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Abstract: Autonomous mobile robots (AMRs) are increasingly used in modern intralogistics systems
as complexity and performance requirements become more stringent. One way to increase perfor-
mance is to improve the operation and cooperation of multiple robots in their shared environment.
The paper addresses these problems with a method for off-line route planning and on-line route
execution. In the proposed approach, pre-computation of routes for frequent pick-up and drop-off
locations limits the movements of AMRs to avoid conflict situations between them. The paper
proposes a reinforcement learning approach where an agent builds the routes on a given layout while
being rewarded according to different criteria based on the desired characteristics of the system.
The results show that the proposed approach performs better in terms of throughput and reliability
than the commonly used shortest-path-based approach for a large number of AMRs operating in
the system. The use of the proposed approach is recommended when the need for high throughput
requires the operation of a relatively large number of AMRs in relation to the size of the space in
which the robots operate.

Keywords: intralogistics; autonomous mobile robots; multi-robot cooperation; reinforcement learning;
route planning

1. Introduction

Autonomous mobile robots (AMRs) are increasingly being used in modern intralogis-
tics systems instead of autonomously guided vehicles (AGVs). They are often used when
additional flexibility is required in cargo transportation tasks, since AMRs, unlike AGVs,
are capable of moving in free space without additional floor markings such as painted
lines or magnetic tapes. Even though they can move freely, it is often necessary to restrict
the areas in which they are allowed to move in order to improve the safety and efficiency
of their operation. For example, they are often restricted to move along walls or within
predefined routes to improve system safety. Another example is movement in a narrow
corridor, where it makes sense to implement a one-way system; otherwise, deadlocks
might occur when vehicles moving in opposite directions encounter each other. Designing
movement constraints and rules, e.g., in the form of predefined routes, is a difficult problem
because it is layout and case specific. Nevertheless, by designing sensible routes, system
efficiency can be improved.

Planning a movement trajectory is done by algorithmically searching through the
representation of the space and finding the optimal solution based on a desired criterion,
which is often the length of the path. Common approaches to finding a path for a robot are
to use one of the basic path planning algorithms, such as A* [1], probabilistic roadmap plan-
ner (PRM) [2], rapidly exploring random trees (RRT) [3], and potential fields algorithms [4]
or their extensions.

When multiple robots share the same environment, the problem of finding the optimal
solution for all robots cannot be solved in polynomial time. Therefore, motion planning is
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often treated separately from robot coordination. For multiple robots to move in the same
environment, the approaches to planning a path for moving from one point to another
can be divided into two main groups. The movement for the robots is planned by either
considering one robot at a time or multiple robots. In the first case, the resolution of
potential conflicts is handled on-line during movement execution [5] while the second
approach detects and prevents some of the conflicts off-line in advance.

In Erdmann [6], the planner determines the path for each robot one by one according
to a priority order, where each already planned path is considered when planning the path
for the next robot in each case. Pecora et al. [7] solve conflicts on paths of multiple vehicles
by progressively defining trajectories using several constraint solvers, which guarantees
their conflict-free execution.

AGVs usually move along predefined floor markings. The markings represent the
roads for the AGVs. They restrict possible interactions between AGVs to intersections and
prevent collisions and path crossings in other areas. The roadmaps are usually defined
by a human expert; however, some solutions for automatic roadmap generation can also
be found in the literature. In Uttendorf [8], the Bellman–Ford algorithm, the A* search
algorithm, and fuzzy inference logic are subsequently applied in the roadmap generation
process. The approach of Digani [9] considers coverage, connectivity, and redundancy of
paths in computing a roadmap for the AGVs.

There are examples of using the approach of roadmaps for free-ranging robots. In
Kleiner [10], linear programming is used to construct a roadmap for path planning from a
Voronoi graph, which is adapted in real time to the detected change in the environment. The
idea of Henkel [11] is to generate a roadmap that is a directed graph optimised for collision
and deadlock avoidance that can be used in centralised and distributed planning setups.
For complete collision prevention, the approach still assumes negotiation at run-time.

Large solution spaces of planning problems often prevent the design of exact algorith-
mic solutions and keep the problems open to the application of new ideas to solve them.
Several research papers present approaches that use artificial intelligence (AI) methods,
such as machine learning (ML), which are making progress in their ability to solve many
real-world problems. Robot motion planning is addressed by data-driven ML approaches
to varying degrees; from learning that replaces the entire navigation stack to learning that
is only used in navigation subsystems or in components within the navigation stack [12].
Reinforcement learning (RL), a type of ML technique, is the most commonly used. In [13],
an RL agent performs the functionality of a local planner for a conventional robotics proce-
dure using the PRM planner. A similar problem solution is used in [14], where the focus is
on incremental training of the RL agent.

