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Abstract: Smartphone location recognition aims to identify the location of a smartphone on a user in
specific actions such as talking or texting. This task is critical for accurate indoor navigation using
pedestrian dead reckoning. Usually, for that task, a supervised network is trained on a set of defined
user modes (smartphone locations), available during the training process. In such situations, when
the user encounters an unknown mode, the classifier will be forced to identify it as one of the original
modes it was trained on. Such classification errors will degrade the navigation solution accuracy. A
solution to detect unknown modes is based on a probability threshold of existing modes, yet fails to
work with the problem setup. Therefore, to identify unknown modes, two end-to-end ML-based
approaches are derived utilizing only the smartphone’s accelerometers measurements. Results using
six different datasets shows the ability of the proposed approaches to classify unknown smartphone
locations with an accuracy of 93.12%. The proposed approaches can be easily applied to any other
classification problems containing unknown modes.

Keywords: accelerometers; activity recognition; anomaly detection; deep feature space; machine
learning

1. Introduction

Human activity recognition (HAR) is a task aimed to automatically recognize human’s
physical activity. HAR is applied in many fields and applications, such as health monitoring,
smart homes, sports, security, context awareness and indoor navigation. Starting in the
1990s [1], HAR has emerged as a key problem to ubiquitous computing, human-computer
interaction and human behavior analysis with [2–4]. There, sensory data obtained from
wearable sensors [5] are used to identify a human activity. One possibility for collecting
sensor data is by utilizing the channel state information of Wi-Fi signals [6] or by leveraging
from multiple wearable devices sensors such as inertial sensors (accelerometers, gyroscopes
and barometer) and ambient environment sensors (temperature and humidity) [7,8].

Focusing on indoor navigation, HAR approaches enable the possibility of classifying
the user dynamics (mode), for example walking or running. This is made possible by
using the smartphone’s inertial sensor. Knowledge of the user mode, helps to improve the
positioning accuracy. For example, in [9] statistical measures were employed to distinguish
between walking and running user modes. Was classified, a selection of appropriate model
parameters was made. Later, four types of user modes, namely, walking, running, bicycle,
and vehicle were addressed in [10].

An important branch of HAR in indoor navigation is smartphone location recognition
(SLR) [11,12]. It refers to the process of identifying the location of a smartphone on the
user during specific actions. For example, the smartphone will be judged to be in Texting
mode when the user holds the phone and writes a text massage or in Talking mode when
the user hold the phone during a phone call. Identifying those smartphone modes helps
to improve pedestrian dead reckoning performance as was shown in [13]. In [14] both
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user and smartphone modes were addressed including eight types of user modes and
seven types of smartphone locations. There, a distinction was made between several types
of the Texting operation, namely with one or two hands and additionally in the Swing
mode between big or small arm swing. In [15] a finite state machine was used to identify
three smartphone locations: Swing, Texting, and Pocket. To assist in the integration of
the accelerometers and gyroscopes, a threshold-based approach was used to distinguish
between the presence and absence of a Swing mode [16]. Recently, smartphone mode
recognition was used to improve heading determination performance [17].

Most of the papers addressing HAR or SLR uses a dataset with specific known modes
(for instance: Talking, Texting, or Swing) in a supervised learning approach. When the
user encounters a previously unknown mode (for instance, Pocket), the classifier will
perforce identify it as one of the original modes it was trained on. Such classification errors
will degrade the navigation solution accuracy. This problem is not unique to HAR or
SLR, of course, and is known in the machine learning (ML) literature under a number of
different names, guises, and variations such as classification with a reject option, one-class
classification, anomaly detection, and open set recognition, to name a few. We refer the
reader to the recent survey [18] for a more detailed and nuanced exposition on the different
variants. Also to [19] for a theoretical analysis.

Consider the following common scenario: a user is walking with a smartphone and
a pedestrian dead reckoning (PDR) algorithm to estimate the user position is applied.
In such an algorithm, different parameters are used pending on the user dynamics (Walk-
ing/Standing/Escalators and etc.) and smartphone locations (Texting/Talking/Pocket
and etc.). For example, different user dynamics or smartphone location will result in
different PDR gain values or different network parameters for estimating the pedestrian
position. Focusing on the smartphone location, SLR classifies it and appropriate PDR pa-
rameters are selected. In situations of unknown smartphone locations, that is smartphone
locations which are not defined in the PDR algorithm, it is desired to take some average
gain value from all defined modes to minimize the positioning errors. Otherwise miss
classifying the unknown mode as one of the known modes will result in 10% position error
as shown in [13] in a 21 m trajectory. For longer ones, the error is expected to increase.
Thus, a methodology to cope with unknown modes is needed to be incorporated in the
PDR algorithm.

