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Abstract: Distracted driving is the prime factor of motor vehicle accidents. Current studies on dis-
traction detection focus on improving distraction detection performance through various techniques,
including convolutional neural networks (CNNs) and recurrent neural networks (RNNs). However,
the research on detection of distracted drivers through pose estimation is scarce. This work introduces
an ensemble of ResNets, which is named Optimally-weighted Image-Pose Approach (OWIPA), to
classify the distraction through original and pose estimation images. The pose estimation images
are generated from HRNet and ResNet. We use ResNet101 and ResNet50 to classify the original
images and the pose estimation images, respectively. An optimum weight is determined through
grid search method, and the predictions from both models are weighted through this parameter. The
experimental results show that our proposed approach achieves 94.28% accuracy on AUC Distracted
Driver Dataset.

Keywords: optimally-weighted image-pose approach (OWIPA); convolutional neural network
(CNN); deep learning; pose estimation; distraction detection; distraction classification; intellegent
transport system (ITS)

1. Introduction

Sustainable transportation systems are vital elements of sustainable cities, and they
are aligned with Goal 3 (good health and well-being), Goal 9 (industry, innovation, and
infrastructure) and Goal 11 (sustainable cities and communities) of Sustainable Develop-
ment Goals (SDGs). One of the major factors that influences the transportation system is
traffic safety. In United States, about eight people were killed per day in traffic collisions
involving distracted drivers [1]. World Health Organization (WHO) also estimates that the
number of road traffic deaths will reach 1.35 million in 2020 [2].

Distracted driving is one of the main leading causes of fatal traffic accidents. Actions
carried out while driving, such as drinking, turning on the radio, and using a cellphone,
could cause a fatal accident. Driving requires a driver’s full attention to safely control the
vehicle and respond to events happening on the road. It is a skill that involves constant
yet complex coordination between mind and body. A distraction is present when there are
events preventing drivers from fully focusing on the driving task. Driver distraction can be
categorized into three categories: visual (eyes off the road), manual (hands off the wheel),
and cognitive (mind off the task) [3].

Many research efforts aimed to decrease the number of road fatalities while producing
a better Intelligent Transportation System (ITS). With the rapid advancement in computer
vision and deep learning, many state-of-the-art object detection models have delivered
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near real-time and accurate results. However, the main issue which is the tradeoff between
computational time and accuracy remains a great challenge. Many research achieved
accurate detection but slow inference speed. Moreover, the accuracy of the recognition
is highly influenced by the input images. Occlusions, lighting conditions, and clutter
issues are the common issues that cause poor detection accuracy. These issues are not well
addressed in previous studies. Therefore, most of the suggested algorithms or models only
work in the daytime but not at night.

While recent research focused on developing specialized convolutional neural network
(CNN) models and even using recurrent neural networks (RNNs), we would like to work
in the opposite direction using a simple model to outperform them. This study uses only
ResNet [4] to perform transfer learning. Many research works [5–7] have used the same
dataset and have demonstrated the power of RNNs. RNNs are accurate and able to capture
spectral features of an image but come with high computation costs. We hope to use
the simple state-of-the-art (SOTA) model and evaluate our proposed fine-tuning method
to classify the distraction. Moreover, we propose an ensemble of the CNN models that
classifies the distractions through pose estimation and original images.

This study aims to detect driver distraction by considering the spatial information
based on two modalities of image (RGB and pose estimation image). The dataset used in
this study is the American University in Cairo (AUC) Distraction Dataset V2 [8,9]. The
main contributions we bring in this work are summarized below:

• Using pose estimation (hand and body pose) classification to classify the distraction.
• Propose Optimally-weighted Image-Pose Approach (OWIPA) to classify distraction

through original and pose estimation images.
• Using grid-search algorithm to deduce the weight for maximum prediction accuracy.

The rest of the paper is organized as follows: Section 2 reviews the distracted driver
datasets and the approaches used by previous research to detect the distractions. Section 3
explains OWIPA and the CNN models used. Section 4 explains the experiment procedures,
evaluation metrics, and the dataset used in this work. Our experimental results and analysis
are reported in Section 5. Section 6 presents the conclusion and outlooks of future works.

2. Literature Review

Driver distraction detection is one of the most active research areas yet challenging
machine learning and computer vision tasks. Researchers tend to detect, localize, and track
driver’s body parts such as heads, faces, hands, and gazes to detect distraction. These
methods are employed as the basic rule of driving requires the driver to have both hands
on the steering wheel and eyes on the road. Therefore, heads and hands are considered to
be the key objects to detect driver distractions.

2.1. Distraction Detection

Distraction can be defined as any activities that take a driver’s attention away from
the task of driving. According to the National Highway Traffic Safety Administration
(NHTSA), actions such as rolling down a window and using cell phones are considered to
be a distraction [1].

In the early studies of driver distraction detection, only cellphone usage is considered.
Therefore, the detection of cellphone usage was the main focus, and many methods were
proposed. Moreover, these initial studies use traditional machine learning approaches, such
as support vector machine (SVM) and deformable part model (DPM) to extract features
from the images. For example, Berri et al. [10] proposed a SVM model to locate face and
hand location through the driver’s frontal image view. Craye et al. [11] improved the
work by including the occluded images using RGB-D data captured by Kinect sensors.
They used AdaBoost and Hidden Markov models to extract arm position, face orientation,
action units, and gaze estimation to classify five different postures. Artan et al. [12] used
SVMs to detect cell phone usage through a near-infrared (NIR) camera located outside
the vehicle directed to the vehicle windshield. They used DPM and SVM to localize and
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classify the facial landmark, respectively. Moreover, another SVM was used to classify if
the driver is using a cellphone. Hidden condition random field (HCRF) was proposed by
Zhang et al. [13] to extract the feature from the image captured and classify the usage of a
cellphone by driver. Without relying on the location or state of face and hand to assume
safe driving behavior, Seshardi et al. [14] proposed a supervised descent method to track
face landmarks and AdaBoost classifier to identify the cellphone usage through the left
and right face regions.

These studies [10–14] used handcrafted feature learning techniques to extract image
features manually. Most of these earlier studies only used a small dataset, with less than
2000 images in both testing and training sets, to evaluate the suggested algorithms. These
datasets are not highly varied, with a limited subject (drivers) used in collecting the data.
The final classified action was also small and mostly focused on cell phone usage.

