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Abstract: This study was conducted using a drone with advanced mobility to develop a unified sen-
sor and communication system as a new platform for in situ atmospheric measurements. As a major
cause of air pollution, particulate matter (PM) has been attracting attention globally. We developed
a small, lightweight, simple, and cost-effective multi-sensor system for multiple measurements of
atmospheric phenomena and related environmental information. For in situ local area measurements,
we used a long-range wireless communication module with real-time monitoring and visualizing
software applications. Moreover, we developed four prototype brackets with optimal assignment
of sensors, devices, and a camera for mounting on a drone as a unified system platform. Results of
calibration experiments, when compared to data from two upper-grade PM2.5 sensors, demonstrated
that our sensor system followed the overall tendencies and changes. We obtained original datasets
after conducting flight measurement experiments at three sites with differing surrounding environ-
ments. The experimentally obtained prediction results matched regional PM2.5 trends obtained using
long short-term memory (LSTM) networks trained using the respective datasets.

Keywords: PM2.5; drone; in situ atmospheric measurement; LoRa; long short-term memory

1. Introduction

Greenhouse gases have increased dramatically in the atmosphere since the Industrial
Revolution of the late 18th century. The severity of rising sea levels [1] and abnormal
weather changing patterns [2] related to anthropogenic climate change, reflecting the
effects of human activities on the climate [3], have been worsening annually for decades.
Air pollution has especially been increasing because of diverse and widespread human
economic activities and daily life, mainly because of fossil fuel combustion [4]. Air pollution
represents a severe difficulty: it not only adversely affects our health in terms of coughing,
asthma, and bronchitis, but it also imposes tremendous burdens on the natural environment.
As only one of many effects, acid rain and air pollution [5] cause severe damage to crops,
soil, lakes, marshes, and forests.

As an important component of air pollution, particulate matter (PM) has been attract-
ing attention worldwide [6]. For such matter, PM2.5 signifies particles having diameter as
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large as 2.5 µm. Several studies have demonstrated the epidemiological effects of PM2.5
on human health [7–11]. High PM2.5 concentrations increase risk not only of respiratory
diseases in terms of asthma and bronchitis but also of cardiovascular disease.

Since the late 1990s, concern about PM2.5 that induces damage to respiratory and
circulatory systems has increased rapidly in industrialized countries. The primary and
dominant PM2.5 occurrence sources can be classified roughly into two types: natural
sources and anthropogenic sources [12]. The widespread combustion of fossil fuels in huge
amounts increases greenhouse gases and PM2.5 attributable to anthropogenic sources. To
control the increase on a regional level, numerous approaches have been proposed in terms
of real-time absorption and emission monitoring, investigation of concentrations, source
detection and identification, and specifications of the causative materials.

For real-time monitoring, local governments have provided public measurement and
monitoring stations. The PM monitoring values obtained from fixed stations observed at
specific intervals are published immediately from online websites. However, installation
intervals of typical fixed stations are wide because of initial and maintenance costs. There-
fore, land utilization patterns covered by a particular monitoring station differ: residential,
cultivating, or industrial areas. Optimization of the appropriate number and placement of
fixed stations, such as time and spatial resolution, remains a challenging research task.

As a fundamental property, PM2.5 includes characteristics that affect areas far from
the pollution source because of suspension in the atmosphere for long periods. However,
the source identification with sufficient accuracy remains a challenging task with respect
to temporal and spatial resolution with the current inadequate number of measurement
stations, installation intervals, and monitoring frequencies. Detection of PM2.5 sources and
their tracking are anticipated not only for scientific elucidation of generation mechanisms
but also for administrative measures to alleviate resident concerns. Although meteoro-
logical satellites are used primarily for wide-range PM2.5 tracking, the spatial resolution
of such data is low. Therefore, improvement of these resolutions is crucially important
to elucidate phenomena of high regional PM2.5 concentrations and the actual effects of
transboundary pollution.

Herein, filter vibration methods and β-ray absorption methods are generally used for
automatic measurement instruments at PM2.5 measurement stations. These instruments
present difficulty when moving because they are large and heavy. Moreover, the range of
product prices has become a bottleneck for dissemination. With the rise of environmen-
tal awareness [13], small, simple, and inexpensive PM2.5 sensors are now commercially
available from several electric manufacturers. In 2013, Sharp Corporation introduced a
commercially available PM2.5 sensor using a compact optical element with a minimum de-
lay time for measuring [14]. Panasonic Corporation and Omron Corporation, respectively,
introduced inexpensive, compact, and highly accurate PM2.5 sensors with light scattering
in 2015 and 2018 [15,16]. A compact PM2.5 sensor introduced by Yaguchi Electric Corpora-
tion in 2017 has dramatically expanded applications [17] for long-term monitoring with a
simple connection for a smartphone. Concomitantly with technological advancements and
improvements, PM2.5 sensors and monitoring systems that are small, simple, inexpensive,
and highly accurate are expected to be increasingly popular.

We specifically examine a joint research project combining engineering and meteoro-
logical sciences for in situ atmospheric measurements using drones [18–22]. For meteo-
rological scientific study, atmospheric measurements have traditionally been conducted
using manned aircraft equipped with expensive specialized sensor systems [23]. Another
major approach is using balloon sondes combined with inexpensive, lightweight, dispos-
able sensors and radio modules [24]. For engineering and industrial applications, novel
approaches [25] and systems [26,27] have been developed to install various sensors on a
drone for environmental measurements with advanced mobility.

Particularly, image sensing using drones is expanding the application range [26] in
terms of 2D image sensing [28] with RGB cameras, 2.5D image sensing [29] combined
with a monomular camera and structure from motion (SfM) technologies, and temperature



Sensors 2021, 21, 4881 3 of 31

distribution measurements [30] using a thermal infrared camera. Recently, numerous
application studies have been conducted with 3D images obtained using a light detection
and ranging (LiDAR) sensor mounted on a drone [31–34]. Several drone manufacturers
provide commercially available drones equipped with modules for real-time image trans-
mission. By contrast, integrated systems are scarce, except for ordinary cameras or LiDAR
sensors. Therefore, measurement signals obtained from sensors are usually saved in a
storage device mounted on a drone. When using this approach, in situ measurements
consisting of real-time data processing and visualization are not available. Measurement
signals are processed offline after the drone returns and lands at the home point.

Thanks to the rapid technological evolution of drones, sensors, wireless communi-
cation, and tiny onboard computers, in situ measurements are recently becoming active.
As a large-scale in situ measurement campaign, the Lower Atmospheric Profiling Studies
at Elevation—a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE) [35,36] was
conducted in the San Luis Valley of Colorado, USA, from 14 to 20 July 2018. The LAPSE-
RATE aimed to improve the understanding of boundary layer structure, cloud and aerosol
properties, and surface-atmosphere exchange. Detailed information supporting model
evaluation and improvement work was provided by the LAPSE-RATE. The experimentally
obtained datasets are publicly available through an archive site co-located with other
LAPSE-RATE datasets as part of the community for their project.

For our earlier study [21,22], we developed an in situ carbon dioxide (CO2) measure-
ment system using an industrial drone. We obtained vertical distribution CO2 profiles
throughout one year using our proposed measurement system [20]. We compared our
obtained profiles with trends obtained by satellite data. However, this system had no com-
munication device to transmit measurement signals from the drone to the ground station.
We processed large amounts of measurement signals offline after the respective flights.

This study was conducted to produce a sensor fusion system that can measure not
only CO2 but also PM2.5 and atmospheric and environmental information related to air
pollution. For measurement targets that change rapidly because of wind and airflows, our
novel system includes a remote communication function for the immediate confirmation
of measurements and their processing results. The primary objective of this study is to
develop a novel system that can use a drone to conduct in situ atmospheric measurements
with high maneuverability. We conducted evaluation measurement flight experiments
to obtain atmospheric data using our original composite sensor system and remote com-
munication system. Using high-resolution datasets obtained using multiple sensors, this
study elucidates regional distribution profiles at several measurement sites having different
regional characteristics and surrounding environments. Furthermore, we assess prediction
of PM2.5 trends on a regional basis for applying the obtained datasets to a time series
feature learning network based on deep-learning technologies.