To fill this gap, in this paper we propose two end-to-end ML-based approaches to
address the unknown smartphone location modes problem using only the smartphone’s
accelerometers measurements: (1) a supervised approach which requires the known modes
labelling during the training phase and (2) an unsupervised approach without the require-
ment to label training data. In both approaches, a feature representation space is extracted
and fed into a K-nearest neighbors algorithm to detect the unknown modes.

To enhance the efficiency and robustness of the proposed approaches multiple datasets
are used in the training and testing phases. The training process is based on four different
datasets recorded by 23 people while the smartphone was placed in four different known
smartphone locations: Texting, Pocket, Swing, and Talking. The test dataset contains
two additional datasets recorded by 25 people (not present in the train dataset) with the
following five smartphone locations treated as unknown modes: Body, Bag, Belt, Waist,
and Upper-arm.

Although our focus is unknown modes in the SLR problem, the proposed approaches
can be easily adjusted to any other domains requiring unknown modes classification.

The rest of the paper is organized as follows: Section 2 reviews current approaches to
handle unknown modes while Section 3 presents the mathematical foundations required
for the proposed approaches. In Section 4, the proposed approaches are described while the
datasets used to evaluate them are described in Section 5. Section 6 brings the experimental
results of this research. Finally, Section 7 gives the conclusions of this work.
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2. Related Work

A number of possible existing approaches to handle the unknown mode problem are
briefly described. They can be categorized into three groups: (1) Thresholding, (2) Reject
option, and (3) Training with a background class.

2.1. Thresholding

One possible way to respond to the challenge of unknown modes is by thresholding
the classification probabilities of the model that has been trained on the known modes.
Usually these probabilities are available as the output of a final softmax activation function
in the model. If none of the known modes is recognized with high enough probability,
the input is declared as “unknown”. See e.g., [20,21]. More sophisticated manipulations on
the vector of classification probabilities are also possible and we refer the reader to [22–24]
and the references therein.

However, while methods from this class do sometimes work well in practice, their
principal shortcoming is that they do not really detect unknown modes at all, but rather
produce an estimate of the confidence of the model in its selection of one of its known modes.
Low confidence is then taken to be an indication of the presence of an unknown mode
or anomaly. But since low confidence may have other causes as well, this assumption is
rather shaky. And indeed, in many practical scenarios, given an input of an unknown class,
the classifier will still pick one of the available modes with high probability, indicating that
the threshold approach is not robust enough.

2.2. Reject Option

Another possible approach to the unknown mode problem is to integrate the possibil-
ity of rejection into the classifier, instead of post-processing its probability estimates [25,26].
One shortcoming of this kind of approach is that it necessitates a rather more complex
training regimen. Another, and perhaps more severe, will occur in the situation when
a hitherto unknown mode is converted into a known one. This will require a complete
retraining of the model.

2.3. Training with a Background Class

Another possible type of approach can be taken, when there is ample data belonging
to the unknown modes during training. In such scenarios, one can divide the task into
two stages; in the first stage a binary classifier is trained to distinguish between known
and unknown modes on the basis of the training data and then a second classifier finds
the specific mode only for those detected as known in the first stage. This approach is not
quite recommended because of its apparent brittleness. In particular, no guarantees can be
made at all for its behaviour in the case that a new unknown mode is introduced. We refer
to [27] for a more detailed critique.

A sturdier version is sometimes used in practical work, wherein all the unknown
modes are lumped together as a “background” or “garbage” additional class and the
classifier is trained with n + 1 labels for n known modes. While there is still no theoretical
justification for this kind of a solution, it can be intuitively defended on the grounds that
the classifier implicitly learns features that distinguish the collection of unknown modes
from the known ones and so if we take care to include many different unknown modes in
our data collection, it will have a fighting chance to learn useful features.

3. Algorithmic Building Blocks

In this section, three commonly used algorithmic building blocks are briefly reviewed.
Those, later, will be employed as part of the proposed approaches as presented in Section 4.