In late 2014, more research works started to switch to deep learning methods as they
are proven to outperform the traditional machine learning methods. As researchers gave
more attention to this field, more distraction actions were considered. More datasets were
made available with more distraction actions are being taken into account [8,15–17].

In 2013, a vision-based hand activity analysis was conducted by Ohn-bar et al. [18]
with the University of California San Diego (UCSD) Laboratory of Intelligent and Safe
Automobiles (LISA). They segmented the image into three regions: the wheel, gear, and
instrument panel (e.g., radio). A classifier for each segment was developed to detect the
existence of hands in those areas. The information gathered was then passed into an activity
classifier, which guesses the driver’s actual activity. Later, an extension of the study was
conducted to include eye cues [19] and included a secondary back view of the driver [20].
In addition to classification, a region-based classification approach was introduced [21].
The presence of hands in predefined regions in the image was detected. Models were
trained for each region separately and were then joined using a second-stage classifier. This
proposed system can detect three distractions: adjusting the radio, adjusting the mirror,
and operating gear. They improved the classification by diving into more regions to detect
more actions taken by the driver [22].

The first dataset considering ten actions was available in 2016 through a Kaggle
competition by StateFarm [15]. However, this dataset is not available for research purposes
outside the competition [23]. In 2017, Abouelnaga et al. [9] created a new dataset with the
same ten actions as the StateFarm dataset, named AUC Distracted Driver Dataset (AUC-
DDD). They proposed a real-time distracted driver posture classification. Eraqi et al. [8]
produced a model which uses a genetically weighted ensemble of CNN to achieve a 90%
classification accuracy. At the same time, they proposed to use two NasNet Mobile [24]
models, which reduced the number of parameters, and the model was run in the CPU-based
system with an accuracy of 84.64%.

Given the rapid improvement and vast interest in the deep learning field, many state-
of-the-art deep learning models [4,25–30] were proposed. These models outperform the
traditional machine learning methods. Kim et al. [31] proposed to use Inception-ResNet [32]
and MobileNet [26] to classify posture distraction. It was shown that fine-tuned models
outperformed training from scratch, and MobileNet outperformed Inception-ResNet. How-
ever, the dataset used was small and had low variation. Similarly, Alotaibi et al. [7] used
ResNet [4], hierarchical recurrent neural network (HRNN) [27] and Inception [32] with
minor changes to the model to classify driver distraction. They evaluated their proposed
model on StateFarm [15] and AUC-DDD [9] dataset. Likewise, Majdi et al. [33] adopted
U-Net CNN to capture context around objects and had shown that it outperformed support
vector classifiers on AUC-DDD dataset. A weighted ensemble of AlexNet [25], Inception
V3 [28], ResNet [4] and VGG-16 [29] was proposed by Eraqi et al. [8]. Five regions were
extracted from the AUC-DDD dataset, i.e., raw image, skin segment, face image, hand
image, and face and hand image, to train the CNN. The best result is obtained when raw
images were used. The predictions from every CNN were combined through a genetic
algorithm (GA) and the results were better than independent CNN and majority voting
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fusion. Multiple research fine-tuned the pre-trained models and achieved decent accuracy
in detecting distractions [34,35].

2.2. Pose Estimation

Human pose estimation is the process of inferring poses from an image. It predicts
human joints’ positions in an image, also known as the localization of human joints. There
are two approaches in human pose estimation, which are bottom-up and top-down. In
the bottom-up approach, the processing is done from high to low resolutions, while the
top-down approach works the other way round. The top-down approach starts with
identifying and localizing person instances through a bounding box object detector. Then,
it is followed by estimating the pose of a single person. On the other hand, the bottom-
up approach starts by localizing identity-free semantic entities, then grouping them into
person instances.

Some of the recent state-of-the-art techniques includes DeepPose [36], DeepCut [37]
and OpenPose [38]. The pose estimation techniques used in this work are HRNet [39]
and ResNet [40]. HRNet [39] maintains the high-resolution representation of the input
data and combines it with high- to low-resolution sub-networks in parallel while reducing
computational complexity. It is considered to be top-down approach technique, and the
network is built for keypoints estimation based on person’s bounding boxes detected by
Faster RCNN [41]. In [40], the authors used ResNet to perform human pose estimation. The
method used in this network adds a few deconvolutional layers over the last convolution
stage in the ResNet architecture. This structure made it very easy to generate heatmaps
from deep- and low-resolution images. It is used to estimate the hand pose in this study.

In addition to human pose, hand pose estimation can be performed too. Hand pose
estimation involves modeling the human hand, including palm and fingers, and localizing
it in an image. It is considered a subtask of human pose estimation. We use two different
networks to perform human pose and hand pose estimation. This is because [40] can
provide finer details on hand pose while HRNet [39] can produce precise pose estimation.

Several studies suggested to use body pose estimation for driver assistance system [42]
and head pose estimation for distraction detection [43,44]. There are multiple studies of us-
ing body pose estimation to classify daily activity actions [45] and human movements [46].
However, there is little attention given to use full body pose estimation in classifying
distraction actions. In this work, we would like to explore the usage of CNNs in classifying
pose estimation image, instead of classification on keypoints. We treat pose estimation
image as another type of image modality.

3. Optimally-Weighted Image-Pose Approach (OWIPA)

The proposed model is called Optimally-weighted Image-Pose Approach (OWIPA),
as illustrated in Figure 1.

First, the original images are pre-processed. All input images are scaled to 360 × 360
(without cropping) to ensure that all images have the same size. As opposed to the original
ResNet’s input size of 224 × 224, we scale the image to 360 × 360 in order to capture
more features.

In the second stage, the scaled images undergo body and hand pose estimations
through two different networks, namely HRNet and ResNet50. After both body and hand
pose estimations are completed, the images are combined to produce a complete pose
estimation image on black background.

Next, ResNet101 and ResNet50 are trained to classify the original images and pose esti-
mation images, respectively. A weight, ρ is then applied whenever prediction is performed
so that one model weight is higher than the other.
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Figure 1. Proposed distraction detection through ensemble of pose estimation classification model and image
classification model.

