals with 120 samples
MMTM Multimodal Transfer Module
SE Squeeze-and-Excitation
MFCC Mel Frequency Cepstral Coefficient
ROC Receiver Operation Characteristics
AUC Area Under Curve
GAP Global Average Pooling
FFT Fast Fourier Transform
T-F Time-Frequency
2/3D 2/3 Dimension
DRB2DSC Dense Residual Block 2D Standard Convolution
DRB3DSC Dense Residual Block 3D Standard Convolution
DRB2DSCFC Dense Residual Block 2D with Separable Channel and Filter Convolution
DRB3DSCFC Dense Residual Block 3D with Separable Channel and Filter Convolution
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