3.1. K-Nearest Neighbors

K-Nearest Neighbors algorithm (KNN) is an elementary supervised ML algorithm
for easy interpretation, versatile and low calculation time of both classification, regres-
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sion predictive problems or anomaly detection [28]. KNN is a non-parametric method
for instance-based leaning. In other words, there are no assumptions on the underlying
data distribution, and it does not need any training data points for mathematical model
generation. In general, the KNN output depends on the application, for instance, in classifi-
cation (a class membership), in regression (a property value) and in anomaly detection [29]
(outlier score). There, K is the core design parameter, which indicates the number of nearest
neighbors, and depends on the model building procedure.

To formulate this algorithm, consider a train dataset arranged as a set of n-pairs:

(X1, Y1), (X2, Y2), . . . , (Xn, Yn) (1)

where Yi is the class target of Xi features vectors for i = 1, 2, 3, . . . , n. So that X|Y = r for
r = 1, 2 (e.g., two classification classes). Given some norm ||·||2 on Rd and let q ∈ Rd be a
query point for which target needs to be predicted. Hence, the first K closest points from
the given train dataset to q should be found by calculating the distance between the train
dataset points to q. Commonly, Euclidean distance Equation (2) is applied followed by
a second vote for target by either a majority vote of most common among its K nearest
neighbors or the average of the values of K nearest neighbors.

d(X, q) = ||X− q||2 (2)

3.2. Principal Component Analysis

Principal Component Analysis (PCA) is one of the most widely used unsupervised
dimensionality reduction techniques for data exploration, statistical analysis and predictive
modelling [30,31]. During the PCA process, the principal components are computed and
used to transform the data into a subspace, without relying on class labels. In other words,
PCA has no concern with the class labels. In general, it returns a compact representation
of a multidimensional dataset by reducing the dataset to a lower dimensional subspace.
In particular, these principal components are based on transforming a large set of variables
into a small set of p-variables, which are linearly uncorrelated, by finding orthogonal
linear combinations of the original variables with largest variance. As a result, the first
principal component has the highest variance, the second principal component has the
second highest variance, and also it is orthogonal to the first principal component, and so
on. Often, only the firsts principal components consist of most of the variance in the
original dataset, and therefore, in many applications only they are used while the rest
principal components, with minimal loss of the variance, are ignored. From either objective,
it can be shown that all of the variation in the original dataset is accounted for by the
principal components.

3.3. Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a supervised dimensionality reduction tech-
nique of data for easy exploration, statistical analysis and predictive models [32]. It is
the process of reducing the number of dimensions (i.e., variables) in the dataset while
retaining the information that discriminates output classes. That is, LDA tries to find a
decision boundary around each cluster of a class labels. In general, [33] is a generalization
of Fisher’s linear discriminant, which seeks an optimal set of discriminant projector vectors
to map a multidimensional dataset onto a lower dimensional subspace. In particular, these
linear discriminants are based on the projection of the dataset in a way that the classes are
as separate from each other as possible and the individual elements within a class are as
close to the mean of the class as possible. Then, the new dimensions are ranked on the
basis of their ability to maximize the distance between the classes (i.e., the fisher criterion)
and minimize the distance within the classes [34]. In this way, the ratio of the projected
dataset between to within class scatter is maximized.
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4. Proposed Ml-Based Approaches: Anomaly Detection in Deep Feature Space

The goal of this paper is to provide an effective mechanism for the detection of
accelerometer signals belonging to unknown modes. To that end, the SLR domain is chosen
to derive and present the proposed approach, but the it can be easily adapted in any other
activity recognition tasks and in other domains as well. It is assumed that a separate model
capable of classifying the known SLR modes exists, for example, as in [11]. There the
four known smartphone locations (classes) are: (1) Texting, (2) Swing, (3) Pocket, and (4)
Talking. The central idea of our solution is as follows: a high-quality classification model
for the known modes will have already learnt a good deep feature representation of the
accelerometers readings. This representation is essentially a function f : Rn → Rd, where
n is the input dimension of the signal (n = 3 in our case) and d is the dimension of the
hidden representation. The proposed approach is illustrated in Figure 1.

Figure 1. Proposed approach: accelerometer readings are represented in deep feature space to classify
unknown smartphone modes.

Two different approaches to utilize the feature representation in order to classify
unknown modes are suggested:

1. SUN: supervised unknown network: The penultimate layer of a network, trained in
a supervised manner from data belonging to a number of known modes, is employed
for the feature representation space. Then, a KNN algorithm is applied to determine
if the signal belongs to a known or an unknown mode. Another possibility is to apply
standard techniques of dimension reduction (PCA or LDA) prior to KNN application.