Finally, grid search is performed on the trained models to obtain the optimum weights
for the highest accuracy.

The first ResNet model is used to classify based on the original images, which are
scaled to 360× 360. ResNet used in classifying the scaled images is ResNet101, which is pre-
trained with Imagenet dataset [47]. ResNet101 is chosen because of the ability to capture
the images’ finest details compared to its variants (ResNet18, ResNet34 and ResNet50) and
has the best tradeoff between training time and accuracy. The model is trained through
transfer learning techniques with the addition of a new head. The new head is located at
the final stage of the model, which has ten neurons. This newly-added head is used to
classify the distraction based on the predictions from the previous layers.

The second ResNet is used to classify the human pose estimation images. To obtain
the human pose estimation images, the original images undergo pose estimation and hand
pose estimation. We use two different methods to obtain the human pose estimation, where
the body and hand pose estimations are carried out individually.

The body pose estimation is done through HRNet [39]. Before feeding into HRNet,
Faster RCNN [41] is used to detect the person to reduce the search space and computa-
tional time. Similarly, the original image also undergoes hand pose estimation through
ResNet proposed in [40]. Similar to HRNet, before feeding to the pre-trained ResNet on
Onehand10k dataset [48], Cascade RCNN [49] is used to detect the hand. Once both the
body pose and hand pose estimations are completed, the results are added together to form
the full pose images, with a black background. The stitched images are scaled to 360 × 360,
to ensure that results obtained from both ResNets are not biased. The full pose images then
undergo classification with pre-trained ResNet50. Both body and hand pose estimation
models are pre-trained; therefore, the models are deployed to produce the estimation
images without further fine-tuning the model.

Instead of using one pose estimation technique to produce the human pose sticks and
hand pose sticks, we use two different models to perform the tasks individually and then
fuse them, as shown in Figure 2. This is because we want to have finer details on the hand
pose estimation since they capture the most information, especially classes that involve
hand activities.
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(a) Original Image (b) Pose Estimation (c) Hand Pose Estimation (d) Final Pose Estimation

Figure 2. Body and hand pose estimation images.

Generating pose estimation images are usually time-consuming, and in this work, the
average time taken for generating each pose estimation image is around 100ms.

Since both ResNet101 and ResNet50 produce their prediction on each image, a weight,
ρ is introduced to the models. The weight is employed such that the prediction of one model
weighs more than the other. The weight is determined through a grid-search algorithm
with 1000 steps at every validation step while training. The weight is dynamically changed
throughout the training, the weight determined by last training epoch is used. Usually,
an ensemble of models will use an equal weight, where both predictions will have the
same amount of weight. However, we believe that sometimes one of the models will
outperform the other in specific classes. The prediction is obtained based on the final
weighted prediction.

Table 1 shows the layers in the ResNet101 and ResNet50. The matrix shown in
Residual Block layers represents the arrangement of convolutional blocks in the residual
block. Please note that we altered the input size and added a head classifier to the pre-
trained model.

Table 1. ResNet50 and ResNet101 used in the proposed method, with resized input images.

Layer Output size ResNet50 ResNet101

Input 360 × 360 × 3 Input image

Convolution 180 × 180 × 64 7 × 7,64, stride 2

Max pool 90 × 90 × 64 3 × 3 max pool, stride 2

Residual Block 90 × 90 × 256


1 × 1, 64

3 × 3, 64

1 × 1, 256

× 3


1 × 1, 64

3 × 3, 64

1 × 1, 256

× 3

Residual Block 45 × 45 × 512


1 × 1, 128

3 × 3, 128

1 × 1, 512

× 4


1 × 1, 128

3 × 3, 128

1 × 1, 512

× 4

Residual Block 23 × 23 × 1024


1 × 1, 256

3 × 3, 256

1 × 11, 024

× 6


1 × 1, 256

3 × 3, 256

1 × 11, 024

× 23

Residual Block 12 × 12 × 2048


1 × 1, 512

3 × 3, 512

1 × 1, 2048

× 3


1 × 1, 512

3 × 3, 512

1 × 1, 2048

× 3

Avg pool 1 × 1 × 4096 Average poll, Fully connected

Flatten 4096 Flatten, BatchNorm

Dropout 512 Dropout, p = 0.25, ReLU, BatchNorm

Output 10 Dropout, p = 0.5, Linear
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From Table 1, the last three layers are the newly added head. Since the original ResNet
is trained on 1000 classes on ImageNet, the initial fully connected layer is removed and
replaced with a new head. The newly added head contains randomly-assigned weights.
The pre-trained body is frozen to perform transfer learning efficiently, and the newly
added head is trained for several epochs. If the whole network is trained directly without
freezing the pre-trained body, the model will be unstable because the newly added head
performs badly initially and generates big errors. This will directly impact the pre-trained
layers, as the pre-trained weights will be modified while training. Thus, the newly added
head is able to train before unfreezing the whole network and training again to ensure
the models’ stability and accuracy. After the head undergoes several training epochs, the
whole network is unfrozen, and the whole model is trained. These procedures are carried
out for both the ResNet50 and ResNet101 models.

The prediction is calculated in Equation (1).

Prediction = max
{
P× ρ +O× (1 − ρ)

2

}
(1)

where ρ is the weight introduced, O is the prediction vector made by ResNet101 on original
images and P is the prediction vector made by ResNet50 on full pose images.

4. Experiments
4.1. Evaluation Metrics

The following metrics are used to evaluate our models.

• Accuracy. It is the proportion of correct predictions among the total number of input
samples. Accuracy is considered to be a valid evaluation metric only if the dataset is
balanced. High accuracy in an almost equal dataset represents a good model.

• F1 Score. It provides a better measure to predicted result. It is the weighted average
of precision and recall, as given in Equation (2).

F1 = 2 × Precision × Recall
Precision + Recall

(2)

F1 score is commonly used when the balance between precision and recall is required.
It is a better measure for uneven class distributions, such as a large number of true
negative. Therefore, it is preferable for this study since the dataset is uneven.

• Area Under the ROC Curve (AUC). It measures the area underneath the entire ROC
curve. It is used to measure the ability of a classifier to distinguish between classes.
High AUC represents a perfect model, where it can distinguish between positive and
negative classes.