For settings where multiple robots share their movement space, RL approaches are
used in a multi-agent form. In both [15,16], multiple RL agents simultaneously plan their
local paths in a distributed setting. The first research incorporates expert knowledge
into the learning phase by using imitation learning (IL), while the second improves the
convergence to the optimal policy using an evolutionary training approach.

The paper addresses the problems of off-line route planning and on-line route exe-
cution. Given a known layout, the goal is to improve the efficiency and the scalability of
an AMR-based intralogistics system by designing a system of routes between pick-up and
drop-off locations. On the one hand, the routes should be short, and on the other, they
should intersect as little as possible, since intersections are sources of lost efficiency due
to vehicle encounters requiring evasive manoeuvres and potential deadlocks. Computa-
tionally, this is an extremely challenging problem, since, in addition to finding possible
routes between pick-up and drop-off locations, it is also necessary to check how each route
intersects with the others. Combinatorial complexity makes it impossible to tackle this
problem with an exhaustive search. Instead, a reinforcement learning approach is proposed,
in which an agent is trained to generate routes on a given layout while aiming to satisfy
various criteria to achieve the desired properties of the generated route map. The agent
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learns to satisfy the criteria by improving its policy based on the rewards received in the
training phase.

The proposed approach is evaluated by observing the execution of a list of transport
tasks for a given shop floor layout. A comparison is made between the AMR transport
system using the route map generated by the RL agent to the same transport system
generating paths on the fly using A*. The comparisons are made for AMR fleets of different
sizes. The results show that the proposed approach performs better in terms of throughput
and reliability than the commonly used shortest path-based approach in systems with a
higher number of AMRs. Compared to the traditional route planning methods (such as A*
search algorithm, RRT, etc.), the advantages of the proposed method are scalability (the
number of AMRs in the system does not affect the difficulty and time of route computation),
minimisation of possible interactions between AMRs (this increases the robustness of the
system), and the need for communication between AMRs in the route execution phase is
minimal (the mobile robots only need to exchange their current position and orientation).
The disadvantages are that the computational complexity increases with the number
of routes to be found, pick-up/drop-off locations must be determined in advance, and
generated routes are static.

2. Reinforcement-Learning-Based Route Generation

The goal of the proposed method is to automatically generate directed routes between
pick-up and drop-off locations for a given layout such that the routes are as short as possible,
the mobile robots do not travel in the opposite direction, and there are as few intersections
and turns as possible. The input data is the layout, which determines static obstacles and
locations of the pick-up/drop-off locations (see Figure 1a). If there are N pick-up/drop-off
locations and all of them are considered as both pick-up and drop-off locations, then the
number of directed routes between them is N·(N − 1). If there is an optimisation function
that indicates the quality of a particular combination of routes, the brute force approach
to finding the best combination of these routes would be to compute the value of the
optimisation function for each combination and select the one with the highest value. To
demonstrate the computational complexity, some simulation results are shown in Table 1:
(1) the total number of different directed route combinations, and (2) the estimated times
to find all combinations and compute the values of the optimization function for all route
combinations for three simple example layouts shown in Figure 2 using exhaustive search.
Due to the extremely large solution space, such an exhaustive search is computationally
too expensive, so a heuristic search is required.

The artificial intelligence technique called reinforcement learning is used to find a
good combination of routes. The idea is to use a reinforcement learning (RL) agent to
generate routes between pick-up and drop-off locations. To enable discrete actions of the
RL agent and thus make it easier for it to search for routes, the first step is to generate an
occupancy grid based on a given layout (Figure 1b). The cell size must be larger than the
largest dimension (length or width) of the mobile robot. This is to allow the robots to drive
and turn without interfering with the robots in the neighbouring cells. At each step, the RL
agent extends the route by one cell. To do that, it can choose one of four possible actions:
(1) a move up, (2) a move left, (3) a move right, or (4) a move down. Figure 1b shows an
agent that has already generate a possible route between the pick-up location at the bottom
right and the drop-off location at the bottom left and is now generating a second route
starting from the pick-up location at the bottom left.
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Figure 1. Input layout and the corresponding occupancy grid: (a) layout with pick-up/drop-off locations (yellow circles),
white represents the driving area and black are the walls or other static obstacles; (b) the corresponding occupancy grid
with the reinforcement-learning agent searching for the routes between pick-up and drop-off locations (the light blue arrows
around the agent illustrate four possible actions).