2. UUN: unsupervised unknown network: Novel features extracted from a latent rep-
resentation using a variational recurrent auto-encoder (VRAE) architecture, trained in
an unsupervised manner, are used as the feature representation space. Then, a KNN
algorithm is applied to determine if the signal belongs to a known or unknown modes.
Unlike in the SUN approach, here the labeling of the known modes are not needed in
the training process.

With the representation in hand (either by SUN or UUN approaches), a robust and
effective way to detect unknown modes is via anomaly detection in the representation
space. To that end, the non-parametric method of [29], as implemented in the PyOD
toolbox [35], will be employed. In other words, we will apply the KNN algorithm of [29] to
d-dimensional feature vectors representing a signal instance and obtain either a TRUE or
FALSE answer. TRUE means that we have on our hand an anomaly, which means that the
signal is from an unknown mode, while FALSE means that the signal belongs to a known
mode. The SUN and UUN approaches are shown in Figure 2A.

Now after the proposed approaches are defined, they are compared to Thresholding,
Reject option, and Training with a background class approaches (as described in Section 2)
in Table 1. Notice, that for new unknown mode addition and unknown-known conversion
both SUN and UUN proposed approaches don’t require additional retraining procedure.
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Remark 1. The emphasis we place on the role of the deep feature representation as opposed to
more sophisticated rejection mechanisms is inspired by the pervasive role deep features play in
visual image understanding where it is by now well-established that good features allow strong
generalization across tasks (cf., e.g., [36,37]), which is exactly what we seek here. This also allows
for smooth handling of the appearance of new unknown modes since they usually do not affect the
feature representation

Figure 2. Proposed approaches for unknown modes detection using the smartphone’s accelerometers.
(A) SUN and UNN with a KNN for separately modelling the unknown modes networks, (B) SUN
network architecture used in training, and (C) UUN network architecture used in training.

Table 1. Comparison between approaches in terms of training data.

Algorithm/Approach Thresholding Reject Option Background Class SUN UUN

Requires training data? No Yes Yes No Yes

New unknown mode addition requires retraining? No Yes No No No

Unknown→ Known conversion for a mode requires
retraining? Yes Yes Yes No No

4.1. SUN Network Architecture

Motivated by [11], a supervised one-dimensional convolution neural network (1D-
CNN) model was trained on the four known modes. The CNN architecture that is used
for training the different SLR modes is shown in Figure 2B. The input to the network
is the accelerometer measurements (specific force vector). The first layer, is a 1D-CNN
with 32 units and a ReLU activation. The second layer is identical to the first one. After a
dropout of 0.6, the next layer is a 1D-Polling layer of size two followed by a flatten layer to
set the dimensions to the following two dense layers. The dense layer has 32 units with a
ReLU activation function and the final layer (dense) has a Softmax activation to output the
SLR classification result. That is, given the accelerometers readings the network outputs
one of the four known modes.

4.2. SUN Training Procedure

The network is trained with a minibatch of size 32, and the RMS propagation (RM-
SProp) [38] algorithm for optimization, which divides the gradient by a running average of
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its recent magAdam optimizer, is used. An initial learning rate of λ = 0.001, a discount-
ing factor for the history/coming gradient of ρ− 0.9, and zero momentum are applied.
Dropout is applied after the convolutional neural network (CNN) layers, with probability
0.6. The network is trained for four different SLR modes (Swing, Texting, Talking, Pocket),
using the categorical cross entropy (CCE) loss function defined in [39] for a single label
categorization. The network is trained for 12 epochs. This model was implemented using
Keras open-source neural network library in Python [40] and was trained on a single
NVIDIA GeForce GTX 1080 GPU.

4.3. UUN Network Architecture

The UUN approach uses the VRAE [41] network architecture. This model maps time
sequences to one latent vector, and enables efficient, large scale unsupervised variational
learning on time sequences, while it tries to avoid the exploding gradients problem and enable
better scores. The main concept behind it is to partition unlabeled time-series measurements
into homogeneous clusters based on generative features, which are interpretable.

