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Abstract: Human activity recognition aims to classify the user activity in various applications like
healthcare, gesture recognition and indoor navigation. In the latter, smartphone location recognition
is gaining more attention as it enhances indoor positioning accuracy. Commonly the smartphone’s
inertial sensor readings are used as input to a machine learning algorithm which performs the
classification. There are several approaches to tackle such a task: feature based approaches, one
dimensional deep learning algorithms, and two dimensional deep learning architectures. When
using deep learning approaches, feature engineering is redundant. In addition, while utilizing
two-dimensional deep learning approaches enables to utilize methods from the well-established
computer vision domain. In this paper, a framework for smartphone location and human activity
recognition, based on the smartphone’s inertial sensors, is proposed. The contributions of this work
are a novel time series encoding approach, from inertial signals to inertial images, and transfer
learning from computer vision domain to the inertial sensors classification problem. Four different
datasets are employed to show the benefits of using the proposed approach. In addition, as the
proposed framework performs classification on inertial sensors readings, it can be applied for other
classification tasks using inertial data. It can also be adopted to handle other types of sensory data
collected for a classification task.

Keywords: activity recognition; two dimensional convolutional neural network; accelerometers;
gyroscopes

1. Introduction

Human activity recognition (HAR) aims to classify the user activity in various applica-
tions such as gesture recognition [1,2], healthcare [3], home behaviour analysis [4], indoor
navigation [5,6], and many more. Recently, several comprehensive survey papers were
published, providing excellent review on applications and approaches to HAR [7–11].

Focusing on activity recognition for navigation applications, one of the branches of
HAR is smartphone location recognition (SLR). For example, Pocket mode refers to the
situation when the smartphone is placed in the user trousers and Swing mode refers to
the case where the smartphone is held in the user hand while walking. The SLR goal is
to classify the current location of the smartphone on the user. Commonly, both HAR and
SLR utilizes the smartphone inertial sensors, namely the accelerometers and gyroscopes,
readings to perform the classification task. Both HAR and SLR are gaining more attention
in the navigation community. Applying activity recognition in traditional pedestrian dead
reckoning (PDR) manged to improve the positioning accuracy [12–16]. In most traditional
PDR algorithms the user step length is determined using an empirical formula. There,
a re-calibrated gain is used in the process. This gain is very sensitive to the user dynamics
and smartphone location. Using HAR and SLR algorithms user mode and smartphone
locations are identified and their corresponding gain value can be used in the PDR step
estimation process. Besides PDR, SLR was also shown to improve the performance of other
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navigation-related problems such as step length estimation [17–19] and adaptive attitude
and heading reference system (AHRS) [20].

Currently, there are three major approaches to tackle HAR or SLR problems:

• Feature Based: features are extracted from the raw signals of the inertial sensors and
used in classical machine learning algorithms.

• One Dimensional Deep Learning (1D-DL): the raw inertial sensor signals are plugged
into one dimensional networks.

• Two Dimensional Deep Learning (2D-DL): the raw inertial sensors are transformed into
two dimensional images and used as input for a network with the same dimensions.

Most of the approaches in the literature are focused on feature based and on 1D-DL
networks. As such, there is no need to apply any 1D-2D transformation on the raw data.
However, when using 2D-DL networks, the 1D inertial signals are first transformed into 2D
space. Thus, compared to 1D-DL, an additional block is required in the algorithm. On the
other hand, working with 2D-DL allows the implementation of strong proved architectures
and tools derived in the computer vision field.

In 2D-DL, besides network architecture and hyper-parameter tuning as in 1D-DL,
the major issue is how to transform the 1D inertial signal to a 2D image. The simplest
approach is known as raw plots, where all relevant sensor outputs are plotted versus
time and the result is used as an image for the 2D-DL classifier. For example, three axes
accelerometer data were grouped by columns and the data collected from different positions
are grouped by a row in the same image [21]. Unlike the raw plot method, the multichannel
approach treats the same signals as a three overlapped color channels that correspond to
red, green, and blue components in the RGB format by normalizing, scaling, and rounding
a real value into an integer for pixel [21]. Recurrence plots are also used to create 2D images
from sensors 1D signals. There, distance matrices capture temporal patterns in the signal
and represent it as texture patterns in the image [22–24]. Another approach, is to construct
an image using Fourier Transformation and create a spectrogram [25,26]. Gramian Angular
Fields (GAF) and Markov Transition Fields (MTF) were applied to transform 1D time-series
signals to 2D images [27,28]. Recently, an encoding technique for transforming an inertial
sensor signal into an image with minimum distortion for image-based activity classification,
known as Iss2Image, was proposed [29]. There, real number values from the accelerometer
readings are transformed into three color channels to precisely infer correlations among
successive sensor signal values in three different dimensions. In [29], Iss2Image approach
was compared to other approaches and obtained state-of-the-art performance.