Table 1. The total number of different combinations of routes (middle column), and estimated time
to find all combinations and to calculate the optimization function values for all combinations of
routes (right column).

Example Layout Total Nr. of Combinations of Routes Estimated Time *

2 × 2 (Figure 2a) 4096 ≈1 ms
3 × 3 (Figure 2b) 4.444945756 × 1012 ≈13 years
4 × 4 (Figure 2c) 1.15513119 × 1027 ≈4.4 × 1015 years

* The estimated times based on simulations running on a mobile workstation with Intel Core i7-9750H Processor
(12 × 2.6 GHz) and 32 GB RAM.

Figure 2. Example layouts to demonstrate computational complexity: (a) 2 × 2, four pick-up/drop-off
locations (four pick-up/drop-off locations means there are 12 directed routes between pick-up/drop-
off locations to be found); (b) 3 × 3, four pick-up/drop-off locations; (c) 4 × 4, four pick-up/drop-off
locations. The transition between cells is only in directions up, down, left, and right).

During the learning process, the RL agent repeatedly attempts to generate a route map
containing all routes between pick-up and drop-off locations. Each attempt is a sequence
of steps called an episode. The routes are determined sequentially in random order. An
episode ends when all routes have been determined or all attempts to find the routes have
been completed.

During each learning step, the agent performs an action, makes an observation and
receives a reward. At each step, the agent has information about its current location on
the occupancy grid, the pick-up and drop-off locations of the current route, and can detect
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obstacles and other pick-up/drop-off locations in the neighbouring cells of the occupancy
grid. After movement, the previous location of the agent is stored among the already
visited locations. The state of the environment (s) is represented by the position of the
current pick-up location (ppickup ), the position of the current drop-off location (pdropoff ), the
current position of the agent (pagent ), the adjacency of walls or other static obstacles around
the agent (w), whether the neighbouring cells have already been visited in the current
episode (v) or during the current route search (vcr), and adjacency of other (excluding
current drop-off location) pick-up/drop-off locations (o):

s = (ppickup, pdropoff, pagent, w, v, vcr, o) (1)

Positions of the current pick-up, drop-off, and agent locations (ppickup, pdropoff, pagent)
are defined as:

ppickup = [x, y] (2)

where x is the coordinate in the x-direction, and y is the coordinate in the y-direction. The
same applies to pdropoff and pagent.

The adjacency of walls, other static obstacles, already visited locations, and other
pick-up/drop-off locations (w, v, vcr, and o) are sets of four binary elements that tell the
agent where walls, other static obstacles, already visited locations, or other pick-up/drop-
off locations are around it. Adjacency is defined for the case of walls and other static
obstacles as:

w = [wup, wdown, wleft, wright] (3)

where each of the four elements (wup, wdown, wleft, wright) has the value of either 1 or 0,
depending on whether a wall or other static obstacle is above, below, to the left, or to the
right of the agent (in which case the value is 1) or not (in which case the value is 0). The
same applies to the other three adjacency sets v, vcr, and o.

The agent learns to choose its actions according to the desired goals by receiving
appropriate rewards for its behaviour in the environment. While reinforcement learning
often uses simple and sparse rewards, a reward composed of multiple components allows
for better adaptation of the learned policy to specific goals of the path planning problem,
as seen for example in [16,17]. Therefore, the reward function is designed to discourage the
agent from generating routes that are longer than necessary, encourage one-way drives
across a single cell, and keep the number of turns on each path and intersections between
successive routes low. At each step, the agent receives a reward r:

r = rstep + rsp + rposition + rvisited + rvisit.c.r + ropp + rcross + rturn + rmax.stp. + rdropoff (4)

