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Abstract: Organic fertilizer is a key component of agricultural sustainability and significantly con-
tributes to the improvement of soil fertility. The values of nutrients such as organic matter and
nitrogen in organic fertilizers positively affect plant growth and cause environmental problems when
used in large amounts. Hence the importance of implementing fast detection of nitrogen (N) and
organic matter (OM). This paper examines the feasibility of a framework that combined a particle
swarm optimization (PSO) and two multiple stacked generalizations to determine the amount of
nitrogen and organic matter in organic-fertilizer using visible near-infrared spectroscopy (Vis-NIR).
The first multiple stacked generalizations for classification coupled with PSO (FSGC-PSO) were for
feature selection purposes, while the second stacked generalizations for regression (SSGR) improved
the detection of nitrogen and organic matter. The computation of root means square error (RMSE)
and the coefficient of determination for calibration and prediction set (R2) was used to gauge the
different models. The obtained FSGC-PSO subset combined with SSGR achieved significantly better
prediction results than conventional methods such as Ridge, support vector machine (SVM), and
partial least square (PLS) for both nitrogen (R2p = 0.9989, root mean square error of prediction (RM-
SEP) = 0.031 and limit of detection (LOD) = 2.97) and organic matter (R2p = 0.9972, RMSEP = 0.051
and LOD = 2.97). Therefore, our settled approach can be implemented as a promising way to monitor
and evaluate the amount of N and OM in organic fertilizer.

Keywords: PSO; multiple-stacked generalizations; Vis-NIR; nitrogen; organic-matter; organic fertilizer

1. Introduction

Organic fertilizers (biofertilizers) are biodegradable and environmentally friendly,
which makes better nutrient sources. The amount of nitrogen (N) and organic matter (OM)
in biofertilizers may directly affect the physical and chemical properties of soil and play
a positive role in crop development [1]. However, many industrial or even homemade
biofertilizers fail to meet nutritional requirements, posing environmental risks. A high
level of nitrogen (N) can evaporate into the atmosphere and result in serious environmental
issues such as ammonia (NH3) and ozone (O3), limiting our ability to breathe, limiting
visibility, and affecting plant growth. At the same time, excessive use of organic matter
(OM) can result in the release of chemicals that delay plant growth and may promote
the development of some unwanted plants. Therefore, rapid, cost-effective, and reliable
determination is needed to improve local agricultural production, sustainability, and
environmental protection.

Visible near-infrared spectroscopy (Vis-NIR) is an alternative tool for determining N
and OM in biofertilizers as it offers more and better advantages than standard chemistry
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methods. It is a non-invasive procedure with high penetration of radiation beams, suitable
for inline use, and requires no (minimum) sample preparation. It has been widely used
for food-quality assessment and in various fields, such as agriculture [2], medicine [3],
and environmental uses [4]. The Vis-NIR technique is built on the connection between
electromagnetic radiation and the material within the 350–2500 nm wavelength range.

In the visible part of the electromagnetic spectrum (400–700 nm), molecular electron
transitions prevail, while in the near-infrared field (700–2500 nm), overtone and molecular
vibration variations of the mid-infrared spectrum dominate. Different properties may
be correlated with the absorbed radiation, providing qualitative and quantitative infor-
mation [5]. The visible range resulting absorption spectrum is mainly related to OM or
oxides [6] and iron in minerals. Usually, the obtained spectra have extensive absorption
features and overlapping bands, making them challenging to interpret. Therefore, it is
crucial to execute a feature selection process to automatically pick the significant feature
subset and apply a robust chemometrics technique to predict the different properties [7].

Feature selection is the process of minimizing the number of features in a dataset and
making the model as compact as possible. It could be divided into three methods: wrapper,
embedded, and filter method [8,9]. Wrapper and embedded methods are more efficient
than the filter method but are computationally more costly. However, it is challenging for
all three strategies to find an optimal feature subset using the objective function. Various
search meta-heuristics were proposed to resolve this problem, e.g., genetic algorithms
(GA) [10,11], particle swarm (PSO) [12], and ant colony optimization (ACO) [13]. These
techniques have been proven to solve challenging computational problems.