In this paper, an Inertial Image (INIM) framework for inertial based, smartphone
location and human activity classification is derived. Here, the inertial signals, each
represented as a one dimensional vector, are transformed into two dimensional matrices
for the classification task. The motivation for this transformation is the ability to utilize
strong proved architectures and tools derived in the computer vision field.

The contributions of the proposed framework are:

1. Encoding. A novel time series encoding approach based on accelerometers and
gyroscopes readings. The three-axes accelerometers and three axes gyroscopes signals
are encoded into a single RGB image.

2. Transfer Learning. To initialize the backbone deep-learning architecture, transfer-
learning is applied form a residual network trained on the ImageNet [30] dataset.
The dataset contains one thousand different labels and commonly used in computer
vision domain. That is, the proposed transfer learning is performed between the
computer vision domain to the inertial sensor domain.

To evaluate the proposed approach four different datasets are employed. Those con-
tain 13 different labels of commonly used smartphone locations and human activities.
Performance is compared relative to the original Iss2Image approach and also to an exten-
sion of this approach that enables taking the gyroscopes measurements for the encoding
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process. The results show that the proposed approach outperformed the other approaches
on the examined dataset.

In addition, as the proposed framework performs classification on inertial sensors
measurements, it can be applied for other classification tasks handling inertial data. It can
also be adopted to handle other types of sensory data collected for a classification task.

The rest of the paper is organized as follows: Section 2 presents the leading approach
for 2D classification using accelerometers data. Section 3 presents the proposed inertial
images encoding and framework for inertial data based classification. Section 4 gives the
experiential results on four different datasets and Section 5 presents the conclusions of
this study.

2. Related Work Formulation—Iss2Image

The Iss2Image [29] approach is described in this section. It transforms accelerometer
signals into colored images with minimum distortion and produces detailed correlations
among successive accelerometer signals.

To describe the 1D-2D transformation, consider an activity sample D, including N
accelerometer samples, each in three axes [x, y, z]:

D =

 x1 y1 z1
...

...
...

xN yN zN

 =
[
X Y Z

]
(1)

The Iss2Image encoding technique has three steps:r Step 1: Normalize all accelerometer signals and scale to 255, as follows:

x =
x−min(X)

max(X)−min(X)
× 255 (2)

y =
y−min(Y)

max(Y)−min(Y)
× 255 (3)

z =
z−min(Z)

max(Z)−min(Z)
× 255 (4)

r Step 2: Convert the normalized accelerometer signals (2)–(4) into three integers
corresponding to pixel values in the R,G,B channels of a color image, wherein each
accelerometer signal value is treated as a pixel.
For each sample of [x, y, z], using (2)–(4), three pixels are produced as follows:

Rx =
⌊

x
⌋

(5)

Gx =
⌊
(x−

⌊
x
⌋
)× 102⌋ (6)

Bx =
⌊
(x× 102 −

⌊
x× 102⌋)× 102⌋ (7)

where bxc is the floor function, which takes the largest integer less than or equal to
x ∈ R.r Step 3: Generate and write a color image I = [RGB] using (5)–(7) as follows:

R =

Rx1 Ry1
Rz1

...
...

...
RxN RyN

RzN

 (8)

G =

Gx1 Gy1
Gz1

...
...

...
GxN GyN

GzN

 (9)
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B =

Bx1 By1
Bz1

...
...

...
BxN ByN

BzN

 (10)

Once the accelerometer signals were transformed to the color images, one can apply
any 2D network to perform the classification task.