The strength of VRAE architecture is that it extends the standard variational auto-
encoder (VAE) model by combination of recurrent neural networks (RNNs) as the network
encoder and decoder, and stochastic gradient variational Bayes (SGVB) [42]. The VRAE
architecture that is used for training the different SLR modes is presented in Figure 2C. It
receives the specific force vector measurements as input to the encoder RNN layer, which
contains enrolled long short term memory (LSTM) block, with hidden size of 90, depth of
3, and dropout rate of 0.3. Then, the RNN output is passed to the next, encoder to latent,
layer which is mapped to the mean and standard deviation by using a liner unit activation.
When the hidden code layer size of 20 dimensions, and distributed by mean and standard
deviation that serves as the feature representation for the entire input during training (i.e.,
encodings). Next, the latent layer is passed through a linear unit activation to obtain initial
states for the decoder RNN layer. Decoder inputs are updated using backpropagation.

The UUN model was trained to minimize smartphone known modes loss function for
accelerometer readings X, defined by:

Loss(X) = CSL · SmoothL1(X) + CKL · DKL(X) (3)

where the loss function is a superposition of two loss measures—Smooth L1 and Kullback-
Leibler (KL) divergence function, each with a corresponding gain CSL, and CKL, receptively.

The SmoothL1(X) loss measure is an auto-encorder loss that learns the identity func-
tion, so the sequence of input and output vectors must be similar. It is given by:

SmoothL1(X) =
1
n

n

∑
i

zi (4)

where zi is defined by:

zi =

{
0.5(xi − yi)

2, if |xi − yi| < 1
|xi − yi| − 0.5, otherwise

(5)

and x (input) and y (target) are in arbitrary shapes with a total of n elements each. This
loss was shown to be less sensitive to outliers than the mean square error loss and in some
cases prevents exploding gradients [43].

The second part of the loss function Equation (3), is the KL-divergence function, a loss
measure between the distribution that learned in latent space with the normal distribution,
defined by:

DKL(X) = −1
2

L

∑
j=1

(1 + log((σi
j )

2)− (µi
j)

2 − (σi
j )

2) (6)
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where L be the latent continues variable length, µ the variational mean, and σ is the
standard deviation evaluated at datapoint xi ∈ X.

4.4. UUN Training Procedure

The network is trained with a minibatch of size 32 and the Adam optimizer, with
β1 = 0.9, β2 = 0.999 and ε = 10−8. We use an initial learning rate of λ = 0.0005 and a L2
penalty of 0 for the training process. Dropout is applied in the encoder layer (that uses
a multi-layer LSTM) with probability 0.2. The network is trained for four different SLR
modes (Swing, Texting, Talking, Pocket), using the loss function defined in 3. Notice, that
the modes labels are not used during the training process. The train is made with CKL = −1;
CSL = 1, when in such a case, the weight for both losses is equal for learning. The network
is initialized with Glorot and Bengio [44], which proposed to adopt a properly scaled
uniform distribution for initialization, and train it for 90 epochs, with Gradient clipping
enabled and max norm of the gradients of size 5, to overcome explosion. The model was
implemented using PyTorch [45] and trained on a single NVIDIA GeForce GTX 1080 GPU.

5. Dataset

To evaluate the proposed SLR with unknown modes approaches, six different datasets
were used. Two of the datasets were constructed for evaluation deep-learning approaches in
the SLR problem [11], while the other four datasets, found in the internet were constructed
for other applications. In all the datasets, the smartphone location was, at least, in one
of the four possibilities: (1) pocket, (2) texting, (3) swing, and (4) talking while the users
were walking. No constraints on how the smartphone should be held in each location was
imposed. For example, talking operation can be made while the user is holding the phone
in the right hand close to the ear or in the left hand far from it. In all recordings only the
accelerometer readings are used for the proposed approaches.

For the training process four different datasets, as described in Table 2, were employed.

Table 2. Main parameters of all four datasets used in the training process. Smartphone locations are
swing (S), texting (T), talking (K), and pocket (P).

Parameter/Dataset S1 [11] HTA [11] RIDI [46] OXF [47]

# of samples 590,927 43,447 667,099 1,437,622

Total time [Min] 164 15 56 240

# of participants 1 6 8 8

Sampling rate [Hz] 25–100 25–100 200 100

Smartphone modes S/T/K/P S/T/K/P P/T P/T

Year 2019 2019 2018 2018

For the SUN approach, the known labels were used during the training while for
the UUN they were not. The first dataset, D1, contains recordings from a single user
with two different smartphones and in all four possible smartphone locations. A total of
164 min of recordings were made using a range of sampling rates between 25 and 100 Hz.
The recorded data was made while the user was walking in inhomogeneous conditions.
For example, varying walking speeds, uneven pavements, tight and sport trousers with a
front and back pocket location, transitions between pavement and roads, varying hand
swing (small to big), and texting and talking with a single hand (right and left) in different
positions relative to the user.