This paper is structured as follows. In Section 2, we briefly review related studies
of atmospheric measurements using a drone and long-range wireless communication
systems. Section 3 presents our proposed systems for in situ measurements. Subsequently,
Sections 4 and 5, respectively, present preliminary experiments for wireless communication
and sensor calibration. Section 6 presents evaluation experiments of flight measurements
at three sites and a distribution prediction produced using a deep-learning-based method.
Finally, Section 7 concludes and highlights avenues for future work.

2. Related Studies
2.1. Drone-Based Atmospheric Measurements

Drones have become explosively popular [37] in recent years because of rapid techno-
logical advances and falling costs of brushless motors, lithium-ion rechargeable batteries,
high precision sensors, and flight controllers (FCs). Drones are actually categorized as
unmanned aerial vehicles (UAVs). Their name derives from drone bees, which have no
independent activity in or out of a beehive. Stable lift power is obtained using multi-
ple rotors driven by high-speed motors controlled precisely with an FC. In contrast to a
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single-rotor helicopter driven by an internal combustion engine, drones fly stably using
an FC combined with a global positioning system (GPS) and an inertial measurement
unit (IMU). By virtue of their simplicity and versatility, drones are used today in widely
diverse applications.

Along with the road map set out in 2018 for the sky industry revolution provided by
the Cabinet Secretariat and the Ministry of Economy, Trade and Industry in Japan, drone
utilization fields are classifiable into five categories: logistics, disaster rescue, infrastructure
maintenance and management, surveying, and agriculture. Drone-based meteorological
and atmospheric measurements, which are not directly included in this roadmap, belong
to an interdisciplinary field that is closely related to the categories of disaster response and
agriculture. However, various challenging hurdles remain in terms of flight duration time,
payload, air body size, sensor accuracy, sensor sensitivity, and noise resistance [38].

Juan et al. [39] developed a measurement system using a small drone for automatic
creation of CO2 distribution maps used in a greenhouse. Their system comprised a CO2
sensor (MG811; Sandbox Electronics; Finland), a drone (AR.Drone2.0; Parrot SA; Paris,
France), and a Raspberry Pi single-board computer for real-time data processing. They
demonstrated the creation of a two-dimensional distribution map of CO2 temperature,
humidity, and insolation for a 3 m altitude in a greenhouse of 106 × 47 m.

Sasaki et al. [17] developed a drone system to measure the spatial distribution and
vertical profiles of SO2 and H2S concentrations in volcanic gases and PM10 and PM2.5 in
volcanic ash. The proposed system comprised a commercially available drone (Spider
CS-6; Luce Search Co., Ltd., Tokyo, Japan) equipped with a meteorological sensor (150WX;
Airmar Technology Corp., Milford, CT, USA), a gas monitor (QARE3; RAE Systems Inc.,
Sunnyvale, CA, USA), and a PM monitor (Pocket PM2.5 Monitor; Yaguchi Electronics Co.,
Ltd., Miyagi, Japan). As a preliminary experiment, sensor calibration was performed on a
55 m high meteorological observation tower. For that study, they observed atmospheric
pressure, temperature, and humidity along with latitude and longitude as location informa-
tion. As an in situ observation experiment, they obtained vertical profiles up to an altitude
of 1000 m at a site located about 8 km east–southeast of the crater of Mt. Shinnen-dake in
Kyushu, Japan. The experimentally obtained results revealed that their drone was able to
fly in wind speeds of up to 15 m/s. They demonstrated both the practicality and usefulness
of their developed drone system for volcano observation. Moreover, they presented the
possibility of estimating wind velocity calculated from the drone altitude.

Rossi et al. [40] developed a drone system to detect gas leaks using a metal-oxide
(MOX) sensor. Although no flight altitude was reported, they conducted an evaluation
experiment using a drone (S800; SZ DJI Technology Co., Ltd., Shenzhen, China) to detect a
gas source, which had been generated intentionally from isopropyl alcohol. Moreover, they
simulated the extension of flight duration time for seven drones and eight photovoltaic
solar panels.

Villa et al. [41] developed a drone system for monitoring air pollutants and particulate
matter. They monitored gases of four types: carbon monoxide (CO), CO2, nitric oxide
(NO), and nitrogen dioxide (NO2). Their in situ measurement system comprised a CO2
sensor (SprintIR; Gas Sensing Solutions Ltd., Cumbernauld, UK) and a complex sensor
(Alphasense; Gas Sensing Solutions Ltd., Cumbernauld, UK) for three other gases on
a drone (S800; SZ DJI Technology Co., Ltd., Shenzhen, China) with a sensor board on
an Arduino microprocessor. The experimentally obtained results revealed the influence
of downwash on measurements using a pipe to ventilate automobile exhaust gases at a
3 m height.

Ishihara et al. [42] developed a simple drone system with a thermometer (R5011; Hioki
E.E. Corp., Nagano, Japan) attached to a drone (Phantom 4; SZ DJI Technology Co., Ltd.,
Shenzhen, China) for measuring vertical profiles of air temperature and to elucidate mech-
anisms of mirage occurrence. They conducted a measurement experiment in Hokkaido,
Japan. The experimentally obtained results revealed a temperature boundary (thermocline)
at a 40–60 m altitude when a mirage occurs. However, the measurement altitude was
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limited to 100 m because of the drone battery properties when taking measurements at
temperatures below freezing.

To observe high-altitude weather, Inoue et al. [43] developed a temperature and
humidity measurement system that comprised a drone (Spider CS-6; Luce Search Inc.;
Tokyo, Japan), an ultrasonic anemometer (SE-702LM1; FT Technologies Ltd., Sunbury,
UK), and a logger (SHTDL-3; Sensirion AG, Staefa, Switzerland). They obtained vertical
profiles of wind direction and speed, air temperature, and humidity up to 1000 m over
the Sakurajima Volcano in Kagoshima, Japan. To evaluate the consistency of their data,
they compared measurement results with standard data obtained from a meteorological
measurement tower and a Doppler Lidar.

Chang et al. [44] developed a drone system to measure volatile organic compounds
(VOCs) of 106 types, in addition to methane (CH4), CO, and CO2. After they mounted an
electroplated stainless steel container with 2 L capacity on a specifically developed large
octo-rotor drone, they compared the difference between an air sample obtained at up to
300 m height and a surface air sample obtained at the northernmost tip of Taiwan.

Andersen et al. [45] developed a drone system to observe CO, CH4, and CO2 in
the atmosphere. The system, AirCore [46], was composed by the National Oceanic and
Atmospheric Administration (NOAA) on a drone (Inspire 1 Pro; SZ DJI Technology Co.,
Ltd., Shenzhen, China). Using this system, they analyzed the collected air using an analyzer
(G2401; Picarro, Inc.; Santa Clara, CA, USA) because AirCore had no attached analytical
instrument. They elucidated vertical profiles up to a 500 m height using five flight tests
conducted in the Netherlands.

Rüdiger et al. [47] developed a drone system to observe CO2 and sulfur dioxide (SO2)
emitted from volcanic eruptions. They composed an original drone prototype using motors
(E800; SZ DJI Technology Co., Ltd., Shenzhen, China) and an FC (NAZA M-2; SZ DJI
Technology Co., Ltd., Shenzhen, China) with a CO2 sensor (K30 FR; Senseair AB; Delsbo,
Sweden) and a SO2 sensor (CiTiceL 3 msT/F; City Technology Ltd., Portsmouth, UK).
Using this drone, they conducted in situ measurement experiments at three volcanoes in
Italy, Costa Rica, and Nicaragua. Although they assessed and described temporal changes
of gases, no altitude was reported.