• Cross-entropy loss or negative log-likelihood (NLL) loss. It is used to measure the
performance of a classification model, with output of class probability between 0 and
1. This measures the difference between the actual label using the log of the predicted
probability. The cross-entropy loss is to produce higher accuracy. The categorical
cross-entropy loss is calculated as given in Equation (3).

Cross-entropy Loss = − 1
N

N

∑
i=1

M

∑
j=1

yij · log(pij) (3)

where N is the number of instances, M is the number of classes, yij is 1 when i belongs
to class j and pij is the prediction probability of instance i belonging to class j.

4.2. Dataset Description

The dataset used in this study is the American University in Cairo Distracted Driver
Dataset (AUC-DDD) [8,9]. It is one of the most widely-used driver distraction datasets.
The dataset used in this study is the second revision, with more subjects and images. The



Sensors 2021, 21, 4837 8 of 21

dataset consists of 44 drivers from seven different countries: Egypt, Germany, USA, Canada,
Uganda, Palestine, and Morocco. The videos are recorded on five different cars and at
different time of the day to increase the variety of data. The dataset considers 10 distracted
actions, as shown in Table 2. The dataset is divided into 80% training and 20% for testing,
as per the original split (split by driver) suggested by the author [8,9]. The training dataset
is further split into 80% for training and 20% for validation. Please note that the subjects in
testing dataset is not found in training and validation dataset. The sample of each class is
shown in Figure 3.

Table 2. Summary of AUC-DDD.

Class Description Training Size
(Images)

Validation Size
(Images)

Testing Size
(Images)

c0 Safe driving 2107 533 346
c1 Text right 1207 298 213
c2 Right phone usage 836 226 194
c3 Text left 762 182 180
c4 Left phone usage 914 236 170
c5 Adjusting radio 745 208 170
c6 Drinking 753 180 143
c7 Reaching behind 716 175 143
c8 Hair or makeup 724 174 146
c9 Talking to passenger 1280 299 218

Total 10,044 2511 1923

c0: Safe driving c1: Text right c2: Right phone usage c3: Text left c4: Left phone usage

c5: Adjusting radio c6: Drinking c7: Reaching behind c8: Hair or makeup c9: Talking to passenger

Figure 3. Sample image from each class.

4.3. Experiment Environment

The ResNet models are trained using Pytorch [50] and fastai [51] library while the pose
estimations are obtained through MMPose [52]. Both model training and pose estimation is
carried out on Google Colab, with Tesla T4 GPU. To make sure the result is reproducible,
the random seed value is set to 42 throughout the training. To further evaluate OWIPA,
we benchmark the model with different variants of ResNets and an ensemble of different
combinations of ResNets.

In our experiment, the cross-entropy loss is used as the loss function, and the batch
size is all set to 32 to ensure all the experiments can be successfully run on the limited GPU
resources. The input images used for training the model is shown in Figure 4.

4.3.1. Pose Estimation

In this work, the pose estimation is done with the pretrained model from MMPose library,
since they have proven its accuracy. The detection and pose estimation configurations used
for body pose estimation are faster_rcnn_r50_fpn_coco and hrnet_w48_coco_256x192, respec-
tively. The detection and pose estimation configurations used for hand pose estimation are
cascade_rcnn_x101_64x4d _fpn_1class and res50_onehand10k_256x256, respectively. The pose
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estimation is performed on every image in the dataset. The performance is acceptable, with
prediction loss for both body and hand pose estimation smaller than 0.3. The estimation’s
detailed accuracy is not recorded since it does not have ground truth to be verified. As shown
in the second row of Figure 4, the pose estimation sticks are mapped onto the driver’s body
part, where the head, hand, upper body, and lower body sticks are represented with green,
orange, pink, and blue, respectively. The third row is the body pose estimation sticks with the
same size’s black background as the original images. The fourth row is the combination of both
hand and body pose estimation sticks.

c0 c1 c2 c3 c4

c5 c6 c7 c8 c9

Figure 4. Input images for model training. The first row represents the original image from the dataset. The second row represents
the image undergone pose estimation and overlays on top of the original image. The third row represents the pose sticks of the pose
estimation. Forth row represents the pose and hand sticks of both pose and hand estimation.
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4.3.2. Transfer Learning Procedure

Using a pretrained model for a task different from what it was originally trained for is
known as transfer learning. Compared to training a whole new model, transfer learning
requires only fine-tuning the parameters by additional training epochs to adapt the dataset.
As for transfer learning, the process is carried out in two steps through fastai library:

1. The newly added head of the network is trained while preserving the ImageNet [25]
weights for the rest of the body. The newly added head is trained for 10 epochs with
discriminative learning rate [53] described in Section 4.3.4.

2. The whole network, including body and head of model, is fined-tuned for 20 epochs
using discriminative learning rate described in Section 4.3.4.

Generally, when we want to perform transfer learning, we will strip off the head (fully
connected layer) and replace with a new one that fit with the number of classes in our
dataset. In this case, ImageNet contains 1000 classes, therefore it has 1000 outputs on its
fully connected layer, which is not suitable for our dataset. Therefore, we replace it with
a randomly-generated weight of fully connected layer (classifier head) with 10 outputs.
Since the new layer is of random weights, we will start to fit the layer with our dataset.
In this step, the optimizer only updates the weights on this new layer, and the pretrained
model body is remained unchanged.

Once the newly-added head is trained with several epochs, the head will be capable of
classifying the dataset better. In this work, we train the head for 10 epochs with discrimina-
tive learning rate. Higher learning rate is required in this newly-added head, allowing the
model to learn faster. Following that, the newly-added head will be stitched back with the
other layers from the pretrained model. The whole model will then undergone fine-tuning,
updating the intermediate layer parameters to adapt the current dataset. While fine-tuning,
a lower learning rate should be used, to allow the model carefully updating the parameters
of the other layers. This is because the pretrained model’s body already contain the best
feature extraction since it is trained on a large and sparse dataset.