The values of the individual parts are calculated as shown in Table 2.
The agent receives a penalty rstep (penalty because the value of Rstep is negative)

for each step to force the agent to generate short routes. rsp is a reward or a penalty
depending on whether the distance to the drop-off location computed as the shortest route
has decreased or increased in the last step. This part of the reward function is intended to
help the agent find drop-off locations faster. rposition is a high penalty that the agent receives
if it tries to go in a direction where it bumps into a wall or other static obstacle, or if it is
at the wrong drop-off location. In this case, the agent is also randomly moved to one of
the adjacent unoccupied cells. rvisited is a penalty the agent receives if it is in a location that
has already been visited in the current episode, and rvisit.c.r. is another high penalty the
agent receives if it is in a location that has already been visited during the current route
search. In general, the agent should not revisit locations on other routes when searching
for a particular route, but in some cases, this either cannot be avoided or this solution
is still better overall than the alternatives (e.g., finding a longer route to avoid revisiting
locations). ropp is a penalty that the agent receives if any part of the currently generated
route at the agent’s current location goes in the opposite direction than another part of the
already existing routes. This is a high penalty because the occurrence of robots driving
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in the opposite direction at the same location should be prevented if possible. rcross is a
penalty for crossing other existing routes (ncross is the number of routes the agent crosses),
and rturn is a penalty for turning. nstp.c.r. is the number of steps in the search for the current
route, Nstp.max is the predefined maximum number of steps allowed for a single route, and
rmax.stp. is a penalty if the number of steps for the current route exceeds the predefined
maximum number of steps allowed per route (in this case, the search for the current route
is aborted, which means that the agent will not be able to find all routes in this current
episode). The number of steps in route search is limited to avoid too long (or infinitely
long) episodes, which is particularly important in some cases in the early stages of the
learning process. Finally, rdropoff is a high reward that the agent receives when it arrives
at the drop-off location of the current route. This is the part of the reward function that
encourages the agent to find the route to the drop-off location. The more skillfully the agent
avoids situations for which it would be punished by the punishing parts of the reward
function, the higher the total reward that the agent is ultimately left with.

Table 2. Values for the individual parts of the reward function.

Variable Case 1 Value in Case 1 Case 2 Value in Case 2

rstep In each new step. Rstep * / /

rsp Shortest path length decreased. Rsp
Shortest path

length increased. −Rsp

rposition
Agent hits the wall or other static obstacle,

or at the wrong drop-off location. −1 Otherwise. 0

rvisited
At the already visited location in

current episode. Rvisited Otherwise. 0

rvisit.c.r.
At the already visited location, it was in

searching for the current route. −1 Otherwise. 0

ropp

The just-generated part of the route is
directed in the opposite direction as

another part of the already existing routes
in the current agent’s position.

−1 Otherwise. 0

rcross Crossing another existing route. ncross · Rcross Otherwise. 0

rturn Making a turn. Rturn Otherwise. 0

rmax.stp.

The number of steps for current route
exceeded the predefined maximum

allowed number of steps for single route.
(nstp.c.r. > Nstp.max)

−1 Otherwise. 0

rdropoff
The agent arrives to drop-off location of

current route. 1 Otherwise. 0

* The value ranges of certain parameters in this table can be found in Table 3. The settings of these parameters depend on a specific application case.

Table 3. Reward function parameters value ranges.

Value Range

−1 � Rstep < 0
0 < Rsp � 1

−1 � Rvisited < 0
−1 � Rcross < 0
−1 � Rturn < 0

Rstep, Rsp, Rvisited, Rcross, and Rturn are the constants: learning parameters that must be
set before starting the learning process, and which can be used to set the relative importance
of a single part of the reward function (e.g., in some cases route intersections might be
more undesirable and route length is not as important, but there might be other cases for
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which route length is more important than the number of route intersections). These values
depend on a specific application.

3. Experimental Validation
3.1. Case Study Description

The case study shows how the use of the proposed method can enable higher per-
formance of a multi-AMR system than the commonly used shortest path-based approach.
Performance is defined as the number of tasks completed per time:

performance = tasks/time (5)

where tasks is the number of tasks given to a multi-AMR system and time is the total time
required to complete all tasks. A task is defined as the pair of a pick-up location and a
drop-off location:

task = (pickup_location_id, dropoff_location_id) (6)

when a task is given to a mobile robot, the mobile robot must first travel to the pick-up
location and then to the drop-off location. The task is finished when the mobile robot
arrives at the drop-off location. Another aspect of performance is the scalability of a multi-
AMR system, which could be defined as the number of robots in the system without serious
conflicts between the robots that would prevent the completion of the given tasks.

The proposed method is compared with the baseline approach, which uses the shortest
paths from pick-up to drop-off locations. To ensure the same conditions for both approaches,
five schedules, each defining the list of ten tasks, are pre-generated in a random manner.
Each of these five schedules is given to both (proposed and baseline) methods for a different
number of AMRs in the system. The tests start with a single robot in the system, and then
the number of robots is increased until the maximum number (10) is reached or the system
faces severe conflicts between the robots that prevent the completion of the tasks.