PSO has been used with many machine-learning techniques for feature
selection [14,15]. Still, there is no study in combining multiple-stacked generalization
and PSO for feature selection to the best of our knowledge. Furthermore, our approach to
combining Vis-NIR data, PSO, and two multiple-stacked generalizations to determine N
and OM can be considered a novel strategy.

Recently, there have been a number of low-quality biofertilizers on the market that
exceed the nutrient value requirements. This issue could jeopardize the long-term viability
of agriculture and the environment.

The main goal of this research was to prove that Vis-NIR can evaluate N and O.M.
in biofertilizers. The specific objectives of this research were to: (1) propose a novel way
for best subset selection using an ensemble method (first multiple stacked generalizations
for classification, FSGC) and PSO; (2) improve the detection of N and OM through the
construction of a second ensemble method for regression (SSGR), and (3) evaluate the
performance with conventional techniques.

2. Materials and Methods
2.1. Samples

Nine varieties of commercial organic fertilizers from various companies in China
were used to conduct this experiment. The different varieties of fertilizers were made of
earthworm manure (variety 1), fungi (variety 2 and 5), fermented sheep manure (variety
3), a mix between sheep fat, chicken manure, grass charcoal, and bean cake (variety 4),
black chicken fat (variety 6), biochar (variety 7), fulvic potassium acid and tobacco powder
(variety 8) and rice straw for variety 9.

Each variety was composed of 30 samples, which led to a total of 270 samples. Sample
preparation was not conducted to keep the experiment original and practicable. The true
concentration of organic matter (OM) and nitrogen (N) was measured by inductively
coupled plasma optical emission spectrometry (ICP-OES). Samples were first weighed into
TFM vessels, and 5 mL of nitric acid (HNO3) and 1 mL of hydrogen peroxide (H2O2) were
added. Second, microwave digestion (MARS 6, CEM, Mathews, VA, USA) was used to
digest the solution. After digestion, the solutions were mounted in a volumetric flask and
diluted with deionized distilled water (H2O). Finally, the concentration of N and OM was
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calculated by ICP-OES (Optima 8000, PerkinElmer, Waltham, MA, USA). The statistics of
O.M. and N concentrations in samples were listed in Table 1.

Table 1. The statistics of organic matter (OM) and nitrogen (N) concentrations in samples.

Propriety Variety 1 2 3 4 5 6 7 8 9

N

Min. 1.460 2.030 1.540 1.220 2.110 1.350 2.220 1.220 5.190
Max. 1.480 2.070 1.560 1.260 2.160 1.360 2.240 5.330 5.330
Mean 1.470 2.047 1.550 1.237 2.140 1.353 2.230 2.107 5.250

SD 0.010 0.020 0.010 0.020 0.026 0.005 0.010 1.117 0.072

OM

Min. 55.97 40.23 40.56 58.15 57.11 47.12 54.12 40.23 45.65
Max. 56.12 40.34 40.98 58.22 57.46 47.29 54.33 58.22 45.98
Mean 56.02 40.30 40.78 58.19 57.29 47.22 54.25 50.21 45.78

SD 0.083 0.058 0.210 0.035 0.175 0.090 0.111 6.348 0.175

2.2. Visible Near-Infrared Spectroscopy (Vis-NIR) Measurements and Preprocessing

The Vis-NIR spectra were measured in ambient light using an ASD (Analytical Spectral
Devices) FieldSpec3 spectrometer over the reflective domain of 350–2500 nm. The radiation
was estimated at 1.4 nm interludes for the 350–1000 nm spectral area and m intervals for the
1000–2500 nm wavelength range by a spectrometer. Finally, the reflectance output to users
was resampled with ViewSpecPro (Version 6.20 Malvern Panalytical Ltd., Malvern, UK).