4.3.3. Optimizer

Optimization algorithms are used to update the weights and biases of a model to
reduce error. It can be divided into two main categories: a constant learning rate algorithm
and an adaptive learning algorithm. The common first-order optimization functions are
Stochastic Gradient Decent (SGD), AdaGrad, momentum, RMSProp and Adam. In a recent
paper, it is noted that adaptive methods have well-working default parameters, especially
Adam [54]. Quoted from [55], “Adam is generally regarded as being fairly robust to the
choice of hyperparameters, though the learning rate sometimes needs to be changed from
the suggested default”. Therefore, Adam is chosen in this work as the optimizer for all
trained models.

4.3.4. Learning Rates

Choosing a suitable learning rate will improve the network’s performance [53], where
a small learning rate causes overfitting while large learning rate causes divergence. There-
fore, “one-cycle” learning rate policy could be used to solve the learning rate issue. [53]
recommends doing one cycle of learning rate of 2 steps of equal length. A lower learning
rate is used over the maximum learning rate. Then, the learning rate is tuned from lower
learning rate to higher learning rate, and then back to the lower learning rate. When the
learning rate is higher in the mid of learning, it serves as a regularization to keep the
network from overfitting. The “one-cycle” learning rate policy changes the learning rate
after every batch. In this study, we scheduled the learning rates at each epoch based on the
cyclical learning rate policy proposed in [53]. The final learning rate and the momentum
for cosine annealing are shown in Figure 5.
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Figure 5. The learning rate and momentum for cosine annealing for our proposed model.

For the first 10 epochs (training of newly added head classifier), the learning rate is
scheduled with a cosine annealing from 4 × 10−6 to 1 × 10−4, with momentum for cosine
annealing between 0.95 to 0.85.

For the next 20 epochs (unfreezing the whole model), the learning rate is scheduled
with a cosine annealing from 1 × 10−6 to 4 × 10−6 for first 6 epochs with momentum for
cosine annealing between 0.95 to 0.85. The rest of the epochs is scheduled with a cosine
annealing from 4 × 10−6 to 1 × 10−6 with momentum for cosine annealing between 0.85 to
0.95.

Therefore, it is observed that the learning rate of training the newly added head
increases drastically, since rapid training is needed, while the learning rate of fine-tuning
increases slowly and decreases slowly too. With “one-cycle” learning rate, the possibility
of overfitting is low and models are able to learn quickly and effectively as compared to a
fixed learning rate.

5. Results and Discussion

We evaluate several ResNet models with different epochs and input image size. The
cross-entropy loss (CL), accuracy, F1 Score and individual F1 Score for each class on the
AUC-DDD v2 dataset for different ResNet configurations are shown in Table 3. The results
are also compared with past studies and shown in Table 4.
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Table 3. The training time (TT), validation cross-entropy loss (CL), accuracy (Acc), F1 Score (F1) and individual F1 Score
for each class on AUC-DDD v2 dataset for different configuration of ResNet. Please note that all models are trained with
“one-cycle” learning rate, with batch size of 32 and image size of 3602. Best results are in bold.

Model ResNet18 ResNet34 ResNet50 ResNet101 ResNet50+
ResNet101

ResNet50 (O)+
ResNet50 (P)

ResNet101 (O)+
ResNet50 (P)

Data Ori Pose Ori Pose Ori Pose Ori Pose Ori Ori + Pose Ori + Pose

ρ - - - - - - - - - - 0.498 - 0.499

TT (min) a 175 210 † 186 213 † 209 244 † 355 388 † 433 ‡ 453 ‡ 453 ‡ 599 ‡ 599 ‡

CL 0.0356 0.0875 0.0284 0.1162 0.0292 0.0613 0.0300 0.0876 0.0296 0.0453 0.0366 0.0457 0.0455
Acc 0.8487 0.8003 0.8544 0.7629 0.8851 0.8066 0.8846 0.7686 0.9012 0.9215 0.9262 0.9376 0.9428
F1 0.8444 0.7985 0.8577 0.7693 0.8870 0.8063 0.8874 0.7655 0.9033 0.9210 0.9259 0.9375 0.9427

AUC 0.9948 0.9873 0.9936 0.9837 0.9964 0.9857 0.9948 0.9821 0.9956 0.9911 0.9932 0.9940 0.9937

c0 0.7010 0.7463 0.8108 0.7458 0.8594 0.8043 0.8650 0.7012 0.8896 0.9240 0.9208 0.9231 0.9149
c1 0.9187 0.9057 0.9330 0.7657 0.9067 0.8377 0.8354 0.7100 0.8773 0.9647 0.9697 0.9456 0.9531
c2 0.8600 0.7753 0.8496 0.7907 0.9022 0.7650 0.9370 0.8376 0.9430 0.9227 0.9391 0.9242 0.9291
c3 0.9422 0.8116 0.8035 0.8042 0.8774 0.8199 0.9003 0.7321 0.9053 0.9330 0.9358 0.9489 0.9518
c4 0.8883 0.9471 0.9708 0.9172 0.9426 0.9499 0.9441 0.8951 0.9444 0.9677 0.9676 0.9853 0.9853
c5 1 0.9412 0.9971 0.9226 0.9851 0.9499 1 0.9046 1 0.9827 0.9913 0.9884 0.9942
c6 0.8947 0.6570 0.9104 0.6240 0.9023 0.6644 0.9254 0.6745 0.9294 0.8603 0.8800 0.9084 0.9242
c7 0.8624 0.8034 0.7760 0.6272 0.8239 0.7922 0.8299 0.8103 0.8309 0.8800 0.8800 0.9108 0.9256
c8 0.7148 0.6300 0.7213 0.6567 0.7569 0.6412 0.7538 0.6145 0.8050 0.8266 0.8375 0.8809 0.9014
c9 0.7915 0.7621 0.8238 0.7629 0.9051 0.7931 0.8894 0.8074 0.9024 0.9074 0.9074 0.9522 0.9593

a The training time is calculated on Tesla T4, including the time taken to load data. † The training time includes time taken to generate pose
estimation images. ‡ The training time for fusion of models are the sum of its individual models training time.

Table 4. Comparison of results with previous studies on AUC-DDD v2 dataset (sorted on average accuracy of the model).