The expected result is that the shortest path based method (baseline) has higher
performance when the number of mobile robots in a system is small because in the baseline
approach, when the number of robots is small, conflicts between robots do not occur as
frequently and the mobile robots take less time on average to complete the tasks due
to shorter routes. The routes generated by the proposed approach are expected to be
longer than the shortest paths because other criteria besides route length are used. When
the number of mobile robots is larger, the proposed method is expected to have higher
performance than the baseline method, since in this case, it becomes more important how
well conflicts can be avoided since encounters with mobile robots are more frequent. Finally,
when the number of mobile robots in a system is very large, the performance is expected to
decrease in both cases (see Figure 3).

Figure 3. The expected result.
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MiR100 autonomous mobile robots are used in the experiments. The main dimensions
of MiR100 are length 890 mm, width 580 mm, and height 352 mm [18]. The layout for the
experiments and the corresponding occupancy grid is shown in Figure 4. All four marked
pick-up/drop-off locations are used both as pick-up and as drop-off locations, meaning
that 12 routes have to be found.

Figure 4. (a) Layout for the experiments and (b) the corresponding occupancy grid with the cell size of 1 m.

3.2. Reinforcement-Learning Parameters

Besides the definition of the possible actions, the state of the environment, and
the reward function, which have already been presented in Section 2, there are addi-
tional parameters of reinforcement learning that need to be set. For the experiments,
the reinforcement learning algorithm proximal policy optimisation (PPO) reinforcement
learning algorithm [19] was used. The implementation of the PPO algorithm (named
PPO1) from the Stable Baselines programming library [20] was used. The total number
of steps to train the RL agent was set to 5 million. One-hot encoding was used for ppickup,
pdropoff, and pagent (these are the first three parts of the environment state observation vec-
tor; see Equations (1) and (2)). The maximum number of steps allowed per single route
(Nstp.max) was set to 100 steps. Table 4 shows the values of the reward function parameters
used in the experiments.

Table 4. Reward function parameters.

Parameter Value

Rstep −0.001
Rsp 0.05

Rvisited −0.005
Rcross −0.05
Rturn −0.005

3.3. Simulation, Baseline-Method, and other Parameters

The physics-based simulation developed using Robot Operating System (ROS) and
Gazebo simulator [21] was used to test the generated routes for feasibility and compare the
proposed approach with the baseline method (Figure 5).
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Figure 5. Physics-based simulation developed using Robot Operating System (ROS) and
Gazebo simulator.

The proposed approach uses a simple PD line-following algorithm to traverse indi-
vidual straight route segments. To determine their current position and orientation, the
mobile robots in the proposed approach use the same localisation system as in the baseline
method. Some simple traffic rules are used:

• Right-of-way rule (since there may still be some intersections);
• Leave enough space in front of the robot (stop and reverse very slowly if another robot

is closer than 2.7 m in front of the robot on the same route segment);
• Stop (and reverse slowly) if the front of the mobile robot gets too close to another

mobile robot).

For travel between pick-up and drop-off locations, the baseline approach uses a
standard navigation system based on finding the shortest path to the goal location. In the
baseline approach, the mobile robots move between pick-up and drop-off locations using
the shortest paths calculated by the anytime A* algorithm.

Figure 6 shows simulations using the proposed approach (a) and the baseline approach
(b). With the proposed approach, the mobile robots are aligned in x and y directions since
they use pre-computed routes that are all aligned in x and y directions (since the RL agent
in the proposed method can only generate routes by moving up, down, left, or right). With
the baseline approach, the robots use the shortest paths to travel between pick-up and
drop-off locations; therefore, when there are a large number of mobile robots in a system,
conflicts between the robots often occur.

3.4. Different Layouts

The feasibility of the proposed approach is further demonstrated by applying it to
four different layouts: (1) four pick-up/drop-off locations, one wall, 12 × 12 m (Figure 7a),
(2) four pick-up/drop-off locations, multiple walls, 12 × 12 m (Figure 7b), (3) eight pick-
up/drop-off locations, 30 × 20 m (Figure 7c), and (4) seventeen pick-up/drop-off locations,
30 × 20 m (Figure 7d). The cell size for all layouts is 1m. For layouts 1, 2, and 3 the total
number of steps to train the reinforcement learning agent is set to 5 million. In the case of
layout 4 (17 pick-up/drop-off locations, 30 × 20 m), the learning process is extended to
10 million steps.
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Figure 6. Simulation experiments for validation of the proposed method: (a) proposed approach; (b) baseline approach.