3. INIM: Inertial Images

In this section, the proposed INIM framework is addressed. INIM is used for inferring
the smartphone location or human activity based on a novel time-series coding method and
a backbone 2D Deep Learning Network. INIM framework is illustrated in Figure 1. First,
the smartphone’s accelerometer and gyroscope signals are collected. Then, the inertial
sensor readings are transformed to a set of colored Red, Green, Blue (RGB) inertial images
using the proposed encoding method, named Mul2Image. Then, these inertial images
are divided into inertial patches (parts of the original inertial image) and are fed to the
backbone 2D CNN network for the classification task.

Figure 1. INIM framework: time series image coding with a backbone of a deep 2D-CNN used for inferring the smartphone
location and human activity modes.

3.1. Encoding Time-Series Signals to Inertial Images

The purpose of the Mul2Image encoder is to efficiently transform raw accelerometer
and gyroscope signals into RGB inertial images. To that end, it is suggested to multiply
the inertial sensor readings between themselves in the following manner: accelerometer
x-axis readings are multiplied by gyroscopes x-axis readings, and the same for y and z axes.
The motivation for such multiplication steams from the pattern recognition domain [31].
There, when the meta-data includes similarity properties of two time-series signals, the cre-
ated image is similar in nature to either a sliding inner-product or the convolution operators
of two functions.

The proposed encoding approach requires six steps as described below:r Step 1: Normalize the specific force vector, f, (accelerometer output):

f̂ =
f
||f|| (11)

where f̂ is the normalized specific force vector defined at epoch (time index) k by its
three components:

f̂k =
[

fk,x fk,y fk,z
]T (12)
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r Step 2: The normalized accelerometer signals from n epochs are stacked in matrix
F ∈ Rn×3:

F =

 f1,x f1,y f1,z
...

...
...

fn,x fn,y fn,z

 =
[
Fx Fy Fz

]
(13)

r Step 3: Each angular velocity measurement (gyroscope output) vector

ωk =
[

ωk,x ωk,y ωk,z
]T (14)

from n samples are used to construct the following Ω ∈ Rn×3 matrix:

Ω =

ω1,x ω1,y ω1,z
...

...
...

ωn,x ωn,y ωn,z

 =
[
Ωx Ωy Ωz

]
(15)

r Step 4: Using (13) and (15) the RGB layers are constructed:

R = Fx ·Ωx
T ∈ Rn×n (16)

G = Fy ·Ωy
T ∈ Rn×n (17)

B = Fz ·Ωz
T ∈ Rn×n (18)

Then, the inertial image, termed INIM, is constructed stacking the three layers:

I = [R, G, B] ∈ Rn×n×3 (19)r Step 5: The values of (19) are scaled in the range of [0, 255] by multiplying them
by 255.r Step 6: Finally, the image I is cropped into m non-overlapped patches P1, · · · , Pm
based on the network input size s, as follows:

m =
⌊n

s

⌋
(20)

where Pk, k = 1, 2, . . . , m is of dimension s× s.
Notice that the total number of patches is

⌊
n2/s2⌋, yet we require no overlap between

the accelerometer and gyroscopes data. Therefore, only the diagonal patches are taken
into account, resulting inbn/sc patches, as illustrated in Figure 2.

To summarize, the output of the Mul2Image encoder consists of m non-overlapped
patches, as shown in Figure 2. The size of the inertial patches is based on the number of
samples n samples and the network input size s. The network input size is a configurable
parameter determined by the user.

When comparing Mul2Image to Iss2Image it is observed that Iss2Image uses only
accelerometer readings while Mul2Image uses both accelerometer and gyroscope measure-
ments. In addition, Mul2Image creates a wider image which consists additional information
and, thus, enriches the input of the network enabling it to perform better.
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Figure 2. Illustration of the Mul2Image time-series encoding approach. It constructs inertial images
(INIM) from inertial sensors readings.