Weber et al. [48] developed a drone system using a Pixhawk [49] autonomous flight
controller to observe traffic-induced pollution plumes around a river bridge. They used a
weight optimized optical particle counter (Grimm 1.109; GRIMM Aerosol Technik Ainring
GmbH & Co. KG, Ainring, Germany) [50] that can measure PM10, PM2.5, and PM1.
Moreover, they mounted an ultrafine particle (UFP) monitor (DiSCmini; Matter Aerosol
AG, Wohlen, Switzerland) on their originally developed drone with eight rotors to measure
UFPs from 250 nm to 32 µm. They were able to identify traffic-induced air pollution plumes
originating from a bridge based on their field experiments of 60 measurement flights.

Wang et al. [51] proposed a drone system to measure PM2.5 and PM10 simultaneously.
Their originally developed drone prototype used six motors and a flight controller ap-
propriated from a commercially available drone. They used a digital universal particle
concentration sensor (PMS5003ST; Beijing Plantower Co., Ltd., Beijing, China), which
measured PM based on the laser-scattering principle. Their conducted flight application
tests in vertical and horizontal directions demonstrated the three-dimensional distribution
of PM concentration in arid areas. However, the wireless communication range was limited
because they used XBeePro for a sensor data communication module.

Okamura et al. [52] measured the CO2 horizontal concentration at around a 30 m
altitude using a drone (Matrice 100; SZ DJI Technology Co., Ltd., Shenzhen, China) with
an on-board CO2 measurement device (C2D-W02TR; UDOM Co., Ltd., Mito City, Japan).
They obtained original measurement datasets from 35 points at 50 m intervals every
10 s. Results obtained from comparative experiments conducted in an urban residential
area revealed that the CO2 distribution variation on the flight was less than that on the
ground. Their proposed system demonstrated that a stable concentration distribution
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reflecting the influence of regional components was obtainable after removing effects from
variable components.

As a very recent study, Bieber et al. [53] proposed a drone-based aerosol particles
sampling impinger/impactor (DAPSI) system for a field study to investigate sources and
near-surface transport of biological ice nucleation particles (INPs). The DAPSI system
measured PM10, PM2.5, temperature, relative humidity, and air pressure at 0.5 Hz. They
performed a series of sampling missions of 12 flights using two quad-rotor drones (Phantom
4; SZ DJI Technology Co., Ltd., Shenzhen, China) at a remote sampling site near Gosau,
Austria. The experimentally obtained results revealed that fluorescence microscopy of
impactor foils showed a significant number of auto-fluorescent particles. Moreover, they
demonstrated a slight increase in ice nucleation activity of sampled aerosol measured by
using a microscopic cooling technique.

2.2. Long-Range Wireless Communication for In Situ Measurements

As long-range wireless communication systems, real-time transmission of measure-
ment signals obtained using sensors has various applications in terms of smart farming [54],
disaster alerts [55], water monitoring [56], food traceability [57], health diagnosis of so-
cial infrastructure such as bridges and tunnels [58], and smart homes [59]. Low-power
long-range communication devices are increasingly anticipated for application for various
Internet of things (IoT) devices and communication systems [60]. Nevertheless, unresolved
technical difficulties and concerns remain in terms of communication failures and interrup-
tions in environments with numerous obstacles, extreme reduction of transmission speed,
and communication data loss.

Dambal et al. [61] measured the signal strength of long range (LoRa) wireless commu-
nication within and among buildings to investigate factors that affect signal quality in terms
of spreading factors and antenna orientation. Moreover, they quantitatively demonstrated
the wireless communication performance of a LoRa transmitter mounted on a drone at two
altitudes of 25 m and 50 m in urban and suburban areas. Their experimentally obtained
results revealed that drone altitudes and antenna orientations are crucially important for
improving communications coverage in suburban environments.

Saraereh et al. [62] proposed a LoRa-based wireless communication system for disaster
prevention information. Their study was undertaken to provide an alternative method
when existing communication networks have been disrupted by disasters such as floods,
wildfires, and earthquakes. Their proposed system used a drone as a relay station to
improve the message exchange reliability. The results obtained from a simulation-based
evaluation demonstrated that LoRa network systems mounted on multiple drones effec-
tively improved packet receiving rates, with only a slight buffer delay.

Chen et al. [63] designed a prototype model of a LoRa-based atmospheric measure-
ment system mounted on a drone. Their study was undertaken not only to transmit sensor
signals from remote locations but also to perform sensing tasks using a drone with mini-
mum human resources, burdens, and procedures. They developed a web-based application
to store and to visualize measurement signals obtained from drone-mounted air quality
sensors. Nevertheless, the main outcomes of their study were limited to simulation results.

2.3. Atmospheric Distribution Prediction

Studies have been conducted recently not only to measure the atmospheric envi-
ronment but also to predict distribution profiles and trends based on machine-learning
methods that have been trained using obtained datasets. Masood et al. [64] used a con-
ventional artificial neural network (ANN) and a support vector machine (SVM) to predict
PM2.5 global distributions. The experimentally obtained results based on a simulation
using benchmark datasets obtained from online portals revealed that ANN was superior
to SVM for PM2.5 prediction accuracy.

Doreswamy et al. [65] assessed PM2.5 predictions based on machine-learning algo-
rithms of four representative types using publicly available datasets obtained from 76 air
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pollution stations over five years. Their experimentally obtained cross-validation (CV)
results revealed that gradient boosting regression (GBR) methods achieved the highest
accuracy in two evaluation metrics. However, the performance extraction of each algorithm
was insufficient because optimizing network parameters were not reported.

Yazdi et al. [66] created a prediction model for daily PM2.5 levels using an ensemble
machine-learning approach consisting of random forest (RF), gradient boosting machine
(GBM), and k-nearest neighbor (k-NN) algorithms. They conducted an evaluation experi-
ment to predict PM2.5 concentration in 3980 grid cells with a 1× 1 km range using long-term
datasets obtained for a large and densely populated city over eight years. Although no
comparative result was presented for machine-learning algorithms that were combined for
ensemble learning, the distributional trends per year in their datasets provided beneficial
results in terms of healthcare for urban residents.

Sugiura et al. [67] demonstrated the long-term prediction of PM2.5 distribution us-
ing deep recurrent neural networks (DRNN) embedded by dynamic pre-training (DTT):
DTT-DRNN. They trained DTT-DRNN using PM2.5 data combined with related data of
weather datasets of wind speed and orientation, temperature, sunshine hours, humidity,
and rainfall from two-year public datasets of one-hour sampling in 52 Japanese cities. Their
experimentally obtained results, when compared to an existing method using a weather
model, revealed superior prediction accuracy for urban areas.

Song et al. [68] proposed a residual-learning-based [69] end-to-end deep-learning
network model to estimate PM2.5 and PM10 values from scene images obtained using
a smartphone camera. First, they calibrated two low-cost portable sensors to provide
reliable, highly accurate pollutant measurements. Then, they conducted experiments to
demonstrate PM measurements within a distance of up to 500 m, horizontally. After they
constructed a comprehensive dataset containing 3024 images based on their calibrated
sensors and the empirical experiment, they trained their proposed model using their
original image datasets. The experimentally obtained results, when compared to other
conventional baselines, revealed that their proposed model outperformed the best deep-
learning baseline. They demonstrated that their proposed model can provide air pollutant
estimation based on smartphone images or surveillance camera images.

Shang et al. [70] proposed a novel prediction model based on a classification and
regression tree (CART) [71] and ensemble extreme learning-machine (EELM) [72] methods
to predict hourly PM2.5 concentrations. First, they split datasets by constructing a shallow
hierarchical regression tree based on CART. Then, they constructed EELM models using
training samples from tree nodes. Moreover, they selected a suitable number of hidden
neurons to minimize validation errors. Finally, they compared global and several local
EELMs on paths from roots to leaves with the smallest validation errors. They developed
original meteorological and air pollutant concentration datasets obtained from a city
monitoring center in Yancheng, China. The experimentally obtained results demonstrate
that the developed method addresses global–local duality and that it achieved superior
accuracy to other machine-learning-based conventional models including RF, support
vector regression (SVR), and k-means clustering.