Biofertilizer samples were placed in a Petri dish and then smoothed with a ruler to
homogenize the surface [16]. Furthermore, A 50 W halogen lamp was hung directly above
each experimental Petri dish. The spectrometer was then calibrated with a Spectralon
(Malvern Panalytical Ltd., Malvern, UK) white plate once every 15 measurements. Each
soil sample was repeatedly measured three times. Finally, 810 spectra were obtained and
preprocessed with the Savitzky–Golay smoothing filter introduced in 1964 [17]. Apart from
this smoothing method, any other one has been conducted.

2.3. Construction of the Multiple Stacked Generalizations

Stacked generalization is a method of combining numerous models in order to perform
a classification task [18,19]. In this work, several stacked layers have been generated by
assigning the final estimator to the stacked generalization, and various models such as
SVM, L.R., KNN, R.F., MLP, NB, and Ridge were used. The best parameter settings of each
model were obtained after performing parameter tuning optimization using a grid search
cross-validation five folds. After comparing the accuracy and the running time for all the
classifiers, the best four models were chosen to form the FSGC model.

• Support vector machine (SVM): this selects important instances to create a separating
surface between data instances [20]. After performing a grid search, the obtained
optimized learning parameters for SVM were C = 1, gamma = 0.01, kernel = rbf.

• Logistic regression (L.R.): this is used to define variables and illustrate a relationship
between one dependent variable and one or more independent variables [21]. After
examining a wide collection of options using a grid search, the best parameter settings
were C = 100, penalty = l2, solver = newton-cg.

• K-nearest neighbor (KNN): this model is among the simplest of all ML methods, and
it is used to define and for prediction. The best hyperparameters for this model were
metric = Euclidean, n neighbors = 1, weights = uniform [22].

• Random forest (RF): this approach is better than a single decision tree since it elimi-
nates over-fitting by averaging the answer. The optimized learning parameters of SVM
were max_depth = 80, max_features = 2, min_samples_leaf = 3, min_samples_split = 10,
n_estimators = 200 [23].

• Multilayer perceptron (MLP): this is made of three layers of nodes that use a nonlinear
activation function [24]. The best parameters for this model after running 5 folds were
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activation = tanh, alpha = 0.0001, hidden_layer_sizes = 103,010, learning_rate = con-
stant and solver = adam.

• Gaussian naïve Bayes (N.B.): this algorithm focuses on the Bayes theorem, and it is
used for classification, but it has a high versatility when the dimensions of the inputs
are large. Complex classification issues can also be tackled using the Naive Bayes
Classifier [25].

• Ridge: this is a straightforward linear regression that applies a slight degree of bias
to obtain a significant decrease in volatility. Using grid search cross-validation, it has
been found that the best bias value is 0.1.

2.4. Feature Selection

When using wrapper methods for feature selection, the significant problems are select-
ing the model and selecting a proper set of parameters for the used model. These problems
can be surpassed by choosing an adequate model and optimizing the parameters. Thus,
this section presents a new wrapper method by combining multiple-stacked generalizations
and a PSO algorithm. The proposed method was called PSO-FSGC and can be divided into
the following steps:

• Step 1: Create the multiple-stacked generalization classifier.

The FSGC presented in Section 2.4 was used. Each model in FSGC was optimized by
performing grid search hyperparameter tuning.

• Step 2: Evaluate each particle in the swarm.

In this step, the stacked generalization created above was generated to find the feature
subset corresponding to the particle position.

• Step 3: Verification of the best values of swarm and particle.

The following two equations achieve the verification:

xpb
i ← xi i f f (xi ) > f

(
xpb

i

)
(1)

xsb ← xi i f f (xi ) > f
(

xsb
)

(2)

With xpb correspond to the position of the particle that had the best fitness f and xsb is
the best swarm.

• Step 4: Update velocities of the movement in the search space.