3.2. Backbone 2D Network Architectures

Over recent years, deep learning and, in particular, deep convolution neural networks
(CNN) play a major role in computer vision applications. Unlike classical machine learning
techniques, in deep learning the net performs representation learning which allows the
machine to be fed with raw data and automatically discover the representations needed
for the classification task. One of the major challenges in very deep CNN is coping with
exploding gradients during the training procedure. To avoid such situations, residual net-
work (ResNet) architecture uses skip connections to enable the gradients to flow easily from
a CNN layer to the other. In that manner, the problem of network accuracy degradation
is resolved.

Therefore, in this work, the ResNet50 [32] network is adopted as the feature extraction
backbone and classification model for SLR and HAR tasks. As it name implies, ResNet50
uses 50 residual layers of network. Network initialization is done by a transfer learning
method of a pre-trained network—ImageNet [30]. The weights of trained models on
ImageNet database consists of about 1.2 million labeled images divided in 1000 different
classes. The architecture of the backbone ResNet50 2D-CNN model is summarized in detail
in Table 1.

Table 1. ResNet50 architecture used as backbone within the INIM framework.

Layer
Name

Output
Size [Pixels]

50-Layer
Structure [Kernel Size, # Channels]

conv1 112 × 112 stride 2, 7 × 7, 64

conv2 56 × 56

stride 2, max pool 3 × 3 1× 1, 64
3× 3, 64

1× 1, 256

X3

conv3 28 × 28

1× 1, 128
3× 3, 128
1× 1, 512

X4

conv4 14 × 14

 1× 1, 256
3× 3, 256
1× 1, 1024

X6

conv5 7 × 7

 1× 1, 512
3× 3, 512
1× 1, 2048

X3
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3.3. Summary

Figure 3 summarizes the INIM framework showing the main building blocks in
Figure 3A and the end-to-end training procedure in Figure 3B.

The main building block includes the Mul2Image time series image coding algorithm
(Section 3.1), the 2D backbone ResNet50 architecture based on transfer-learning (initial-
ization) from weights trained on ImageNet (Section 3.2), and the entire process from the
inertial sensors’ raw data to the classification result.

Figure 3. Proposed INIM framework for smartphone location and human activity recognition using
the smartphone’s accelerometers and gyroscopes. (A) Main building blocks, including Mul2Image
and ResNet50 as a backbone architecture. (B) End-to-end training procedure.

4. Analysis and Results
4.1. Datasets

Four different datasets are used for the evaluation of the proposed approach and
comparison to other approaches. All those datasets contain accelerometers and gyroscopes
measurements, each labeled with a specific activity label. Three datasets consist of HAR
activities and one with SLR as follows:

• HAR1 [33]. This dataset was recorded, with 50Hz sampling rate, by 10 people. Five
sets of inertial sensors were placed in: right jeans pocket, left jeans pocket, belt,
right upper arm, and right wrist. Seven human activities were considered: Biking,
Stationary, Sitting, Downstairs, Upstairs, Walking, and Jogging.

• HAR2 [34]. In this dataset 15 people (8 males/ 7 females) recorded inertial data
sampled in 50Hz using seven sets of inertial sensors, each placed in a different location
on the user: chest, forearm, head, shin , thigh, upper arm, and waist. There eight
types of human activities were addressed: Stationary, Sitting, Downstairs, Upstairs,
Walking, Jogging, Jumping, and Lying. In this work, only the first six activities were
considered as they are most relevant to indoor navigation activities.

• HAR3 and HAR4 [35]. This dataset was recorded using three sets of inertial sensors:
on the chest, attached over the wrist on the dominant arm, and on the dominant side’s
ankle. Nine people collected the data which were sampled at 100 Hz. The dataset
contains 18 different user activities, some describing dynamics related human activities
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like in HAR1 and HAR2 and some describing working with home appliances activities.
In this work the activities of Downstairs and Upstairs were chosen to construct the
HAR3 dataset. HAR4 datasets, contains Ironing and Vacuum cleaning activities.
In that manner, distinguish is made between the activities types and nature.

• SLR [36]. In this dataset, recordings were made during walking. Seven people, each
with a different smartphone, recorded 190 minuets of inertial data in sampling rate
between 25 and 100 Hz. There, four smartphone modes were addressed: Pocket,
Texting, Swing, and Talking.