Ref CNN Model PT BS LR a Optimizer Epochs b ACL AA AF IT c

[6] AlexNet X 32 0.0001 Adam 50 (5) 1.024 0.738 0.741 2.61
[8] GWE-Resnet50 † 7 50 0.01 GD 30 0.6615 0.8169 NA NA
[6] VGG-19 X 32 0.0001 Adam 50 (5) 0.531 0.833 0.835 20.46
[7] HRNN X 80 0.001 Adam 30 NA 0.8485 NA 71 ‡

[6] ResNet50 X 32 0.0001 Adam 50 (5) 0.442 0.877 0.882 14.26
[6] InceptionV3 X 32 0.0001 Adam 50 (5) 0.442 0.884 0.890 22.85
[5] InceptionV3 X NA NA NA NA 0.5723 0.8841 NA 22.85
[6] InceptionV3-RNN X 16 0.0001 Adam 50 (5) 0.418 0.884 0.899 23.42
[7] ResNet152 X 80 0.001 Adam 30 NA 0.8852 NA 62 ‡

[6] Densenet-201 X 32 0.0001 Adam 50 (5) 0.395 0.890 0.895 46.05
[5] InceptionV3-LSTM X 16 0.0001 Adam 50 (5) 0.4445 0.8982 NA 23.24
[8] GWE-InceptionV3 † 7 50 0.01 GD 30 0.6400 0.9006 NA NA
[6] InceptionV3-LSTM X 16 0.0001 Adam 50 (5) 0.375 0.902 0.906 23.24
[6] InceptionV3-GRU X 16 0.0001 Adam 50 (5) 0.348 0.903 0.909 23.18
[6] InceptionV3-BiLSTM X 8 0.0001 Adam 50 (5) 0.292 0.917 0.931 23.30
[6] InceptionV3-BiGRU X 8 0.0001 Adam 50 (5) 0.336 0.917 0.922 23.24
[7] ResNet+HRNN+Inception X 80 0.001 Adam 30 NA 0.9236 NA 114 ‡

[5] InceptionV3-BiLSTM 7 32 0.0001 Adam 50 0.2793 0.9270 NA 23.30

Ours ResNet101 (O) + ResNet50 (P) (with weight) X 32 1-cycle Adam 10/20 0.0455 0.9428 0.9427 668.20

Legends: PT: Pretrained; BS: Batch Size; LR: Learning Rate; ACL: Average Cross-Entropy Loss; AA: Average Accuracy; AF: Average F1
Score; ATT: Average Training Time (min); IT: Inference Time (sec); NA: Data Not Available. † GWE: Genetic weighted ensemble; Original
dataset paper. ‡: Collected from original paper. a: 1-cycle represent the model is trained with one-cycle learning rate policy, as described
before. b: Training head epoch / Training whole network epoch. OR Number of epoch (Patience for early stopping). c: The inference time is
calculated on Tesla T4 for paper without reporting it. All parameters are set according to the original works’ configuration. All models’
batch size is set to 1, iterated over 30 iterations and obtain their average. The code follows the implementation by timm [56] library.

Generally, more layers of residual blocks perform better in the classification of original
images. From ResNet18 to ResNet101, it is observed that the overall accuracy and F1 score
increase. However, the time taken to train the model increases as well. Among ResNet18,
ResNet34, ResNet50, and ResNet101, it is observed that ResNet50 has the most tradeoff
between training time and accuracy.
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The input size of the images affects the accuracy of the model as well. We trained the
model with 224 × 224 and 360 × 360 images and found that the latter performs better. It is
worth noting that the original architecture of ResNet using 224 × 224 because the category
in ImageNet is sparse and has little or no relative relationship between classes. In our case,
all images have one person; the difference among them is the hand position and the action
happening around the hand and face region. Therefore, larger input images help the model
to classify better.

At the same time, more training epochs are needed to train the newly added head
classifier. As observed in the “one-cycle” learning curve shown in Figure 4, the learning rate
saturated at the 10th epoch as compared to the 5th epoch. As shown in Table 3, all ResNets
show a big improvement with 10 training epochs for the newly-added head compared
with only 5 training epochs.

As for pose estimation images, it is observed that the time taken to train the model is
longer, factoring in the time taken to generate the images. The time taken to produce a pose
estimation image in its original size takes about 400ms each with flip testing, and 100ms
without flip testing. Pose estimation takes a longer time to process especially when flip
testing is enabled. In this work, the images are generated without flip testing. Therefore,
all pose estimation images are generated within 30 minutes, and is added to the time taken
to train the model. It is also worth noting that the time taken (ATT) reported in Table 4 is
calculated with the time taken for model training pipeline to complete. In this case, pose
estimation images are generated inside the pipeline before feeding into the network. As for
fusion of models, the pipeline is arranged such that one model is trained one after another,
and therefore longer time is observed.

The worse performance is observed when only classifying through pose estimation
images and does not follow the original image classification trend. Moreover, it is shown
that ResNet101 gives worse performance as compared to ResNet50. This means using more
layers not only increases the complexity, but also gives poorer detection. This is mainly
because the hand region is considerably small compared to the whole pose, even though
the noise in the images (the background in the car, including the seat, and steering wheel) is
eliminated. Moreover, the driver’s head is now represented with dots, and therefore classes
that involve more hand activity will suffer less accuracy. However, it is worth pointing
out that pose classification performs better on classes such as adjusting radio because the
hand position is relatively far and distinctive. Therefore, we suggest using both the pose
classification and original image classification to observe if they bring any improvements.

5.1. Selection of Hyperparameter

We performed several iterations of experiments (all sets of training can be found in
Appendix A), with varying training hyperparameters. Table 5 summarizes the ablation
studies on different hyperparameters used.

Table 5. Ablation studies on hyperparameter setting. F1 score of both models trained on original
image and pose estimation image are recorded accordingly. Best results are in bold.

Hyperparamer Setting Original
Image

Pose Estimation
ImageModel Learning Rate Epochs Image Size

ResNet18 0.003 5/10 2242 0.3587 0.6543
ResNet18 “one-cycle” 5/10 2242 0.7658 0.7300
ResNet18 “one-cycle” 5/10 3602 0.8205 0.7480

ResNet101 “one-cycle” 5/10 3602 0.7603 0.7510
ResNet101 “one-cycle” 5/20 3602 0.8910 0.7545
ResNet50 “one-cycle” 10/20 3602 0.8870 0.8063

ResNet101 “one-cycle” 10/20 3602 0.8874 0.7655
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From Table 5, we can observed that original image performs better with ResNet101,
while pose estimation layer did not perform better when more layers are added. Sur-
prisingly, pose estimation images work wells with all the settings above with ResNet50.
Following this idea, we develop several fusion of models with original and pose estimation
image.