Figure 7. Other layouts: (a) four pick-up/drop-off locations, one wall, 12 × 12 m; (b) four pick-up/drop-off locations,
multiple walls, 12 × 12 m; (c) eight pick-up/drop-off locations, 30 × 20 m; and (d) seventeen pick-up/drop-off locations,
30 × 20 m. Yellow circles are pick-up/drop-off locations, white represents the driving area, and black are the walls or other
static obstacles.
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4. Results
4.1. Generating Routes

Figure 8 shows how the reinforcement-learning agent’s policy is improved over a
learning process of 5 million steps.

Figure 8. Episode reward during training the RL agent.

The final routes generated by the trained reinforcement-learning agent are shown
in Figure 9. The total reward for this episode was 17.88. The total time for learning the
reinforcement learning agent and generating the final routes was 36 min.

4.2. Comparison of the Proposed to Baseline Approach

Figure 10 shows how the performance of a multi-robot logistics system changes as
a function of the number of mobile robots operating in the system and depending on the
navigation approach used. To calculate the average performance shown in the upper graphs
in Figure 10, only the results of tests where the multi-robot system was able to complete all
tasks were used. The lower graphs in Figure 10 show the fraction of tests in which a multi-
robot system could not complete the given tasks due to severe conflicts/deadlocks between
the robots. The failure rate is defined as the fraction of tests in which the AMR system
failed to finish the given tasks (f ailure_rate = nr_of_failed_examples/nr_of_all_tests). Table 5
compares the route lengths of the shortest path based approach and the proposed approach.

4.3. Different Layouts

The proposed approach was able to find all routes in all four layouts (see Figure 11).
Figure 12 shows the episode rewards during the learning process and the training times
for each layout. Table 6 shows the average, minimum, and maximum route lengths. In
the more complex last two layouts (Figure 11c,d), route segments occurred that went in
opposite directions at the same locations. This occurred in three route segments (a total
distance of 3 m) in the third layout (eight pick-up/drop-off locations, 30 × 20 m) and in
eight route segments (a total distance of 8 m) in the fourth layout (seventeen pick-up/drop-
off locations, 30 × 20 m).
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Figure 9. Routes generated by the trained RL agent. The coloured squares (blue, red, green, and yellow) indicate pick-
up/drop-off locations, and the colour of the route indicates to which pick-up location the route belongs. All four locations
(blue, red, green, and yellow squares) represent both pick-up as well as drop-off locations (robots may travel in both
directions for any pair of these locations). When the robot needs to travel from a pick-up location to a drop-off location, it
follows a route that is the same colour as the pick-up location.

Table 5. Routes lengths, shortest path-based, and proposed approach.

Method Min. Route Length (m) Max. Route Length (m) Route Length Mean ± st. dev. (m)

shortest-path-based 9.02 20.44 13.84 ± 3.91
proposed (RL-based) 12.00 29.00 18.83 ± 5.31
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Table 6. Routes lengths, total number of routes and opposite route segments for different layouts.

Layout Total Nr.
of Routes

Min. Route
Length [m]

Max. Route
Length [m]

Route Length
Mean ± st.dev. [m]

Nr. of Opposite
Route Segments *

four pick-up/drop-off locations,
one wall, 12 × 12 m 12 6.00 18.00 12.17 ± 4.84 0

four pick-up/drop-off locations,
multiple walls, 12 × 12 m 12 12.00 29.00 18.83 ± 5.31 0

eight pick-up/drop-off locations,
30 × 20 m 56 5.00 48.00 25.07 ± 11.17 3

seventeen pick-up/drop-off
locations, 30 × 20 m 272 3.00 66.00 24.57 ± 10.83 8

* one segment length is 1 m.

Figure 10. Performances of the proposed and the baseline approach. Above: the performances
calculated according to Equation (5). Below: the proportion of tests in which a multi-AMR system
failed to finish given tasks due to severe conflicts between the robots.
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Figure 11. Results on different layouts: (a) four pick-up/drop-off locations, one wall, 12 × 12 m; (b) four pick-up/drop-off
locations, multiple walls, 12 × 12 m; (c) eight pick-up/drop-off locations, 30 × 20 m; and (d) seventeen pick-up/drop-off
locations, 30 × 20 m. The coloured squares (blue, red, green, and yellow, etc.) indicate pick-up/drop-off locations, the
colour of the route indicates which pick-up location the route belongs to, the walls/obstacles are represented in light grey,
and the driving surface is coloured dark grey.