These datasets were chosen as they are commonly used for baseline benchmarking of
HAR and SLR problems and all of them were constructed for evaluating deep-learning
approaches. In HAR1, HAR2 and HAR3 focused was given to dynamics related human
activities, The difference between the three datasets is the inertial sensor locations and their
type, sampling rate and different people who made the recordings. The activity list of each
dataset is summarized in Table 2 showing 13 different classes.

Table 2. Activity list of each dataset.

SLR [36] HAR1 [33] HAR2 [34] HAR3 [35] HAR4 [35]

Pocket Biking Stationary Downstairs Ironing
Texting Stationary Sitting Upstairs VacuumCleaning
Swing Sitting Downstairs

Talking Downstairs Upstairs
Upstairs Walking
Walking Jogging
Jogging

After choosing the datasets, the corresponding inertial images and their patches
were constructed following the steps described in Section 3.1 and presented in Figure 4.
An illustration of this procedure is presented in Figure 5 showing the raw inertial sensor
signals (three accelerometers and three gyroscopes) and corresponding four inertial image
and their patches, where each image represents a different class (more inertial patches are
shown in Appendix A).

Note that each inertial image is divided into smaller patches based on the network
input size as mentioned in Section 3, and labelled as the base inertial image category class.

Figure 4. Illustration of inertial images construction. Each cluster of colored boxes indicates different images patches, each
with a different activity, constructed from the raw inertial signals.
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The overall numbers, per activity and dataset are shown in Table 3 using a width
size of 224 pixels. Figure 5 shows an example of inertial image patches for four different
smartphone locations generated by the proposed Mul2Image encoder.

Table 3. Number of train and test generated inertial Image patches (number of train, number of test)
with a width size of 224 pixels for different activities and datasets.

Activity/Dataset SLR HAR1 HAR2 HAR3 HAR4

Pocket 1064, 355 - - - -
Texting 1808, 603 - - - -
Swing 441, 147 - - - -

Talking 242, 81 - - - -
Biking - 932, 233 - - -

Stationary - 932, 233 1144, 159 - -
Downstairs - 932, 233 411, 50 986, 418 -

Upstairs - 699, 116 534, 70 1098, 470 -
Walking - 932, 233 789, 167 - -
Jogging - 932, 233 472, 62 - -
Sitting - 932, 233 1299, 149 - -
Ironing - - - - 2229, 963

VacuumCleaning - - - - 1649, 696

Figure 5. Illustration of inertial image patches as a function of different smartphone locations
obtained from SLR dataset: (A) Pocket, (B) Texting, (C) Talking, and (D) Swing.

4.2. Experimental Setup

As presented in Table 3, a total of 26361 image patches constructed from raw inertial
data and representing 13 different classes were constructed. To divide this dataset into
train and test, in each class the images were randomly divided to 75% images for training
and the other 25% of the images for testing.

For each dataset, as described in Table 2, a different ResNet50 deep convolutional
neural networks was trained. There, the input image size was obtained in a similar manner.
Cropping the full inertial image into patches of 224× 224 pixels without overlapping. This
resolution was chosen because it was shown to be the optimal size for ResNet50 model.
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Transfer learning, from ImageNet, was used to update the model, together with hyper-
parameters fine-tuning. Thus, is, in current training of the new classes, ImageNet weight
was used to initiate the training process. Three data augmentations, namely rotation,
translation, and flipping were applied in the train phase. A comparison of the performance
with and without data augmentation was made to verify the augmentation ability to
improve the classification performance. Results on the HAR1 dataset, provided at the
Appendix B, clearly show the improvement with data augmentation. As consequence, data
augmentation has been applied to all the other datasets.

The model was trained with a mini-batch of size 24 and optimized using adaptive
moment estimation (Adam) [37] algorithm, which computes the learning rates for each pa-
rameter during the training. An initial learning rate of λ = 0.0001 with a discounting factor
for the history/coming gradient of ρ = 0.99, a learn rate drop factor of 0.5, and piecewise
schedule of 5.

The network was run for 10 epochs, 148 iterations for training and 50 for validation.
The model coding was implemented using Matlab, and trained on a single NVIDIA GeForce
GTX 1080 GPU. This end-to-end process was repeated three times to check the stability of
the results.