5.2. Fusion of Multiple Models

In the first fusion of ResNets, we combine ResNet50 and ResNet101 models. Both
models are trained on original images, so that they perform the best among the others on
the same category (with an input size of 360, trained with same epochs). We observe that
ResNet50 performs better in class c1, c8, and c9, while ResNet101 performs better in other
classes. With this observation, the final predictions are considered through the average of
predictions given by both models. With both models’ predictions having equal weights,
we observe a slight improvement in overall accuracy and F1 scores. At the same time, it is
observed that almost all classes perform better than their individual models.

Following that idea, we fuse models trained with original images and pose estimation
images. We use ResNet50 model trained with pose estimation images because it performs
the best among the others. In contrast, ResNet50 and ResNet101 models trained with
original images since they perform well in some classes over the others. In the first
combination of ResNet50 (original images) and ResNet50 (pose estimation images), it
is observed that there is a huge improvement in CL, and some classes perform even
better, especially class c4 and c5. However, this is not surprising because the model gives
close predictions among a few classes in some cases. Averaging them with the model
with strong confidence in several classes will then bring huge improvement and thus
strong classification. We introduce a weight because pose estimation models perform
better in fewer classes than models trained on original images. It is then observed some
improvement, even though they might not provide the best prediction for some classes,
but they have higher overall accuracy and F1 score.

5.3. Performance of OWIPA

As for our proposed model (ResNet50 for pose estimation image classification and
ResNet101 for original image classification), there is a slight improvement in loss and
accuracy after introducing weight. The weight is determined at the last validation step of
the training. To visualize the effect of weights, the weight from 0 to 1 with step of 0.001 is
shown in Figure 6.
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Figure 6. Grid search in determining the optimal weight, ρ.
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From Figure 6, it is observed that the overall accuracy increases gradually with the
weight initially, and when more weight allocated towards the pose estimation over a
certain point, the overall classification accuracy reduces drastically. This is because the
prediction from model trained on pose estimation images should serve to enhance the
prediction from model trained on original images. Predictions from model trained on pose
classification images are preliminary used to correct the prediction from model trained on
original images for ambiguous cases. For example, when O = [0.03, 0.47, 0.46, ..., 0.01] and
P = [0.01, 0.79, 0.18, ..., 0.03], indicating that the model which classify on original image
is confusing between class c1 and c2, while the model which classify on pose estimation
image has more confidence on class c2. When applying ρ = 0.499, the weightage of class
c2 will then be higher, and therefore reducing false prediction. However, when ρ is more
than a certain amount, signalling that predictions are preliminary based on pose estimation
image model, the F1 score drops drastically. To emphasise once again, the model train on
pose estimation images are used to reduce ambiguous or confused class predicted by the
model trained on original images. Therefore, it is important to obtain the optimum weight
in order to increase the accuracy of the model. Even though the final accuracy improved a
little, but it has benefited the prediction of the overall model as a whole, which reduce false
predictions. The peak point is when ρ = 0.499, where 49.9% of the prediction came from
the ResNet50 model (trained on pose estimation images) and 50.1% of the prediction came
from the ResNet101 model (trained on original images). This has illustrated the importance
of the pose estimation image classification in biasing some of the class, increasing the
classification’s accuracy as a whole. The same is also shown in the ResNet50 (original
images) and ResNet50 (pose estimation image) model fusion, where more weight is applied
to the pose estimation image models.

Furthermore, the time taken for inference from input image to prediction is 850 ms,
measured on Tesla T4 GPU. Specifically, the time taken to generate pose estimation image
is around 650 ms, while time taken for prediction on both models are around 200 ms.

The confusion matrix of our proposed model is shown in Figure 7. It is observed that
the most confused class is class c0 (reaching behind), c2 (right phone usage), c6 (drinking),
and c8 (hair or makeup). This is because these class has very similar right-hand activities.
For example, as shown in Figure 3, these actions are sometime not visible and is cropped
out of frame. Therefore, we use the pose estimation images to reduce the confusion further
and therefore uplifting the total accuracy.

To further understand our proposed model, we use the class activation mapping
(CAM) technique to highlight the detection area on the model focuses. Figure 8 shows the
CAM on ResNet101 (trained on original images), ResNet50 (trained on pose estimation
images) and our proposed model. As observed in Figure 8, the ResNet101 which classifies
the original images can locate the features quite accurately.

It is shown that both ResNet101 and ResNet50 extract fewer features when executed
individually. ResNet101 (trained on original images) tends to focus on the hands and heads,
while ResNet50 (trained on pose estimation images) tends to focus solely on the body part.
By combining both predictions, the model can focus more area, and therefore producing a
more accurate result.
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Figure 7. Confusion matrix for the ensemble of ResNet101 model for original dataset classification
and ResNet50 model for pose classification with weight.
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Figure 8. Heatmap of the feature area. First row represents the heatmap generated by ResNet101 on original images. Second row
represents the heatmap generated by ResNet50 on pose estimation images. Third row represents the heatmap generated by our
proposed method.

Moreover, since the results are obtained though fusion of two different modality (orig-
inal image and pose estimation image), the model is less susceptible to lighting condition.
There are several pictures in the testing set that contains occlusions and reflection due to
sunlight. Through our proposed model, it is observed that there is less wrongly prediction
than using ordinary classification model. However, the downside of our proposed model
is the computational time, since more steps are taken to produce a single prediction.

Through this work, we found that:

• The usage of "one-cycle" learning rate increases the accuracy and reduces the training
loss.

• More epochs are needed to train the newly-added head classifier when performing
transfer learning.
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• Higher resolution images can increase total accuracy and reduce loss, with minimal
increase in total training time.

• The usage of pose estimation images in classifying the class of distraction is useful
when coupled with the original image classification model. It is observed that there is
about 2% increase in the accuracy as compared to using the original image to perform
classification.