Figure 12. Episode reward during training and training times for different layouts. Tests were
running on a mobile workstation with Intel Core i7–9750H Processor (12 × 2.6 GHz) and 32 GB RAM.
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5. Discussion

At the beginning of training, the agent starts learning from scratch and receives a low
reward of about −3000 (see Figure 8). Most of the improvement is achieved within the first
1.5 million steps, during which the episode reward improves to almost 17. Over the next
3.5 million steps, the agent’s policy is fine-tuned and stabilised. From about 3.2 million
steps onward, the episode reward remains at about 17.8.

With the proposed approach, it took 36 min to train the RL agent on a given layout and
generate the routes. With the baseline approach, the time to compute the route between
the pick-up and drop-off locations is for the same layout approximately one second, which
means that the total time to compute all 12 routes is about 10 s. Route calculation time using
the baseline approach generally depends on the size and complexity of the layout and the
location and the distances between the start and destination locations. For larger and more
complex layouts, the time to calculate the route will be longer on average. However, it is
important to note that the baseline approach does not consider the multi-robot problem and
when using the proposed approach, the computation of the routes is only required once at
the beginning and is only repeated when the layout changes. In the usual implementation
of the baseline approach, the paths are computed online, meaning that a new path is
calculated every time a robot receives a new task or a goal destination.

As expected, the shortest-path-based approach produced shorter routes (Table 5). All
lengths (min, max, and mean) are approximately 30% longer when using the
proposed approach.

From the generated routes to be used in the multi-AMR system (Figure 9), it can be
observed that there is no part of the route that would be in the same location (in the same
cell) directed in the opposite direction to another existing part of the routes. The reason
for this is probably a relatively large penalty if the RL agent takes a step to a location
that is in the opposite direction to another existing part of the route. In the final route
map, there are still intersections of routes because the solution does not exist without
intersections for that layout. In contrast, sometimes it is better to create intersecting routes
instead of very long routes without intersections. It can also be observed that two-lane
roads are created where one lane has routes in one direction and the other lane has routes
in the opposite direction. It seems that despite trying to follow all other rules (avoiding
conflicts of opposite directions, intersections, etc.), the RL agent has made the routes as
short as possible.

The experiment confirmed the hypothesis that in the presence of a large number of
mobile robots, the use of the proposed approach allows the multi-AMR system to perform
better than the commonly used baseline approach, which focuses only on calculating the
shortest paths between pick-up and drop-off locations. The proposed approach performs
better than the baseline approach on both criteria (throughput and scalability) in all cases
where there are eight or more mobile robots in the system. The performance is not only
better in terms of how many tasks are executed in a given time; such an approach is also
more reliable as there was rarely any system failure (an exception was in one of the tests
when all ten mobile robots were operating in the system). The proposed approach has
73.3% higher performance when only cases where no failures occurred are considered (in
this case, the highest average performance of the baseline approach is when three mobile
robots are operating in the system; in this case, the performance is 2.72 tasks/minute,
in the proposed reinforcement learning based approach the best average performance
is 4.72 tasks/minute when nine mobile robots are in the system). If the cases where
the failures occurred are ignored, the average performance of the proposed approach is
16.8% higher (4.12 tasks/minute in the baseline approach when there are six robots in the
system, and 4.81 tasks/minute in the proposed approach in the case of all ten mobile robots
in the system).

The baseline approach failed to complete a single schedule with eight mobile robots
in the system, and system failures occurred with only four mobile robots. In contrast, the
proposed reinforcement learning-based approach succeeded in completing all but one of
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the 50 tests (5 different schedules; 10 different numbers of mobile robots). The system
failed only in one case where all ten mobile robots were in the system, and this was due
to suboptimal settings of the meeting rule parameters, which could be further improved
relatively easily in the case of the proposed approach. In the baseline approach, in almost
all cases of failure, situations occurred where multiple mobile robots travelling in opposite
directions met head-on at a narrow passage or got stuck at pick-up/drop-off locations,
causing a traffic jam that was impossible to get out of using the standard navigation method.
Some of these failures are shown in Figure 13.