4.3. Encoders: Image Size and Computational Speed

The proposed approach is compared to Iss2Image solution, which is considered a
state-of-the-art method in image construction from inertial measurements. The proposed
approach uses both accelerometer and gyroscope measurements, while Iss2Image uses
only the former. Thus, to make a fair comparison the Iss2Image approach was elaborated to
include gyroscopes measurements as well. To that end, instead of working with an image
patch with size 224× 3× 3 pixels, the extended Iss2Image (eIss2Image) now works with
224× 6× 3 pixels. In the proposed approach the image patch has the size of 224× 224× 3
pixels, that is approximately 37 times more pixels in the patch. As a consequence, the time
required to create the image patches in the proposed approach is larger than the two
versions of Iss2Image. For example, the time required to construct ten image patches
for the Iss2Image is 0.25 s while for Mul2Image 0.39 s, that is about 64% faster than the
proposed encoder. The image patches and average time to construct ten image patches for
each approach are given in Table 4. Notice that since Iss2Image images have smaller size,
they contain less pixel data-type information that may assist to the classification task.

Table 4. Comparison of image patches construction time on different image encoding methods.

Image Encoder
Method

Average Time [Sec]
Per Ten Image Patches

Size of Images
Patches [Pixels]

Iss2Image 0.25 224 × 3 × 3
eIss2Image 0.26 224 × 6 × 3

Mul2Image (Ours) 0.39 224 × 224 × 3

4.4. SLR

SLR classification task is considered. For a fair comparison between the proposed
Mul2Image encoder and the one used in Iss2Image, the same backbone network, that is
ResNet50, was used for all the encoders. In addition, the 2D architectures are also compared
to a 1D deep-learning CNN based network as used in [36].

Table 5 shows the average recognition training accuracy for the train dataset for each
approach and smartphone location. All 2D approaches obtained better accuracy than the
1D-CNN approach.

As the test dataset is balanced and the accuracy of each class is high, Table 6 shows
the total (average on all classes) test dataset accuracy. All the 2D-DL approaches achieved
higher accuracy than the 1D-DL approach. In addition, the recognition results of all the
2D-DL approaches are impressive, and yielded high obtained an accuracy of more than
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98% on the testing set. The suggested encoder and the modified eIss2Image obtained better
performance than Iss2Image. Between the two, the former achieved the best performance
with 99.7% accuracy.

Table 5. Average recognition training accuracy (%) on SLR dataset with ResNet50 2D-
CNN architecture.

Smartphone
Location 1D-CNN Iss2Image eIss2Image Mul2Image

(Ours)

Pocket 98.8% 98.9% 99.7% 99.2%
Texting 96.9% 99.2% 99.8% 99.8%
Swing 97.2% 98.0% 99.3% 100%

Talking 95.7% 97.5% 100% 96.3%

Table 6. Total recognition test accuracy (%) on the SLR dataset with ResNet50 2D-CNN architecture.

Method Accuracy

1D-CNN 97.7%
Iss2Image 98.8%
eIss2Image 99.7%

Mul2Image (Ours) 99.1%

4.5. HAR

The HAR classification task is considered using the four datasets with different classes
as described in Table 2. As in the SLR, for a fair comparison between the proposed
Mul2Image encoder and the one used in Iss2Image, the same backbone network, that is
ResNet50, was used for all the encoders.

Table 7 shows the accuracy of the 2D-DL approaches for the train and test of HAR1
dataset. The overall test accuracy of the proposed encoder performs better than the other
compared methods (Iss2Image and eIss2Image). For the Downstairs activity, Iss2Image
obtained accuracy of 78.1% in the test dataset, while the proposed Mul2Image yielded
accuracy of 88.0%, that is a 9.9% improvement. In the same manner, for the Upstairs
activity, an improvement of 47.4% was achieved. Mul2Image also improved the accuracy
of eIss2Image in Downstairs and Upstairs activities by 4.7% and 43.1%, respectively. In Sta-
tionary mode Mul2Image performed worse than the other approaches. The addition of
gyroscopes measurements to the Iss2Image encoder (eIss2Image), shows better perfor-
mance on 6 out of 7 classes than the encoder based only on accelerometers (Iss2Image).