The update must take into consideration the performance of the own particle and the
swarm. The velocity is updated as follows:

vij ← wvij + c1q

(
xpb

ij − xij

∆t

)
+ c2r

(
xsb

j − xij

∆t

)
(3)

The term w is the inertia weight, and it controls the influence of the previous velocity
in the new velocity. ∆t is the time step of each iteration. c1, c2 are called cognitive and social
components. The first tests the degree of self-confidence of a particle, while the second
depends on the capacity of the swarm to identify better candidate solutions. q and r are
uniform random numbers ∈ [0, 1].

• Step 5: Update the position of the particle by using the logistic function of the velocity.

Thus, the particle position is calculated for each variable by:
S
(
vij
)

is the sigmoid function defined as:

xij ←
{

0, i f r > S
(
vij
)

1, otherwise
i = 1, . . . , N, j = 1, . . . , N (4)
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S
(
vij
)

=
1

1 + evij
(5)

• Step 6: Continue the iterative process.

Return to Step 2 if convergence or iteration limit is not achieved. There is a possibility
that premature convergence arises if the velocity reaches a high value (5) and (6). In
that case, we apply the reset swarm that could allow each particle to adjusts its position
according to two values: its own best solution xpb and the swarm best solution xsb [26,27].

2.5. Model Evaluation and Software

The performances were estimated according to their predictions. Thus, the compu-
tation of root means square error of calibration set (RMSEC), root means square error
of prediction set (RMSEP) and limit of detection (LOD) helped gauge the performance.
Furthermore, to measure other variables’ detectability, the coefficient of determination for
calibration (R2c) and prediction (R2p) were computed. Generally, a good model should
have high values of R2. The Savitzky–Golay smoothing was done with viewSpec software,
the computation of the different algorithms was made using python with sci-kit-learn and
PySwarms library, and Origin 2021 served to design the graph.

3. Results
3.1. Spectra Analysis and Visualization

The average spectra of the nine varieties of biofertilizer samples were presented in
Figure 1. Almost all the varieties have a similar profile curve. The loading density and
particle size were attributed to the broad disparity of baseline shifts in the spectra. It can be
observed that all the spectra show absorption at the range 1887−2200 nm. For variety 1, 3,
8, 9, peaks were observed at 1388–1549 nm, while three others peaks (844, 1733, and 2310
nm) were only observed for variety 9. T-distributed stochastic neighbor embedding (t-SNE)
was used to map all the features into two-dimensional space to visualize the nine varieties
of samples. The Vis-NIR datasets structure was preserved during the transformation,
and it was seen that nine distinct clusters were formed (Figure 2). The visualization
of t-SNE further proved the probability of classifying different biofertilizers using the
Vis-NIR technique.

3.2. Models for the Stacked Generalization

The choice of the models and their best parameters are essential when creating a
stacked generalization. Several models such as SVM, R.F., NB, KNN, L.R., MLP, and Ridge
were computed with grid search hyperparameter tuning. The sample was split using
cross-validation five folds. The obtained results showed that SVM, KNN, L.R., MLP, and
Ridge outperformed with an accuracy of 100% (Figure 3). However, the running time
comparison illustrated that MLP uses more time to be computed with 6.77 ns ± 0.00577 ns
per loop, contrary to other models. (Figure 3). The comparison of both accuracy and time
showed that SVM, KNN, L.R., and Ridge were suitable to be used as a model of the FSGC.
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3.3. Particle Swarm Optimization (PSO) Parameters Optimization

Besides the parameters of the classifier, the alpha value (constant weight for trading off
classifier performance), the number of particles, and iteration also needed more attention.
Thus, to obtain their best numbers, PSO was computed by trying all possibilities. N and
OM were simultaneously determined for each trial using the Ridge model, a simple model
that can bear prediction with many outputs. Finally, the comparison of R2 and RMSE of
the calibration set for all the different results allowed us to find the optimal values. The
more the model is efficient, the more the value of the parameter is optimal. An efficient
model should have R2 closer to 1 and RMSE value near 0.