2.4. Challenging Tasks and Contributions

As described above, atmospheric environment measurements using small, lightweight,
and inexpensive sensors combined with a drone have been taken more actively in recent
years. Nevertheless, we consider that three challenging tasks remain for realizing actual
applications. The first task is to combine multiple sensors while guaranteeing their accuracy.
Currently, the observed particles and components remain limited because of the drone
payload. Instead of improving payloads by increasing the drone size, further reductions
must be achieved in terms of sensor system size and weight. The downsized sensor char-
acteristics and accuracy can be calibrated precisely by comparison with upper sensors.
The second task is to ensure a wireless communication range that allows the maximum
measurement flight mobility for a drone. The communication capabilities of conventional
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drone-based sensor systems have improved in small areas because of the increasing use
of Wi-Fi, ZigBee, and Bluetooth protocols. The third task is to predict local distributions
from sensor signals obtained using drones for in situ measurements that require flexibility
and high mobility. Existing studies of distribution prediction have primarily used datasets
obtained from fixed public measurement stations. Moreover, no reported study has ad-
dressed distribution prediction combined with fixed stations and drones as mobile and
flexible stations. To realize the three tasks presented above, this study was conducted to
develop a novel multi-sensor system with a prediction function based on a deep-learning
algorithm and a long-range wireless communication protocol.

3. Proposed System
3.1. Overall System Architecture

Figure 1 depicts the overall architecture of our proposed in situ measurement system.
This unified system comprises three subsystems: a multi-sensor subsystem (MSS), a long-
range wireless communication subsystem (LCS), and a real-time monitoring and visualizing
subsystem (RVS).

Figure 1. Overall architecture of our proposed system for in situ atmospheric measurements.

An LCS comprises two modules: a transmitter module (TM) and a receiver module
(RM). The MSS and TM are mounted on a drone for remotely measuring atmospheric
phenomena over a wide area. Together, the MSS and LCS are independent hardware. They
communicate using Bluetooth: a short-range, low-power, and low-cost communication
protocol [73].

The RM and RVS are installed at a ground station. Using LoRa, which is an attribute of
low-power wide-area network (LPWAN) technology, the TM and RM provide long-range
wireless communication. Accordingly, the system sends signals measured using the sensors
in the MSS to RM using LoRa via the TM using Bluetooth. We connected RM to a laptop
computer to visualize measurement results for a dynamic graph immediately, which is the
main function of RVS as a part of in situ measurements.

The following describes the details of the MSS, LCM, and RVS development processes
including a prototype of our originally developed brackets of four types for the MSS and
TM mounted on a drone.

3.2. Multiple Sensing of Atmosphere
3.2.1. Specifications

Table 1 presents the listed parts consisting of devices and sensors for developing MSS.
Figure 2 depicts connection details of the respective parts.
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Table 1. Devices and sensors for developing MSS.

Target Model Name Manufacturer

PM B5W-LD0101 Omron Corporation, Kyoto, Japan
PM PPD42NS Shinyei Technology Co., Ltd., Kobe, Japan
PM PMSA003I Beijing Plantower Co., Ltd., Beijing, China
CO2 K30 Senseair AB, Delsbo Sweden
GPS L80-R (SKU:EZ-0048) Quectel Wireless Solutions Co., Ltd., Shanghai, China

Humidity and pressure BME280 Robert Bosch GmbH, Stuttgart, Germany
Ambient light TSL2591 ams AG, Premstätten, Austria

UV SI1145 Adafruit Industries, New York, NY, USA
IMU KP-9250 Kyohritsu Electronic Industry Co., Ltd., Osaka, Japan
RTC DS1307 Adafruit Industries, New York, NY, USA

Air pump CM-15-6 Enomoto Micro Pump Mfg. Co., Ltd., Tokyo, Japan
SBC Raspberry Pi 3 Model B Raspberry Pi Foundation, Cambridge, UK

Touch panel display RASP-TSL7 Raspberry Pi Foundation, Cambridge, UK
Battery OWL-LPB10010 Owltech Co., Ltd., Kyoto City, Japan

Figure 2. Connection details of respective parts for assembly.

We compared three commercially available PM sensors: B5W-LD0101 by Omron
Corporation, PPD42NS by Shinyei Technology Co., Ltd., and PMSA003I by Beijing Plan-
tower Co., Ltd. These sensors employ a detection method based on the light scattering
principle. The minimum detectable particle sizes of LD0101, PPD42NS, and PMSA003I are,
respectively, 0.5, 1.0, and 0.3 µm. Table 2 denotes major specifications of three PM sensors
from respective datasheets. The basic sensor properties, comparison results, and calibration
procedures are described in detail in Venkatraman Jagatha et al. [74].

Table 2. Major specifications of three PM sensors.

Parameter B5W-LD0101 PPD42NS PMSA003I

Manufacture Omron Shinyei Technology Beijing Plantower
Sensor Type Light scattering photometer

Detectable size range 0.5 µm 1.0 µm 0.3 µm
Size (H ×W × D) 52 × 39 × 18 mm 59 × 42 × 22 mm 51 × 36 × 14 mm

Weight 20 g 20 g 28 g

For CO2 measurements, we used a compact, durable, and reliable sensor (K30; Senseair
AB; Delsbo, Sweden) rather than the costly sensor used in our earlier studies [21,22]. This
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sensor employs the non-dispersive infrared (NDIR) method [75] as the operating principle.
As explained herein, the emphasis is on PM2.5 measurements in this case study. We infer
that a calibration method must be established because we confirmed large variability for
this sensor.

To obtain positional information, we used a built-in GPS sensor (L80-R; Quectel
Wireless Solutions Co., Ltd., Shanghai, China), which is a part of the packaged GPS
module (L80-R; STMicroelectronics NV; Geneva, Switzerland) specialized for a single
board computer (SBC). We connected the L80-R to the SBC using a universal serial bus
(USB) cable. In addition to positional information obtained from GPS, we used a real-time
clock (RTC) module (DS1307; Adafruit Industries, New York City, NY, USA) to map spatial
and temporal information of the measurement signals.

To measure humidity, pressure, and temperature, we used a combined ambient sensor
(BME280; Robert Bosch GmbH; Gerlingen City, Germany). Letting P and T, respectively,
denote the air pressure and temperature obtained using the sensor on a drone, then the
drone flight altitude Hd can be given as

Hd =
(

P−5.257
0

P − 1)× (T + 273.15)
0.0065

, (1)

where P0 stands for the air pressure at ground level. Herein, the altitudes obtained from the
altimeter incorporated in the FC of the drone were used as ground truth (GT) for obtained
altitudes calculated from sensor data obtained from the BME280.

We used an ambient lighting sensor (TSL2591; ams AG, Premstaetten, Austria) to
obtain supplementary weather information during flight experiments. The illuminance
values obtained using this sensor were used as additional information to ascertain weather
patterns on a flight measurement day. Moreover, we used an ultraviolet (UV) sensor (SI1145;
Adafruit Industries, New York City, NY, USA) to obtain additional weather information. To
measure the flight kinematics of the drone, we used an IMU (KP-9250; Kyohritsu Electronic
Industry Co., Ltd., Osaka, Japan) that has nine axes: three acceleration axes, three gyro
axes, and three geomagnetic axes. The maximum sampling rate was 1 kHz.

To reduce downwash effects from the drone rotors, we used an air pump (CM-15-6;
Enomoto Micro Pump Mfg. Co., Ltd., Tokyo, Japan). Similarly to other sensors and devices,
the air pump was installed inside the MSS. Therein, the air intake was set to 200 mm from
the rotors on the drone top plate. The air intake flow rate was controlled by the air pump
motor rotations using a pulse width modulation (PWM) function [76].

For downwash effects, Yang et al. [77] and Wu et al. [78] reported airflow simulation
results surrounding rotors. Both simulation results demonstrated that the downwash
effects of the rotor bottom were large. By contrast, the downwash on the rotor upper was
slight. Therefore, we connected the intake on the upper side and mounted the MSS on the
lower side using a silicone rubber tube.