Table 7. Average recognition accuracy (%) on HAR1 train/test datasets for each activity.

Image Encoder Method

Activity Iss2Image eIss2Image Mul2Image (Ours)

Jogging 99.6%/100% 100%/100% 99.6%/99.1%
Sitting 78.5%/65.7% 96.6%/91.0% 95.3%/97.0%

Downstairs 88.0%/78.1% 95.3%/83.3% 99.1%/88.0%
Upstairs 82.9%/45.7% 90.9%/50.0% 98.9%/93.1%

Stationary 90.1%/55.4% 97.9%/71.7% 80.3%/42.1%
Walking 90.6%/79.0% 97.0%/77.3% 98.7%/85.4%
Biking 97.0%/99.1% 100%/99.6% 94.8%/96.6%

In Table 8, the average recognition accuracy of the three encoders is given for HAR2
train and test dataset. The Mul2Image encoder shows best performance on all the six
activities, with 100%, 94.0%, 96.0%, 98.6%, 95.6%, and 94.0% accuracy in the Jogging,
Sitting, Downstairs, Upstairs, Stationary, and Walking classes, respectively. In particular,
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the ability to distinguish between Downstairs to other learned classes fails in Iss2Image and
eIss2Image methods (24–26%), while in Mul2Image, an improvement of 70% was achieved.
Besides the Downstairs class, Iss2Image achieved 17% accuracy in Stationary mode while
37.7% was obtained by eIss2Image in Walking mode. In both classes, Mul2Image got an
accuracy of more than 94.0%.

Table 8. Average recognition accuracy (%) on HAR2 train/test datasets for each activity.

Image Encoder Method

Activity Iss2Image eIss2Image Mul2Image (Ours)

Jogging 93.2%/100% 93.2%/100% 99.2%/100%
Sitting 99.7%/100% 100%/99.3% 95.7%/94.0%

Downstairs 68.2%/24.0% 71.8%/26.0% 96.4%/96.0%
Upstairs 74.4%/95.7% 78.9%/95.7% 97.0%/98.6%

Stationary 98.6%/17.0% 100%/79.2% 88.1%/95.6%
Walking 85.8%/76.0% 91.4%/37.7% 95.4%/94.0%

Tables 9 and 10 shows the train and test accuracy for HAR3 and HAR4 datasets
using the three encoders. Using Table 9 a classification metric, called bias is analyzed.
Bias Upstairs–Downstairs indicates how much bias one category has over the other when
lower bias indicates a better classifier. As can be seen, the highest accuracy of 98.1%, was
achieved when using eIss2Image encoder to Upstairs recognition. However, the bias is
17%, which means the network has high bias towards Upstairs. In Iss2Image, the bias
is even higher and reaches 20.3%. On the other hand, Mul2Image encoder yields 91.7%
recognition accuracy of predicting Upstairs class, but has a bias of only 9.9%.

Table 10, shows that Mul2Image yields overall higher recognition accuracy on both
Ironing and VacuumCleaning classes than the compared methods. However, the Mul2Image
bias VacuumCleaning - Ironing is higher by a factor of 2.8 and 3.9 towards Ironing, com-
pared to eIss2Image and Iss2Image, respectively.

Comparing the bias metric of Mul2Image method in both Tables 9–10, it is observed
that user dynamic influences the bias value. When the dynamic is similar, like between
Upstairs and Downstairs, the bias is smaller. On the other hand, in different dynamic types,
like between Ironing and VacuumCleaning, the resulted bias was higher.

Table 9. Average recognition accuracy (%) on HAR3 train/test datasets for each activity.

Image Encoder Method

Activity Iss2Image eIss2Image Mul2Image (Ours)

Downstairs 95.2%/77.0% 98.0%/81.1% 88.8%/81.8%
Upstairs 99.2%/97.3% 92.4%/98.1% 89.4%/91.7%

Table 10. Average recognition accuracy (%) on HAR4 train/test datasets for each activity.