In this experiment, the optimal alpha value was determined after trying different
values (Figure 4a). The values of iteration and particle value have been initialized to
5 and 50 as default values. For each given value of alpha, N and O.M. were predicted
simultaneously using the Ridge model. The lowest value of RMSEC and the highest value
of R2c were found when alpha was initialized to 0.5 (Figure 4a). This point was used as the
optimal value of alpha.
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The best particle value was obtained among five different values (Figure 4b). Before
predicting N and O.M., the alpha value was set to the obtained optimal value (0.5), and the
iteration value has remained constant. The result has shown that the best particle value
was 50 as it has the lowest RMSEC and the highest R2c.

Finally, different values of iteration were tried during the computation of PSO-FSGC.
The results of the prediction of N and O.M. illustrated that the ideal iteration value is 10 as
it has the minor values of RMSEC and the maximum value of R2c (Figure 4c).
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3.4. Comparison between the Proposed Method with Lasso, Genetic Algorithm (GA), PSO-Support
Vector Machine (SVM)

PSO-FSGC-Ridge, Lasso-Ridge, GA-Ridge, PSO-SVM-Ridge were computed to predict
N and OM simultaneously. The best subset must have higher R2 and lower RMSE for cali-
bration and prediction set. PSO-FSGC has obtained excellent results for the calibration set
R2c = 0.9923, RMSEC = 0.087 and for prediction set R2p = 0.9892, RMSEP = 0.1. Good pre-
diction was also obtained using PSO-SVM and GA for both calibration (R2c = 0.9920, 0.9922
and RMSEC = 0.089, 0.088) and prediction set (R2p = 0.9986, 0.9890 and RMSEP = 0.103,
0.101). However, lasso has obtained slightly lower results compared to other previous
techniques for both calibrations set (R2c = 0.9835, RMSEC = 0.128) and prediction set
(R2p = 0.9767, and RMSEP = 0.148).

Overall, the PSO-FSGC method outperformed all three techniques and has been shown
to be efficient for finding the best subset. Figure 5 displays the number of feature variables
of each selection technique.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 12 
 

 

3.5. Prediction of Nitrogen (N) and Organic Matter (OM) Using Second Stacked 
Generalizations for Regression (SSGR) 

The Ridge method was used during the whole process because it considers several 
outputs (multi-output regressor) and simultaneously predicts N and OM. However, in 
this step, a new multiple-stacked generalization model was built to improve the 
prediction results. Compared to the first stacked generalization (FSGC) used as the PSO 
classifier, the second multiple-stacked generalization was used for regression purposes 
(SSGR). 

All models and parameters used to build FSGC were used for SSGR except LR, only 
applicable when the dependent variable is dichotomous (binary). Therefore, it has been 
replaced by MLP. The samples were scaled using the standardization method (strategy 
for scaling data in which the values are centered around the mean with a unit standard 
deviation) and split into 607 samples for the calibration set and 203 samples for the 
prediction set using cross-validation. To check the reliability of the model, it has been 
compared with traditional methods such as Ridge, support vector machine for regression 
(SVR), and partial least square (PLS). The SVR computation was undertaken using the 
best parameter obtained after the grid search. The PLS model was computed with 
different latent variables (Lv = 3, Lv = 6, and Lv = 9) using the entire dataset. 

 
Figure 4. Best value for particle swarm optimization (PSO) by simultaneously predicting and comparing N and OM results 
using Ridge for calibration set; (a) alpha; (b) particles; (c) iterations. 

 
Figure 5. The number of feature variables of each selection technique. 

3.5.1. Prediction of Nitrogen (N) 
The results of the models for N with the selected bands obtained by PSO-FSGC are 

listed in Table 2. The best prediction for N was obtained when using the SSGR model for 
both calibrations set (R2c = 0. 9990, and RMSEC = 0.03) and prediction set (R2p = 0. 9989, 
and RMSEP = 0.031). Figure 6 shows the prediction error and the residuals plot of SSGR. 

Figure 5. The number of feature variables of each selection technique.