Because of its small size, low cost, and light weight, we used an SBC (Raspberry Pi
3 Model B; Raspberry Pi Foundation; Cambridge, UK) to control sensors and to capture
measurement signals in addition to their storage and management. For the connection
between the sensors and the SBC, we used USB and general-purpose input–output (GPIO)
supported by an inter-integrated circuit (I2C). The operating system (OS) can be selected
from several types of Unix distributions. For this study, we installed the official Raspberry
Pi OS. Then, we developed applications using C/C++ and Python.

We installed a 7-inch touch screen display (RASP-TSL7; Raspberry Pi Foundation;
Cambridge, UK) on the MSS to confirm the operating status of the sensors and devices
directly. The screen was operated in sleep mode during a drone flight to reduce power
consumption. For the power supply, we used a mobile battery (OWL-LPB10010; Owltech
Co., Ltd., Ebina City, Japan). With the addition of this battery, the total weight increased by
326 g. Although the drone used for this study had an external power supply terminal as a
standard specification, we mounted an independent battery for the MSS to provide scala-
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bility for future extensions. The OWL-LPB10010 capacity is 37 Wh, which can operate all
devices and sensors, including the motor pump and the SBC, for approximately five hours.

3.2.2. Assembly

Figure 3 portrays the assembled result with the configuration depicted in Figure 2
using the devices and sensors listed in Table 1. We used a polypropylene (PP) box with
external dimensions of 172 mm width, 231 mm length, and 78 mm height. We placed
rubber sponges on the bottoms of all devices and sensors to fix them in the box and to
reduce vibration from motors and rotors.

Figure 3. Assembled MSS and part assignment.

The total MSS weight is 1.14 kg. We considered the assignment of each component
with the center-of-gravity balance while loading the drone. We affixed the battery to the
bottom inside the box. A touch screen on the left of Figure 3 was put above all the parts.
We put a top cover on the box before mounting it on the drone.

3.3. Long-Range Wireless Communication

The important features of LoRa are that it has radio interference robustness, but it
has low power consumption and requires no wireless communication license. In recent
years, LoRa has been used widely for various communication systems, especially for IoT
devices [79]. One LoRa shortcoming is its small communication capacity compared to other
communication protocols in terms of Bluetooth, Wi-Fi, and narrow band-IoT (NBIoT) [80].
For IoT devices, the necessity for low-power and long-range communication is more
important than the necessity for high-capacity communication [81].

Figure 4 depicts the LCS connection architecture. We used two LoRa modems (SLR-
429M-RS2; Circuit Design, Inc.; Azumino City, Japan). We designed the wired connection
between the RM for the ground station side and a laptop computer or a tablet computer.
For the drone side, the TM is controlled using the SBC. We used a similar combination of
the SBC and the mobile battery for the MSS.

Figure 4. Long-range wireless communication system (LCS) connection architecture.

Figure 5a depicts the TM stored in a PP box, which is the same box as that used for the
MSS. After assembly, the TM weight is 1.04 kg including the battery and the touch panel
display. Figure 5b depicts the RM connected to a laptop computer.
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Figure 5. Assembled transmitter module (TM) and receiver module (RM) consisting of LCS.

We used Bluetooth, which is included with Raspberry Pi 3B models as a standard
function, to transmit sensor signals from the MSS to LCS. The important benefit of using
Bluetooth is not only the increased flexibility and independence of both systems but also
the obviation of additional devices and signal cables for communication. The preliminary
experiment results revealed that both the MSS and TM stored in independent PP boxes
mutually communicated without delay. Moreover, preliminary experiment results obtained
for radio interference with other Bluetooth devices revealed that steady communication
was achieved in an indoor environment with more than 20 other Bluetooth devices.

3.4. Real-Time Monitoring and Visualization

Atmospheric measurement data obtained from the MSS were visualized by the RVS
in real time on a computer screen connected to the RM. Figure 5c depicts a graphical
user interface (GUI) implemented on the RVS. Figure 6 portrays visualization examples of
temperature, humidity, pressure, altitudes, PM2.5, and CO2. The vertical and horizontal axis
scales can be set arbitrarily. As a fundamental specification, the visualization signals are
updated at 1 Hz. Herein, simultaneous drawing of all measurement signals is unsupported
by the RVS because of the LoRa communication capacity.

Figure 6. Visualization of measurement signals on real-time visualization system (RVS).

3.5. Drone Mounting
3.5.1. Platform Drone

For this study, we used a large industrial drone (Matrice 600 Pro; SZ DJI Technology
Co., Ltd., Shenzhen, China) as a platform to measure atmospheric phenomena using the
mounted MSS. Because of its advanced functionality, versatility, and scalability, this drone
model has been applied in numerous studies and research projects [82–92] in various
application fields. According to the official specifications provided by the manufacturer,
the total weight and the maximum payload are, respectively, 10 kg and 6.0 kg. The three-
dimensional (3D) body is 1668 mm wide, 1518 mm long, and 727 mm high. Regarding
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flight performance, its maximum horizontal, ascent, and descent speeds are, respectively,
18 m/s, 5 m/s, and 3 m/s. Onboard batteries of two types are officially provided for this
drone. The standard battery set (99.9 Wh × 6 = 599.4 Wh) provides approximately 30 min
of flight time, depending on the payload, flight pattern, and wind speed. We used the large
capacity battery set (130.0 Wh × 6 = 780.0 Wh), which provides an additional five minutes
of flight time.

3.5.2. Originally Developed Sensor Brackets

For mounting the MSS on the drone, we developed four prototype brackets, desig-
nated, respectively, as Types 2–5. Table 3 presents the major specifications of Types 1–5. Of
these, Type 1 was developed in our earlier studies [21,22].

Table 3. Major specifications of originally developed sensor brackets of four types.

Type Wide [mm] Long [mm] High [mm] Weight [kg] Camera

1 160 235 195 0.45 unmount
2 160 235 190 0.94 unmount
3 160 235 350 1.24 mount
4 180 290 270 1.83 mount
5 160 235 350 0.99 mount

We set the width and length of Type 2 as equivalent to those of Type 1. These
dimensions were determined by the dimensional constraints for the brackets on the drone
bottom side. Although the heights of Types 1 and 2 were equivalent, the MSS was mounted
alone on the drone because of the volume. Therefore, Type 2 was limited to use without
the LCS.

For modification from Type 2 to Type 3, the height was enlarged from 190 mm to
350 mm, although the width and length of Type 2 were retained. This modification
accommodated the mounting of both the MSS and LCS on the drone. Moreover, we
mounted a monocular camera for non-viewed flight combined with a first-person view
(FPV) function. However, the center of gravity of the payload was farther from that of the
main drone body. This gap decreased the in-flight stability. To avoid interference with the
camera, Type 4 was designed to accommodate mounting of both the MSS and LCS. Using
offset parts, the dimensions of Type 4 were enlarged by 20 mm width and 55 mm length
compared to those of Type 3. Although the center of gravity of this bracket was close that
of the drone, the total weight was increased from 1.24 kg to 1.83 kg.

The Type 5 width, length, and height were resized to the equivalent specification
lengths as Type 3. For this modification, the LCS installation was changed from horizontal
to vertical. This change avoided interference with the camera. The weight of Type 5 was
0.25 kg less than that of Type 3 and 0.84 kg less than that of Type 4. Figure 7 depicts the
appearances of Types 2–5 after assembly.

Figure 7. Appearance of Types 2–5 after assembly.

For our earlier study, Type 1 was attached to the carbon poles under the drone main
body with joint parts manufactured using a 3D printer. The four pillars made of hollow
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aluminum frames and the two panels made of carbon plates prevented efficiency and
increased the total manufacturing time. Moreover, the excessive use of bolts and nuts
reduced the work efficiency of installation and maintenance considerably. Therefore,
for this study, we changed the joint parts molded using a 3D printer to commercially
available clamps. The carbon plates were replaced with acrylic plates. Although the
increased weight was a shortcoming, manufacturing was simple. The camera was installed
to fly at altitudes over 150 m, but the Japanese Civil Aeronautics Law restricts the maximum
altitude for drone flight to 150 m. We installed a monocular camera for a visibly monitored
flight, which became possible with flight permission deregulation from the Ministry of
Land, Infrastructure, and Transport of Japan.