The ability to generate routes using the proposed approach was also tested on different
layouts (see Section 4.3). The proposed approach was able to find all routes in all tested
layouts. The solution for the first layout (Figure 11a) seems interesting. In this case (four
pick-up/drop-off locations, one wall, 12 × 12 m), the RL agent learns that the best solution
is to set up counter-clockwise circular traffic around the wall in the middle of the room, as
shown in Figure 14. The second layout (four pick-up/drop-off locations, multiple walls,
12 × 12 m) is the one we used in the previous section for comparison with the shortest path
based approach. In the two more complex layouts with a larger number of pick-up/drop-
off locations and a larger size of the driving area (see Figure 11c,d), some route segments
were generated that went in opposite directions at the same location, but this occurred
only to a very small extent (in 3 and 8 route segments, respectively). Due to the very
infrequent occurrence, the route segments going in opposite directions can be identified
and manually corrected, or additional driving rules can be added instead in the parts of
the routes where traffic is running in both directions. One way to avoid this problem could
also be to change the reward function (e.g., increase the penalty for counter-flowing routes
in the same locations, in which case it might be worthwhile for the agent to find a different
route, either longer or with more intersections, but without parts where the routes run in
opposite directions).

Figure 13. Typical failures in the shortest-path based (baseline) approach when having a large
number of AMRs in the system.
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Figure 14. Circular traffic in a counter-clockwise direction around the wall.

In Figure 12, which shows the episode rewards during training and the training
times for all four layouts, one can observe that the computational complexity most likely
increases with the number of routes to be found. In particular, comparing the third (eight
pick-up/drop-off locations, 30 × 20 m) and fourth (seventeen pick-up/drop-off locations,
30 × 20 m) layouts, it can be seen that for the same size and shape of the driving area, the
convergence of the episode reward slows down with a larger number of pick-up/drop-off
locations. Comparing the first (four pick-up/drop-off locations, one wall, 12 × 12 m) and
second (four pick-up/drop-off locations, multiple walls, 12 × 12 m) layouts, which have
the same number of pick-up/drop-off locations and approximately the same size of the
driving area but a different configuration of walls, it can be seen that convergence in RL
agent learning is also affected by the complexity of the obstacle configuration.

The advantages of the proposed method are:

• automatic generation of routes;
• scalability in terms of the number of mobile robots (the number of vehicles in the

system does not affect the difficulty and time of calculating routes/actions);
• in the generation of routes, the relative importance of each criterion can be adjusted

for the specific application of the proposed method;
• a good system performance can be achieved with only a few simple traffic rules;
• the use of the proposed navigation method allows a more accurate (and easier) predic-

tion of the future states of mobile robots (this property could also be exploited in the
extension of the method by adding the functionality offered by state-of-the-art on-line
path planning methods);

• a small number of possible ways how mobile robots can meet (e.g., at an intersection,
on a straight line, or at a turn), this facilitates increasing the robustness of the system;

• additional communication between the robots is minimal (the robots only need to
share their current location and orientation);

• compared to the baseline approach, the use of computational resources is mini-
mal (in addition to following the route, the robot uses a simple algorithm to check
only the current geometric relations with other mobile robots, i.e., relative position
and orientation);

• the proposed method allows for a relatively simple decentralisation of a multi-AMR system.
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Potential advantages not currently included in the experiment, although the proposed
method allows their realisation, are:

• the relative importance of each route can be adjusted (some routes may be more
important or frequent than others);

• the relative importance of each robot or task could be set by dynamically adjusting
the traffic rules;

The disadvantages are:

• the difficulty and time of route computation depends on the number of routes to
be found;

• pick-up/drop-off locations must be determined in advance (e.g., if a pick-up/drop-off
location later appears elsewhere, the default navigation system must be used to go to
that location);

• routes found are static.

6. Conclusions

A method for automatically generating routes for multi-AMR systems is proposed.
The proposed method, which generates routes between pick-up and drop-off locations,
is based on reinforcement learning. With simulation experiments, it has been confirmed
that using the proposed method with a larger number of mobile robots in the system can
enable higher performance in terms of throughput and reliability. The main advantages of
the method are the automatic generation of routes, the ability to consider several criteria
simultaneously, the scalability in terms of the number of mobile robots, and the low load
on the computational resources and the communication network. The disadvantages of the
method are that the computational complexity increases with the number of routes, the
pick-up, and drop-off locations must be determined in advance and the static nature of the
generated routes. Given the common situations in today’s logistics systems that involve
the use of AMRs, the static nature of the generated routes does not limit the feasibility of
the proposed method for the majority of use cases.
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