3.5. Prediction of Nitrogen (N) and Organic Matter (OM) Using Second Stacked Generalizations
for Regression (SSGR)

The Ridge method was used during the whole process because it considers several
outputs (multi-output regressor) and simultaneously predicts N and OM. However, in this
step, a new multiple-stacked generalization model was built to improve the prediction
results. Compared to the first stacked generalization (FSGC) used as the PSO classifier, the
second multiple-stacked generalization was used for regression purposes (SSGR).

All models and parameters used to build FSGC were used for SSGR except LR, only
applicable when the dependent variable is dichotomous (binary). Therefore, it has been
replaced by MLP. The samples were scaled using the standardization method (strategy
for scaling data in which the values are centered around the mean with a unit standard
deviation) and split into 607 samples for the calibration set and 203 samples for the predic-
tion set using cross-validation. To check the reliability of the model, it has been compared
with traditional methods such as Ridge, support vector machine for regression (SVR), and
partial least square (PLS). The SVR computation was undertaken using the best parameter
obtained after the grid search. The PLS model was computed with different latent variables
(Lv = 3, Lv = 6, and Lv = 9) using the entire dataset.
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3.5.1. Prediction of Nitrogen (N)

The results of the models for N with the selected bands obtained by PSO-FSGC are
listed in Table 2. The best prediction for N was obtained when using the SSGR model for
both calibrations set (R2c = 0. 9990, and RMSEC = 0.03) and prediction set (R2p = 0. 9989,
and RMSEP = 0.031). Figure 6 shows the prediction error and the residuals plot of SSGR.
There is a strong correlation between the predictions and their true values (Figure 6a).
Moreover, a fairly random, uniform distribution of the residuals against the target in
two dimensions (Figure 6b) can be noticed. This seems to indicate that our model is
performing well.

Table 2. Prediction results of SSGR, Ridge, support vector machine for regression (SVR), and partial least square (PLS) for
the determination of nitrogen (N) and organic matter (OM).

Proprieties Methods
Calibration Prediction

R2c RMSEC R2p RMSEP LOD

N

SSGR 0.9990 0.030 0.9989 0.031 2.97

Ridge 0.9987 0.036 0.9987 0.036 2.77

SVR 0.9954 0.066 0.9951 0.068 2.81

PLS (Lv = 3) 0.9790 0.143 0.9782 0.150 3.04

PLS (Lv = 6) 0.9939 0.076 0.9934 0.082 2.99

PLS (Lv = 9) 0.9985 0.038 0.9984 0.038 2.98

OM

SSGR 0.9973 0.050 0.9972 0.051 2.97

Ridge 0.9858 0.011 0.9796 0.137 3.03

SVR 0.9955 0.067 0.9945 0.071 3.00

PLS (Lv = 3) 0.4953 0.708 0.4683 0.716 6.01

PLS (Lv = 6) 0.9641 0.190 0.9516 0.213 3.09

PLS (Lv = 9) 0.9829 0.131 0.9755 0.151 3.03

R2c: Coefficient of determination for calibration; R2p: Coefficient of determination for prediction; RMSEC: Root mean square error for calibration;
RMSEP: Root mean square error for prediction; LOD: Limit of detection.
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3.5.2. Prediction of Organic Matter (OM)

The OM values predicted using the four models with the selected bands obtained
through the computation of PSO-FSGC are shown in Table 2. Among these models, SSGR
produced an excellent result for calibration (R2c = 0. 9973, and RMSEC = 0.050) and
prediction (R2p = 0. 9972, and RMSEP = 0.051). As for the prediction of N, it can be seen
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in Figure 7a that the prediction error also showed a strong correlation between predicted
and true value. Moreover, the distribution of their difference demonstrated the good
performance of SSGR.
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4. Discussion

This study proposed a novel approach for predicting and evaluating the amount of
organic matter (OM) and nitrogen (N) in organic fertilizer using Vis-NIR. However, the
extensive features of the Vis-NIR spectra can make the prediction hard. Thus, to obtain the
best subset, we created a new ensemble model (FSGC), which is used as the PSO classifier.
The proposed approach outperformed other feature selection strategies such as PSO-SVM,
GA, and Lasso in terms of prediction outcomes for both prediction and calibration sets.
This success could be attributed to the constructed classifier, which is made by combining
several models (Figure 3). Many previous studies have shown that good predictions could
be obtained using GA or PSO-SVM [28–30]. In this case, despite the difference being barely
noticed, PSO-FSGC outperformed PSO-SVM.