The developed brackets were installed on the carbon pipes under the drone via sponge
rubber to counter vibration transmitted from the high-speed rotating motors. Therefore,
installation of Types 2–4 is easier than that of Type 1 because of the improvement of the
clamps that were used. The payloads of Types 2–5 are smaller than that of Type 1 because
of the expanded size. Considering a 6.0 kg payload, the drone can accommodate 5.04 kg as
its maximum payload and 4.17 kg as the minimum payload.

4. Communication Experiment

As a preliminary experiment before conducting measurements using the MSS, we
evaluated the LCS communication performance.

4.1. Ground Communication Experiment
4.1.1. Setup

This experiment was conducted at six sections, labeled as L1–L6, on the ground
without using a drone. Figure 8 depicts the respective sections and their surrounding
environments. Communication experiments on L1–L4 were conducted at the Honjo campus
(39◦39′35′′ N, 140◦7′33′′ E) of Akita Prefectural University, Yurihonjo city, Japan. Herein,
L1 and L3, respectively, represent parts of L2 and L4. The experiments of L5 and L6 were
conducted near a river that runs near the campus. Table 4 presents dates and distances in
each location.

Figure 8. Ground communication experiment of six sections.

Table 4. Experiment dates and distances of respective sections.

Parameter L1 L2 L3 L4 L5 L6

Distance [m] 60 90 250 490 860 1360
Data 20 July 2020 30 July 2020 17 September 2020

Weather Sunny Sunny Sunny
Atmospheric pressure [hPa] 1008.8 1011.8 1007.2

Temperature [◦C] 28.5 27.4 27.9
Humidity [%] 59 67 63

Wind speed [m/s] 4.9 5.4 3.3
Wind direction WSW WSW SSE
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4.1.2. Results

Table 5 denotes experimentally obtained results. We set the data transmission period
from the TM to RM to 1 Hz. Here, the RM rejected data that could not be received within 1 s.
Let ND and NR, respectively, represent the number of transmission data and the number
of receiving data. As evaluation criteria, communication accuracy A is defined as the
following equation:

A =
NR
ND
× 100. (2)

Table 5. Ground communication experiment results.

Index ND NR A [%]

L1 30 30 100
L2 30 30 100
L3 30 30 100
L4 100 100 100
L5 100 98 98.0
L6 60 53 88.3

All 350 341 97.4

The L1–L4 results up to a distance of 490 m were achieved with no data reception
failure. The experimental site, which is located at the university campus surrounded by
rice fields, was chosen with the expectation of yielding meaningful results. This area has no
particular obstacle other than street trees. The accuracies of L5 and L6 were, respectively,
98.0% and 88.3%. At L5, the TM was visible from the RM. By contrast, it was invisible at
L6. For this distance gap of approximately 500 m, the accuracy difference was 9.7%. An
experiment in the town area might be affected by radiowave interference. The reception
error was improved by changing the direction of the whip antenna used for the RM.
However, we assumed that the accuracy would have been lower if both the TM and RM
were located in a downtown area.

4.2. Flight Communication Experiment
4.2.1. Setup

This experiment was conducted in four sections, labeled as F1–F4. We mounted the
TM on the drone as presented in Figure 1. Figure 9 depicts the respective sections and
their surrounding environment. Communication experiments on F1–F3 were conducted
between the Honjo campus as the transmission point from the drone and other receiving
points on the ground in the suburbs. F4 was conducted along the coastline between the
Akita campus (39◦80′12′′ N, 140◦04′62′′ E), Akita Prefectural University, Akita City, Japan,
as the transmission point and the receiving point at a beach. F1 has a 100 m elevation
difference. By contrast, F2–F5 has no elevation difference. Table 6 presents the dates and
distances of the respective locations.

Figure 9. Flight communication experiments of four sections.
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Table 6. Experiment dates, distances, and meteorology information of respective sections.

Parameter F1 F2 F3 F4

Date 9 October 2020 22 October 2020 6 November 2020 13 November 2020
Distance [m] 3500 5700 5600 13,000

Weather Sunny Sunny Sunny Sunny
Atmospheric pressure [hPa] 1023.4 1013.3 1018.5 1019.4

Temperature [◦C] 18.5 20.2 16.3 13.8
Humidity [%] 52 57 75 65

Wind speed [m/s] 2.4 5.2 3.5 2.4
Wind direction NNE ESE S ESE

Flight altitude [m] ≤ 150 ≤ 150 ≤ 150 ≤ 150

During the respective experiments, the drone flew up to 150 m, the limit allowed by
the Japanese Civil Aeronautics Law. To change the altitude, the drone moved vertically
from the takeoff point. We did not move the drone horizontally.

4.2.2. Results

Table 7 presents experimentally obtained results. We set similar evaluation criteria to
those used for ground communication experiments.

Table 7. Flight communication experiment results.

Index ND NR A [%]

F1 347 309 89.0
F2 190 135 71.1
F3 390 339 86.9
F4 87 82 94.3

All 1014 865 85.3

The accuracy of F1, which is the shortest distance with the elevation difference, is the
second-highest accuracy next to that of F4. Although the gap distance between F2 and F3
is 100 m, the accuracy of F2 is lower than that of F3. We infer that F2 had effects from the
highway between the two points. By contrast, F3, which has only a river and rice fields
between the two points, demonstrated the realization of stable communication. The F4
with the longest distance exhibited the highest accuracy. This trend is probably attributable
to the fact that most areas between the two sites are occupied by the seashore. Herein,
for all the experiments of F1–F4, communication was not possible when the drone was
on the ground. This experiment revealed that remote communication using LoRa was
achievable with the altitude for the TM provided by the drone.

5. Preliminary Sensor Comparison Experiment

We verified dust sensors of three types for measuring PM2.5: the primary measurement
and monitoring target for this study.

5.1. Experiment Setup and Sensor Comparison

The comparison target sensors were B5W-LD0101, PPD42NS, and PMSA003I as shown
in Table 1. Figure 10a depicts the wired connections of these sensors. The SBC connected to
respective sensors obtained measurement signals simultaneously. As a temporal test bench,
we prepared a simplified chamber separated by acrylic plates, as shown in Figure 10b. The
inside dimensions are 500 mm long, 500 mm wide, and 1000 mm high. The top part is
covered by wood boards. We installed sensors at 400 mm from the floor.
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Figure 10. Sensor comparison experiment.

Measurements were conducted for two hours. The top cover was closed during the
first half (16:30–17:30 JST) of the period. Subsequently, the top cover was opened during the
second half (17:30–18:30 JST). We allowed dust into the test bench intentionally. Figure 11
depicts changes of time-series PM2.5 data obtained from the respective sensors.

Figure 11. Time-series changes of PM2.5 from three sensors.

The sensor output characteristics from PPD42NS are high. Those from PMSA003I are
low. The output characteristics from B5W-LD0101 are intermediate between them. The
output signals from PPD42NS and B5W-LD0101 in the first half-hour showed a range
within ± 5 µg/m3 variation. The signal outputs in the last half-hour showed pronounced
responses from all the sensors at the time when the top cover was opened for adding dust.
The experimentally obtained results demonstrated that each sensor had similar response
characteristics with different offset values.

5.2. Calibration with AEROS
5.2.1. Setup

We selected B5W-LD0101 as the target sensor evaluated in this experiment. As the
GT for this experiment, we used the public PM2.5 data provided by the atmospheric
environmental regional observation system (AEROS) of the Ministry of the Environment
of Japan. This experiment was conducted at the Honjo monitoring station (39◦38′43′′ N,
140◦05′18′′ E) provided by a local government. The monitoring data transmitted to AEROS
using public lines can be accessed immediately on a website.