• The introduction of weight can increase the accuracy of the model further. Pose
estimation images classification should be weighed more to increase the overall
classification accuracy.

6. Conclusions

Distracted driving is a dangerous act, and one of the prime contributing factors to road
traffic accidents. In this work, we propose using pre-trained ResNets to classify 10 classes
of distracted driving images inside the vehicle. We use pose estimation techniques to
estimate the driver’s pose and then use ResNet to classify the pose images for different
distractions. We then propose an ensemble of ResNets, trained on original images and
pose estimation images, to classify the distraction. We also introduce a weight to allow the
prediction to bias towards one of the models to produce a higher overall accuracy. The
proposed model can achieve an accuracy of 94.28% and an F1 score of 94.27%.

For future work suggestion, we suggested that:

• Using keypoint from pose estimation method to classify the action and fuse with the
original image classification model.

• Using a dynamic weight for every class. As shown in this work, a fixed weight for
overall classification can increase accuracy, but it is observed that some class perform
worse than before. Therefore, every class should have its own weight to produce
higher accuracy for each class.

• Acquiring video stream of the distracted driving and learning the video’s temporal
features, coupled with our proposed model, to produce a better classification.

• Implementing other pre-trained CNNs and applying our proposed techniques to
achieve higher accuracy and shorter training time.
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Appendix A. Additional Results

All of the experiments conducted during this study is tabulated in Tables A1 and A2.
The experiments are conducted under same environment as described in Section 4.3. The
results shown in Table 3 are part of the the following tables.



Sensors 2021, 21, 4837 18 of 21

Table A1. F1 Score of different ResNet with and without discriminative learning rate scheduling on
original image dataset

Learning Rate
ResNet18 ResNet34 ResNet50 ResNet101

2242 3602 2242 3602 2242 3602 2242 3602

Epoch: 5/10
lr = 0.003 0.3587 0.3033 0.2582 0.3025 0.2465 0.3033 0.3344 0.2477
“one-cycle” 0.7658 0.8205 0.8442 0.8191 0.8115 0.8243 0.8499 0.7603

Epoch: 5/20
lr = 0.003 0.4315 0.4355 0.3013 0.2704 0.3356 0.2324 0.2183 0.2255
“one-cycle” 0.8473 0.7801 0.8518 0.8603 0.7801 0.8541 0.7764 0.8910

Epoch: 10/20
lr = 0.003 0.4437 0.3598 0.2487 0.2959 0.2069 0.2589 0.2599 0.2673
“one-cycle” 0.7717 0.8444 0.8372 0.8577 0.7682 0.8870 0.8021 0.8874

Table A2. F1 Score of different ResNet with and without discriminative learning rate scheduling on
pose estimation image dataset

Learning Rate
ResNet18 ResNet34 ResNet50 ResNet101

2242 3602 2242 3602 2242 3602 2242 3602

Epoch: 5/10
lr = 0.003 0.6543 0.7305 0.6676 0.7030 0.6984 0.6713 0.5890 0.5598
“one-cycle” 0.7300 0.7480 0.7660 0.7737 0.7694 0.8012 0.7493 0.7510

Epoch: 5/20
lr = 0.003 0.6858 0.6841 0.6809 0.6595 0.6778 0.7053 0.6165 0.6962
“one-cycle” 0.8005 0.7437 0.8007 0.7416 0.7350 0.7257 0.7437 0.7545

Epoch: 10/20
lr = 0.003 0.6673 0.6862 0.6681 0.7490 0.6582 0.6307 0.6293 0.5912
“one-cycle” 0.7583 0.7985 0.7624 0.7693 0.7135 0.8063 0.7334 0.7655

Appendix A.1. Selection of Learning Rate

The value 0.003 is selected based on learning rate search prior to the training. This is
achieved using the lr_find function provided by the FastAI library. Figure A1 shows the
loss across multiple learning rate.
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Figure A1. The learning rate search for both datasets.
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Appendix A.2. Effects of Learning Rates

In Tables A1 and A2, it is observed that “one-cycle” learning rate provides a big
improvement than using a fixed learning rate. The effect is more visible especially when
the training epoch is small and more features needed to collected from the training data, as
shown in Table 1. Improvements as much as 70% in F1 score is observed when training
ResNet101 with 5/10 epochs and original images of size 3602. Therefore, “one-cycle”
learning rate is chosen for this study to aid the models in regularization.

Appendix A.3. Effects of Image Size

Resizing images is one of the important pre-processing step in computer vision task.
Usually, we want our models to train faster, therefore smaller images are used. However,
selecting an optimal image size would greatly benefited the model. In this work, we found
that models trained on 3602 perform better than that on 2242, given there is no overfitting
or underfitting of model. As shown in Tables A1 and A2, when the number of epochs are
optimal, increasing the image size from 2242 to 3602 will benefit the model as much as 10%
increase in F1 score.

Appendix A.4. Effect of Training Epochs

Transfer learning is proven to be the best choice when the targeted dataset is small
enough. However, since the models are usually pre-trained with ImageNet dataset, with
1000 classes, therefore the common practice is to remove the last fully-connected layer
and add a new layer that suit with the targeted dataset. Since the newly added layer is
randomly initialized, it is usually trained with several epochs, while keeping the pretrained
layers frozen. Then, the whole model is unfrozen and trained once again. There is no
common rule or techniques to set the epochs to train on each process. Therefore, in this
work, we start from 5/10 (training the newly added head for 5 epochs, and the whole
model for 10 epochs) to 10/20.

As shown in Tables A1 and A2, it is noticed that even 5/10 performs quite well, when
the model does not present any bottleneck. For example, ResNet101 for original images
with image size of 3602 can achieve 0.8497 F1 score, with training time taken less than
70 min. However, most of the time, 5/10 and 5/20 met the bottleneck since more features
are to be learnt but the training step is simply not enough, therefore the model did not
generalize well.

Through these training processes, it is observed that:

• Usage of “one-cycle” learning rate will help the model to regularize well, even with
less training epochs.

• Higher resolution of images will help the model to capture more features. However,
more training epochs are needed.

• Selection of training epochs should be balanced between training of newly added
head and the whole models. Early stopping could be deployed as well.
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