High-ranking features are concentrated in the 400–600 nm, 900–1000 nm, 1400–1600 nm,
and 1800–2300 nm ranges (Figure 8). According to Reda et al. [31], the wavelength at
1400 nm could be associated with the vibration of OH and residual water in organic matter,
while the spectrum field at 2130 nm could be related to a range of vibration forms, including
a stretch of C–H, deformation of N–H, and the stretch combination C=O; N–H. In this
experiment, the large part of PSO-FSGC selected variables were between 1400–1600 nm and
1800–2300 nm and, according to Leme et al. [32], the band 1386–1401 nm may contribute to
the prediction of organic matter. Furthermore, the features from range 400–600 nm and
1800–2300 nm could contribute widely to the prediction of N, which has been demonstrated
in [33].

However, although Lasso gave the smallest number of selected variables (Figure 5),
its prediction results were lower than the other three methods, which means that the
number of variables chosen can affect the outcome. In other words, this finding could be
explained by the fact that removing too many variables from the spectra can affect the
prediction results.

Overall, the use of PSO-FSGA selected features is feasible to predict N and OM as
it gives more insight into the spectral predictive mechanisms and can be suited for more
efficient computation and storage [34].
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Four machine learning methods were combined with PSO-FSGC to predict OM and
N. Based on R2 and RMSE values, the SSGR achieved the highest performance in both
calibration and prediction. At the same time, Ridge outperformed SVR and PLS slightly.
The successful prediction performance of the SSGR might be the consequence of the
ensemble models that were optimized with parameter tuning. It could also be the outcome
of the proposed method (FSGC-PSO), which deleted some irrelevant features.

However, it could be noticed that the prediction results for N were barely more
significant than the prediction results of OM. This result could be interpreted by the high
number of features obtained from the 1800–2300 nm range, which contribute widely to N
detection (Figure 8).

The scatterplots of the predicted vs. true value and the residual plots illustrated in
Figures 6 and 7 showed that the model performed well. A strong correlation between the
prediction values (N and OM) and their actual values was observed in Figures 6a and 7a.
This strong correlation could explain the robustness of our model to predict N and OM.

Finally, it could be seen that the points were overlapped with each other, which is due
to the small number of varieties used in this experiment

Although FSGC-PSO coupled with SSGR achieved excellent N and OM results, more
samples with different varieties should be used in the future. Overall, Vis-NIR and the
framework can play a crucial role in chemical components detection.

5. Conclusions

This study proposed a novel framework that combined a particle swarm optimization
(PSO) and two multiple-stacked generalizations to determine the amount of organic matter
(OM) and nitrogen (N) in organic fertilizer. The first multiple-stacked generalizations
coupled with PSO (FSGC-PSO) were used to select the best features, while the second
multiple-stacked generalizations (SSGR) improved the detection of N and OM. Compared
to other feature selection approaches such as GA, Lasso, and PSO-SVM, PSO-FSGC was
shown to be an effective method for finding the best subset. Meanwhile, the obtained
FSGC-PSO subset combined with SSGR achieved more significant prediction results than
conventional methods (Ridge, SVM, and PLS model) for the prediction of N (R2p = 0.9989,
RMSEP = 0.031 and LOD = 2.97) and O.M. (R2p = 0.9972, RMSEP = 0.051 and LOD = 2.97).
Therefore, this developed approach can be implemented as a promising way to determine
N and O.M. in organic fertilizer, which has enormous benefits for rapid detection of
chemical composition.
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