The second dataset, HTA, was recorded by six people from Huawei’s Tel-Aviv research
center. Each person used a different smartphone during the recordings. The third dataset
used in this research is RIDI [46]. This dataset was recorded for indoor navigation research
and not activity recognition. There, the goal was to estimate the change in acceleration by
machine learning approaches and use it to correct the raw accelerometer data. Although,
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their work was not related to SLR, the RIDI dataset was recorded using a smartphone in
two locations: front pocket and in texting using eight people. The fourth dataset, OXF,
was recorded to examine the possibility of using deep learning methods to estimate the
pedestrian position and heading [47]. There, a dataset using seven people with a time
duration of 240 min was recorded while the smartphone was in Pocket or Texting modes
were made.

The test dataset contains five smartphone locations, not present in the training data,
which are addressed as unknown mode. Those are: Waist, Upper-arm, Belt, Body, and Bag.
From RIDI [46] the Body and Bag mode was taken for the analysis. There, the smartphone
was placed in a small bag that was hold on the right leg and with a strap on the body.
In [48], an HAR problem using wearable sensors located in seven positions on the user:
chest, forearm, head, shin, thigh, upper arm, and waist was addressed. This dataset, noted
as WOB, contains recordings of 15 people (seven females and eight men) and here we
employ only recordings taken from the Waist and Upper-arm location as an unknown
mode. The Third one, [49], also addressed an HAR problem with seven different modes
among them was walking. There, five smartphones were placed on each user: right/left
jeans pocket, right upper arm, wrist and on the belt. There, the smartphone was pointed
towards the right leg using a belt clip. Here, we employ the latter as and the Body an
unknown modes, and denote this dataset as PAR. Main parameters of those three datasets
are given in Table 3.

Table 3. Main parameters of the three datasets used in the testing process.

Parameter/Dataset RIDI [46] WOB [48] PAR [49]

Number of samples 315,725 932,369 167,564

Total time [Min] 26 310 56

Number of participates 8 15 10

Sampling rate [Hz] 200 50 50

Smartphone modes Bag/Body Waist/Upper-arm Belt/Body

Year 2018 2016 2014

6. Analysis and Results
6.1. Why a Regular Supervised Approach Does Not Work?

There are two main reasons that explain why regular supervised networks will fail
and are not enough accurate nor robust methods, with presence of unknown modes:

1. Catastrophic interference: Deep learning networks, especially supervised architec-
tures, suffer from the catastrophic interference, which is the tendency of the networks
to forget previously learned classes upon learning new classes that added incremen-
tally during the training procedure. Thus, it causes a significant degradation issue
when creating connectionist models, in particular, with deep architectures which aims
to solve both vision and real-time smartphone application problems. Therefore, it
does not work with presence of unknown modes.

2. Class imbalance: Class imbalance is a common problem in deep learning classifica-
tion predictive models, where the distribution of samples across the known classes is
biased from the other possible different classes, when in most of the cases are much
larger. Thus, the class imbalance phenomena will make a significant degradation in
the network performance, specially for the targeted minority class. Therefore, it also
does not work accurately with presence of unknown modes.

To confirm this hypothesis, a traditional CNN supervised model was trained on five
SLR modes: Pocket, Swing, Texting, Talking, and Unknown. To that end, the dataset listed in
Table 2 was used as train with the addition of most of WOB and PAR datasets provided in
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Table 3 as unknown modes. The rest of WOB and PAR dataset was addressed as similar test
dataset while RIDI dataset, also given in Table 3, was addressed as dissimilar test dataset.

The train model accuracy (based on F1-Score) obtained 98% as shown in Figure 3A.
As expected, given the unknown data as another class in the training can be easily handled
by the network. The similar test dataset obtained also high accuracy of 95.2% as shown
in Figure 3B. There, the same unknown location was used only with different people.
However, for the dissimilar test dataset, an accuracy of 3.11%, as presented in Figure 3B
bottom, was observed. To summarize, in such approach if the unknown modes are actually
known in the training process then they should be addressed as any other known classes.
Yet, given unknown modes not present in the train, this approach fails and other solutions
are required.

Figure 3. Results for regular supervised network. (A) Training five different SLR known modes with
supervised CNN architecture, ((B) top) Testing unknown data with similar dynamics, achieves high
accuracy, ((B) bottom) Testing unknown data with dissimilar dynamics, achieves very low accuracy.