Figure 12 depicts the appearance of the standard monitoring station and its surround-
ings. This station is located in the city center at a corner of an elementary school. The area
is surrounded by houses with no tall buildings. The measurement instrument, made of
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fiber reinforced plastics (FRP), is stored in the outer walls. The air intake is provided at 3 m
from the ground.

Figure 12. Honjo monitoring station for AEROS.

Table 8 shows the weather conditions on the respective measurement days. It was cloudy
with no rainfall or sunshine, 15 ◦C, 72% humidity, and south–southwest 3.3 m/s winds.

Table 8. Weather conditions.

Parameter Value

Date 6 November 2020
Time (JST) 15:00–16:00
Weather Cloudy

Atmospheric pressure 1019.5 hPa
Temperature 15.3 ◦C

Humidity 72%
Wind speed 3.3 m/s

Wind direction SSW
Precipitation 0 mm

Hours of sunshine 0 h

5.2.2. Results

Figure 13 depicts time-series sensor output values. For the first 15 min, the output
values were unsteady with wide fluctuations. Subsequently, the output values stabilized at
around 20 µg/m3. The one-hour mean value from the Honjo monitoring station during
this period was 27 ± 1 µg/m3. The one-hour mean value obtained using our system was
24 µg/m3. Comparison of both values shows the difference as 3 µg/m3.

Figure 13. Time-series output values from B5W-LD0101.
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5.3. Calibration with IPM2.5-NA
5.3.1. Setup

This experiment was conducted for sensor calibration while maintaining a sufficient
measurement period for time resolution. For this calibration, we used an indoor air quality
monitor (AirAssure IPM2.5-NA; TSI Inc.; Shoreview City, MN, USA) as a benchmark device.
Herein, IPM2.5-NA is certified by the United States Environmental Protection Agency as
the standard method for tapered element oscillating microbalance (TEOM) [93]. It has been
certified by the Japanese Ministry of the Environment as the PM2.5 automatic measurement
certification equivalent device. Table 9 presents the main specifications of IPM2.5-NA.

Table 9. Major specifications of IPM2.5-NA.

Parameter Specification

Sensor Type Light scattering photometer
Aerosol concentration range 5–300 µg/m3

Zero stability ±10 µg/m3

Time constant 5 min. trailing average
Screen update frequency 1 Hz

Screen resolution 1 µg/m3

Size H 162 ×W 85 × D 33 mm
Weight 200 g

We originally developed a benchmark measurement station. Figure 14a depicts the
exterior of the metal shielding box containing the parts and instruments. This experiment
was conducted by installing them on a three-story building roof. The air intake and exhaust
ports were located at 2 m above the ground. Figure 14b depicts the layout inside the box.

Figure 14. Originally developed benchmark measurement station installed on a three-story building
roof for sensor calibration using IPM2.5-NA.

5.3.2. Results

Figure 15 depicts the results of comparison of the measurement data obtained during
the sequential period of 24 h on 22–23 January 2021. The weather conditions on the
first day were 3.4 ◦C mean temperature, 81% mean humidity, 3.2 m/s mean wind speed,
and 1016.4 hPa mean pressure. The weather conditions on the second day were 0.8 ◦C
mean temperature, 66% mean humidity, 2.4 m/s mean wind speed, and 1022.3 hPa mean
pressure. The weather was a typical winter pattern for the Sea of Japan side, with weather
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being cloudy and sometimes sunny on both days. The overall trend indicated that the
measured values from B5W-LD0101 were lower than those from IPM2.5-NA.

Figure 15. Output signals obtained during 24 h.

During the 24 h, the IPM2.5-NA output signals exhibited three noticeable changes.
We divided the time-series signal changes into three zones to observe details of the data
distribution. Figure 16 depicts scatter plots for the respective distributed data of Zones 1–3.
The output signals from B5W-LD0101 showed a lower trend than those from IPM2.5-NA.
Comparison results for each zone indicated that Zone 1 exhibited the highest correspon-
dence. Although the B5W-LD0101 output signals followed these changes, the changes of
Zones 2–3 occurred with a time delay. Regarding the offsets of both sensors, the trend of
PM2.5 concentration changes can be captured adequately by B5W-LD0101. We consider that
B5W-LD0101 can measure time-series concentration changes equivalently to IPM2.5-NA
with a greater temporal resolution with maintaining appropriate accuracy compared to the
monitoring station if we apply the results described above as a calibration.

Figure 16. Scatter plots between output signals of IPM2.5-NA and B5W-LD0101 in the respec-
tive zones.

6. Application Experiments for Flight Measurement and Distribution Prediction

The application experiments are conducted to achieve two objectives. The first objec-
tive is the use of our proposed system for flight measurement experiments. The second
objective is to evaluate distribution prediction accuracy using a method based on a deep-
learning model from obtained sensor signals. Figure 17 depicts the flowchart of our
proposed prediction system using long short-term memory (LSTM) [94].
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Figure 17. Flowchart of our proposed prediction method using LSTM.

6.1. LSTM

As a predictive model, LSTM is an improved recurrent neural network (RNN) archi-
tecture that solves the vanishing gradient problem [95]. LSTM and its derivative models
have been used widely in existing studies to forecast typhoon formation and hourly air
pollution [96], to analyze meteorological sensor signals [97], and to estimate PM2.5 concen-
trations [68,98]. Figure 18 portrays a typical LSTM network architecture of hidden layers.

Figure 18. LSTM network architecture of the hidden layer. Signals progress from left to right.

The internal LSTM structure comprises hidden layer units with memory cells that are
called LSTM blocks and three types of gates: input gates, forgetting gates, and output gates.
The vanishing gradient problem [95] is accomplished by this mechanism. Input gates select
enabled or disabled input feature signals. Forgetting gates select the permission to reset
internal information stored in cells. Output gates determine the amount of information
that is transmitted at the next phase. Based on RNN algorithms, LSTM networks provide
one-step later prediction that is conducted from the input feature signals at the current time
t and the feedback signals to the hidden layer at the previous time t− 1. The memory cells
save internal information for a long period, which provides an important benefit compared
to RNNs for modeling temporally distant dependencies.

Letting xt and ct, respectively, represent the input feature signal and output from
memory cells, and letting It, Ft, and Ot, respectively, denote the outputs of the input,
forgetting, and output gates, then LSTM output Ht is obtained as shown below:

It = σ(Wixt + Riht−1 + bi), (3)

Ft = σ(W f xt + R f ht−1 + b f ), (4)

Ot = σ(Woxt + Roht−1 + bo), (5)

ct = ct−1 ⊗ ft + it ⊗ tanh(Wzxt + Rzht−1 + bz), (6)

Ht = ot ⊗ tanh(ct) (7)

where Wi, f ,o,z, Ri, f ,o,z, and Bi, f ,o,z, respectively, denote input weights, recurrent weights,
and biases. Moreover, σ and ⊗, respectively, denote the sigmoid function and the element-
wise product.

The dominant role of input gates is to update cell states. The forgetting gates control
propagation signals to refer to a previous cell state ct−1. Moreover, unnecessary signals
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are removed by the forgetting gates to prevent excessive information from the earlier cell
output split by short-term and long-term memories. The output gates control update values
from hidden units. Similar to the input gates, the output gates have a mechanism to avoid
inappropriate weight updates for redundant and undesired signals. In addition, the current
cell state ct and the LSTM output block ht are also used to calculate the subsequent input
data at t + 1. As a remarkable characteristic, LSTM networks have a dynamic adjustment
mechanism that provides the previous and forward signals while maintaining ct in addition
to Ht.

6.2. Measurement Flight Experiment Results

For this experiment, we conducted flight measurement experiments during the period
and at sites shown in Table 10. All sites were on the Akita Prefectural University campus.
Figure 19 depicts aerial photographs with the locations of the respective campuses and
their surroundings. Ogata campus (40◦00′64′′ N, 139◦95′54′′ E) is located in a village on
a reclaimed brackish lake. The campus is surrounded by rice fields. Akita Campus is
located near the coast, surrounded by pine forests. Honjo Campus is located in a suburb
surrounded by rice fields and forests. We obtained three datasets, labeled as D1–D3,
at each site.