Image Encoder Method

Activity Iss2Image eIss2Image Mul2Image (Ours)

Ironing 99.0%/71.9% 98.0%/72.0% 87.5%/86.6%
VacuumCleaning 96.9%/74.5% 99.1%/75.6% 80.4%/76.4%

To summarize the results of Tables 5–10, a weighted average accuracy on each of
the test datasets and a corresponding final ranking of each encoder are calculated and
presented in Table 11. The weighted average accuracy is calculated per number of patches
in each activity (which are provided in Table 3). The final rank is the indicator of the
highest weighted performance over the entire datasets. The proposed Mul2Image encoder
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obtained the best overall accuracy reaching 88.6%. Except of HAR3, using Mul2Image
obtained also the best performance in all other datasets. Particularly, an improvement of
22.7% in HAR1 dataset and 8.8% in HAR4 dataset.

Table 11. Weighted average accuracy results using the three encoders with the same ResNet50 backbone. The final ranking
is based on the weighted test accuracy (%).

Dataset

Image Encoder Method SLR HAR1 HAR2 HAR3 HAR4 Overall Accuracy Final Rank

Iss2Image 98.8% 67.6% 76.9% 87.7% 72.9% 80.8% 3
eIss2Image 99.7% 72.9% 84.3% 90.0% 73.5% 83.9% 2

Mul2Image (Ours) 99.1% 95.6% 85.3% 88.6% 82.3% 88.6% 1

5. Conclusions

Human activity recognition is an important task in various applications like healthcare,
gesture recognition and indoor navigation. In the latter, smartphone location recognition is
gaining more attention as a critical operation as it enhances indoor positioning accuracy.
In this paper, a framework for both human activity and smartphone location recognition,
based on the smartphone’s inertial sensors, was proposed. This framework, termed
INIM for inertial images, transforms the accelerometer and gyroscope signals into images
enabling the usage of proved architectures and tools from the computer vision domain.

The main contributions of this work are a novel time series encoding approach,
from inertial signals to inertial images, Mul2Image, and demonstrating transfer learning
from computer vision domain (using ImageNet) to the inertial based classification of HAR
and SLR problems.

To evaluate the proposed approach four different datasets, contain 13 different la-
bels, were employed. Performance (in terms of accuracy) was compared relative to the
original Iss2Image approach and also to an extension of this approach that the usage of
gyroscopes measurements in the encoding process. To make a fair comparison between
those three encoders, the same backbone ResNet50 was employed. In addition, the SLR
task, performance was compared also to a leading 1D-CNN architecture. Results show that
the proposed extension of the Iss2Image encoder obtained better performance than the
original Iss2image approach. The proposed Mul2Image encoder, obtained the overall best
accuracy of 88.6% improving Iss2image accuracy by 7.8% and eIss2image by 4.7%.

In addition, the INIM framework or its Mul2Image encoder, can be applied to any
other classification tasks using inertial sensors data. Moreover, it can also be adopted to
handle other types of sensory data collected for any type of a classification task.
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Appendix A

Figure A1 shows a batch illustration of inertial image patches as a function of the
smartphone locations on the SLR dataset: (A) Pocket, (B) Texting, (C) Talking, and (D)
Swing. Images of size 224 pixels as generated by the Mul2Image encoder.
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Figure A1. Batch illustration of inertial image patches as a function of the smartphone locations
obtained from SLR dataset: (A) Pocket, (B) Texting, (C) Talking, and (D) Swing.

Appendix B

Table A1 shows the accuracy results with and without data augmentation for the
HAR1 dataset with the proposed Mul2Image encoder. Bias with and without data augmen-
tation indicates how much bias one category has over the other when lower bias indicates
a better classifier. The overall bias is 24.6% and indicates that using data augmentation in
the training procedure improves the final test classification performance.
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Table A1. Average recognition accuracy (%) on HAR1 train/test datasets for each activity with and
without data augmentation.

Mul2Image (Ours)

Activity With Data Augmentation Without Data Augmentation

Jogging 99.6%/99.1% 98.2%/88.4%
Sitting 95.3%/97.0% 92.9%/94.8%

Downstairs 99.1%/88.0% 98.9%/90.1%
Upstairs 98.9%/93.1% 98.1%/73.3%

Stationary 80.3%/42.1% 79.6%/66.5%
Walking 98.7%/85.4% 96.1%/85.8%
Biking 94.8%/96.6% 82.5%/77.7%
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