6.2. SUN and UUN Approaches

Utilizing the SUN approach, the last dense layer of the the supervised trained model
is truncated and used as the feature representation space. To that end, training is applied
as described in Section 4.2. Using the trained network three methods are considered based
on the SUN approach:

• SUN-RAW: the supervised raw features are directly used in the KNN algorithm,
using K = 5 nearest neighbors to classify unknown modes (5 seems to be the most
commonly used value for KNN algorithm, other experiments showed that higher K
values increase the error rate).

• SUN-PCA: as in SUN-RAW only with PCA mapping of the raw features to a lower-
dimensional space is made prior insertion to the KNN algorithm (K = 5). After some
analysis, the number of principal components are set to two.

• SUN-LDA: as in SUN-RAW only with LDA mapping of the raw features to a lower-
dimensional space is made prior insertion to the KNN algorithm (K = 5). After some
analysis, the number of discriminant components set to three.

The UUN network is trained as presented in Section 4.4. There, the unsupervised
features representation space is directly plugged to the KNN algorithm, using K = 5 nearest
neighbors to classify unknown modes. Illustration of the feature space representation in
UUN approach is shown in Figure 4 both for the training phase and the inference phase
of inserting an unknown mode. The representation of the unknown mode is clearly seen.
Note, that the entire algorithm is an unsupervised one. Labels are used to color and
visualize the results.

The parameters setting of the PCA and LDA methods utilized in the SUN approach
are presented in Table 4, and the KNN setting applied in both SUN and UUN approaches
is given in Table 5. Notice, before determining the PCA number of components, different
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values ranging from two to ten were examined. When the number of components was
two, best performance was obtained and therefore it was chosen for further analysis. In the
same manner, the number of LDA components was determined.

Table 4. PCA and LDA setting parameters utilized in the SUN approach.

Parameter/Method PCA LDA

Number of components 2 3
Tolerance for singular values e−6 e−4

Solver SVD SVD

Table 5. KNN setting parameters utilized in both SUN and UUN approaches.

Parameter/Method KNN

Number of neighbors 5
Leaf size 30
Radius 1.0

Contamination 0.1
P (distance function) 2

Distance Metric function Minkowski
Metric to calculate the outlier score Largest
Algorithm (ball tree/kd tree/brute) auto

Table 6 shows the performance of the proposed approaches presenting the accuracy
of each method in six different unknown modes from three datasets. Among them, PAR
and WOB were not present at all in the training dataset while RIDI had some Pocket and
Texting modes readings also in the train dataset. In addition, the results are compared to the
baseline method of [21] using a threshold of 95%. This baseline belongs to the Thresholding
approaches, and is well-established in the literature. The threshold value of 95% was
tuned manually for optimal performance of the baseline and to challenge the proposed
approaches. If a lower value was chosen the results will be worsen. To summarize, this
baseline method achieved low performance with the overall accuracy of 7.5% computed
on the six unknown different test dataset.

Table 6. Accuracy/Number of corrected samples results on different testing datasets used our SUN and UUN approaches.

Method/Dataset
WOB

Unknown
Waist

WOB
Unknown
Upperarm

PAR Unknown
Belt

PAR Unknown
Body

RIDI
Unknown Bag

RIDI
Unknown

Body

Baseline [21] 7.81%/37,687 7.38%/35,633 0.01%/17 2.56%/2259 10.14%/11,694 5.96%/17,345
SUN-RAW * 100%/482,845 92.73%/447,726 99.96%/87,935 100%/87,968 84.12%/20,798 73.71%/214,285
SUN-PCA 99.79%/481,814 20.94%/101,076 95.91%/84,369 99.99%/87,960 72.55%/17,936 33.12%/96,290
SUN-LDA 95.14%/459,423 45.53%/219,816 97.32%/85,617 96.71%/85,704 67.01%/16,568 42.56%/123,718

UUN 99.91%/482,814 82.65%/399,006 99.98%/87,953 99.97%/87,946 85.71%/21,173 62.85%/182,721
* indicates the highest score for the given datasets.

From all three SUN network methods, SUN-RAW obtained the best performance in
each of the examined six unknown modes. It appeasers that the dimension reduction
using either PCA or LDA degraded a lot the performance. Also, PCA and LDA were
found to be highly sensitive to the number of components, where in some situations each
unknown mode needs a different number of components to obtain the best performance.
Nevertheless, regardless the number of components SUN-RAW was preferable.