Table 10. Details of flight measurement experiment conditions.

Parameter D1 D2 D3

Date 16 October 2020 13 December 2020 18 December 2020
Time (JST) 13:30–14:39 15:10–15:53 15:17–16:03
Latitude 39◦39′12′′ N 39◦80′12′′ N 40◦00′64′′ N

Longitude 140◦04′62′′ E 140◦04′62′′ E 139◦95′54′′ E
Site name Honjo Campus Akita Campus Ogata Campus
Weather Sunny Rain Sunny

Atmospheric pressure [hPa] 1019.4 1018.7 1019.6
Temperature [◦C] 14.3 11.8 12.3

Humidity [%] 48 91 67
Wind speed [m/s] 1.1 1.7 2.9

Wind direction ENE ENE SE
Flight altitude [m] ≤ 150 ≤ 150 ≤ 150

Figure 19. Locations of the respective campuses and their surroundings.

Figure 20 depicts flight experiment photographs at Akita Campus when we obtained
D2. We operated the drone manually using an automatic position adjustment function as a
program mode. Using a set of large-capacity batteries, the flight time was approximately
30 m with this payload. For this flight experiment, the LCS transmitted PM2.5 measurement
signals from the TM to RM without delay.
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Figure 20. Photograph of D2 flight experiment. The numbers in the lower right corner of respective
photographs indicate the approximate distances between the photographer and the drone.

Figure 21 depicts an example of obtained measurement signals from three key sensors:
flight route data obtained using GPS; altitude data obtained using the humidity and
pressure sensor, and calculated using Equation (1); and time-series data of changes in
PM2.5. The data sampling frequency was 1 Hz.

Figure 21. Flight measurement example of obtained signals from three key sensors.

6.3. PM2.5 Concentration Prediction Results

Table 11 presents the major LSTM parameters. The numbers of epochs, batch sizes,
and intermediate layers units were set, respectively, to 100 generations, 2, and 50 units [99].
Herein, the batch size defines the group number of training samples that propagate through
the network inside. The batch size allows for a more refined search to the best local op-
tima [100]. Subsequently, for a stochastic gradient descent (SGD) [101] optimization algo-
rithm, we used RMSprop [102] based on the studies by Xu et al. [103] and by Zou et al. [104].
Let L be a look-back parameter, which is one meta-parameter used to refer to training
histories. Moreover, L represents the number of previous time steps to be considered as
input [105]. For training and prediction, we evaluated L by changing it to three steps: 30,
10, and 5.

Table 11. Major LSTM parameters and their setting values.

Parameters Setting Values

Learning iteration [epoch] 100
Batch size 2

Validation rate 0.2
Number of hidden layers 50
Optimization algorithms RMSprop

L 30, 10, and 5
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As evaluation criteria of this study, we used the root mean squared error ERMS as
defined by the following equation:

ERMS(y, ŷ) =

√√√√ 1
n

n−1

∑
i=0

(yi − ŷi)2, (8)

where yi, ŷi, and n, respectively, represent the true, predicted, and total number of out-
put signals. The data splitting ratio was 2:1 for training and testing. For the training
phase, 20% of the training data was used for validation. Table 12 presents experimentally
obtained results.

Table 12. ERMS for training and test datasets. Bold underlined values are minimum values.

Dataset L Training [µg/m3] Test [µg/m3]

D1 30 3.06 3.99
10 1.80 3.73
5 2.01 2.60

D2 30 3.07 9.57
10 1.97 4.48
5 1.59 1.97

D3 30 6.01 14.74
10 5.84 16.23
5 6.12 19.07

As an overall tendency, D2 exhibited the lowest ERMS among the three datasets. The
optimum L parameter value for D2 was found to be 5. For D1 and D3, the L parameter
optimum values differed in training and testing. The range of variation in testing was
greater than that in training. These results indicate that an optimal value search using
computational costs is a relevant factor in prediction accuracy for a task that is unnecessary
for real-time processing.

As details of the prediction experiment results, Figures 22–24 depict the respective
loss curves and the prediction results for test datasets. The loss values decreased concomi-
tantly with the training progress, except for the D3 validation loss. For the D2 tendency,
the validation loss converged to a similar value to that of the training loss. For the D3
tendency, the validation loss remained around 0.15. By contrast, the amplitude of loss
values decreased as the learning progressed. Although detailed changes of the source data
were unmatched to the prediction results, the prediction curves showed an approximation
of the global tendency.

Figure 22. Loss curves and PM2.5 prediction results for D1.
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Figure 23. Loss curves and PM2.5 prediction results for D2.

Figure 24. Loss curves and PM2.5 prediction results for D3.

Finally, as an example for comparison, the mean ERMS for 10 trials with the DTT-
DRNNs proposed by Sugiura et al. [67] was 6.92. Moreover, the mean ERMS with the
ResNet-LSTM model proposed by Song et al. [68] was 6.56. Furthermore, the mean ERMS
with the CART-EELM method proposed by Shang et al. [70] was 8.96. Although the
benchmark datasets differ between our method and these existing methods, our obtained
ERMS is lower than their results.

7. Conclusions

This study was conducted using a drone with advanced mobility to develop a unified
sensor and communication system as a new platform for in situ atmospheric measurements.
We developed a multi-sensor system with features of small size, light weight, simplicity,
and cost-effectiveness for multiple measurements of atmospheres and for obtaining their
related environmental information. Moreover, we developed a long-range wireless com-
munication system and a real-time monitoring and visualizing system for in situ local
area measurements. The experimentally obtained results demonstrated that the mean
communication accuracies were 97.4% up to 1360 m for ground communication cases
and 85.3% up to 13,000 m for flight communication cases. Furthermore, we developed
four prototype brackets with optimized assignments of sensors, devices, and a camera
for mounting on a drone as a unified system platform. Results of calibration experiments
including comparison to two upper-grade standard PM2.5 sensors demonstrated that our
sensor system follows the overall tendencies and changes. We obtained original datasets
from flight measurement experiments conducted at three sites of different surrounding
environments. The experimentally obtained prediction results indicated regional PM2.5
trends using LSTM trained using the respective datasets. As a case study focusing on PM2.5
local distribution prediction, we obtained 2.60, 1.97, and 14.74 µg/m3 for the lowest ERMS.

For our future work, based on periodic flight measurements, we would like to verify
the durability of our proposed system and its stability for long-term operation. We also
would like to increase measurements to be stepped up at other sites to achieve more robust
forecast results. We intend to append sensors to elucidate the relation between the payload
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and flight times of various drone types. Moreover, we expect to develop several sets of our
proposed system for conducting simultaneous flight measurements to improve spatial and
temporal resolutions. Furthermore, we must verify long-term PM2.5 distribution properties
related to regional and seasonal changes.
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DTT Dynamic pre-training
EELM Ensemble extreme learning machine
FC Fight controller
FPV First person view
FRP Fiber reinforced plastics
GBR Gradient boosting regression
GBM Gradient boosting machine
GPS Global positioning system
GPIO General-purpose input–output
GT Ground truth
GUI Graphical user interface
I2C Inter-integrated circuit
IoT Internet of things
IMU Inertial measurement unit
INP Ice nucleation particles
k-NN k-nearest neighbor
LCS Long-range wireless communication system
LiDAR Light detection and ranging
LoRa Long range
LPWA Low power wide area
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MAE Mean absolute error
MSS Multi-sensor system
NBIoT Narrow band-Internet of things
NDIR Non-dispersive infrared
NO Nitric oxide
NO2 Nitrogen dioxide
OS Operating system
PM Particulate matter
PP Polypropylene
PWM Pulse width modulation
RF Random forest
RM Receiver module
RNN Recurrent neural network
RTC Real-time clock
RVS Real-time visualization system
SBC Single board computer
SfM Structure from motion
SGD Stochastic gradient descent
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