In addition to the results, the proposed approaches were compared on the inference
average time over the different datasets as shown in Table 7. It was shown that the
dimension reduction approaches (PCA and LDA), as expected, managed to reduce by
approximately 20 times lower than SUN-RAW and 10 times than UUN approaches.
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Figure 4. UUN feature representation. (A) Training representation, (B) Inference representation.
t-SNE is performed in order to convert to a lower dimension and to visualize the clusters. This figure
shows that latent space exhibits structure. The different colored labels obviously cluster in different
parts of the UUN feature space. t-SNE axes 1, 2, and 3 represent dimension 1, 2, and 3, respectively.

Table 7. Inference average time [sec] on different testing datasets.

Method/Dataset WOB PAR RIDI

SUN-RAW 2185.1 2093.3 2344.7
SUN-PCA 106.4 22.4 64.2
SUN-LDA 112.2 27.5 69.7

UUN 1263.9 495.6 956.9

Table 8 shows the overall accuracy computed on the six different test dataset. SUN-
RAW shows the best performance with 93.12% of accuracy while UUN obtained 88.85%.
UUN approach results are ranked at the second place mainly due to the performance
achieved on the RIDI Body dataset. However, the big advantage using UUN is that there is
no need to pre-label the training data, which makes it easier to use such an approach in
further research studies or other applications in which the raw data labels are not known.

In addition to accuracy, the training time of SUN and UUN are compared using a
mini-batch of size 32. It took five epochs to train the SUN network while in UUN it was
90 epochs which increased the training time by factor of 18. To summarize, SUN-RAW
obtained the best performance, yet required much more inference time. On the other hand,
SUN-PCA dramatically reduced the inference time, with a cost of approximately 10% of
accuracy. Thus, there is a trade-off between accuracy and the computational cost, which
should be determined based on the required application.

Table 8. Summary of Unknown mode ML-based approaches results.

Method Overall Accuracy

SUN-RAW 93.12%
SUN-PCA 82.31%
SUN-LDA 77.42%

UUN 88.85%

7. Conclusions

SLR aims to identify the location of a smartphone in specific user actions. This task
is critical for accurate indoor navigation using PDR. Common PDR approaches cannot
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handle unknown modes with desired accuracy, and therefore, their performance is de-
graded. In this paper, two end-to-end ML-based approaches to cope with unknown modes
during the classification process were suggested and evaluated on the smartphone location
recognition problem.

The first approach, SUN, used a feature representation space of a trained network
as its basis, while the second approach, UUN, generated the feature representation space
using variational recurrent auto-encoder. Both approaches require only the smartphone’s
acceleroemeters measurements to preform the classification and unknown detection.

Multiple datasets were used in the training and testing phases. In training, four
different datasets were used. They were recorded by 23 people while the smartphone was
placed in four different known smartphone locations: Texting, Pocket, Swing, and Talking.
The test dataset contained two additional datasets recorded by 25 people (not present in
the train dataset) with the following five smartphone locations treated as unknown modes:
Body, Bag, Belt, Waist, and Upper-arm.

Before examining the proposed approaches, it was explained and shown why a classi-
fication approach based on background class cannot handle unknown modes effectively in
the SLR problem. Then, the performance of a baseline thresholding approach [21] and of
the proposed approaches was evaluated The thresholding approach was chosen, since in
the literature it was shown to obtain good performance. Yet, in the SLR problem it failed to
work and orbited poor accuracy. On the other hand, the proposed SUN achieved an accu-
racy of 93.12% while UNN obtained 88.85% on the test dataset. The main advantage of the
UNN approach is that it does not require labeling the known modes in the training process,
however, its training time is 18 times longer than the SUN approach. This is attributed to
the computational complexity of the proposed model, which can be evaluated based on the
number of total trainable model parameters, where in SUN approach has 17,924 compared
to UUN approach with 335,563 parameters. It was also shown that applying PCA or LDA
in the SUN approach did not improve its performance, however they reduced the inference
time by a factor of approximately 20. Thus, there is trade-off between accuracy and the
computational cost, which should be determined based on the required application.

Finally, the proposed approaches were derived as end-to-end ML approaches and
thus can be easily adjusted and applied to other related fields addressing the problem of
unknown mode detection.

Future work includes an analysis of encoding length of the UUN approach and its
influence on the accuracy and the computational cost over different datasets. Additionally,
different detectors can be examined, as well as different deep architectures for detecting
Unknown modes.
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