ﬁ Sensors

Article

Multi-Modal Adaptive Fusion Transformer Network for the
Estimation of Depression Level

Hao Sun *

and Yenwei Chen %5

check for

updates
Citation: Sun, H; Liu, J.; Chai, S,;
Qiu, Z,; Lin, L; Huang, X; Chen, Y.
Multi-Modal Adaptive Fusion
Transformer Network for the Estimation
of Depression Level. Sensors 2021, 21,
4764. https://doi.org/10.3390/
521144764

Academic Editor: Joel J. P. C.
Rodrigues

Received: 24 May 2021
Accepted: 2 July 2021
Published: 12 July 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

,Jiaqing Liu %

, Shurong Chai 2 Zhaolin Qiu 3, Lanfen Lin 3*, Xinyin Huang 41

School of Software Technology, Zhejiang University, Hangzhou 315048, China; sunhaoxx@zju.edu.cn
College of Information Science and Engineering, Ritsumeikan University, Kusatsushi 5250058, Shiga, Japan;
gr0302kv@ed ritsumei.ac.jp (J.L.); is0538kr@ed.ritsumei.ac.jp (S.C.); chen@is.ritsumei.ac.jp (Y.W.)

College of Computer Science and Technology, Zhejiang University, Hangzhou 315048, China;
giuzhaolin@zju.edu.cn

School of Education, Soochow University, Suzhou 215006, China; huangxinyin@suda.edu.cn

5 Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou 311121, China

*  Correspondence: llf@zju.edu.cn

t  These authors contributed equally to this work and they are co-first authors.

Abstract: Depression is a severe psychological condition that affects millions of people worldwide.
As depression has received more attention in recent years, it has become imperative to develop
automatic methods for detecting depression. Although numerous machine learning methods have
been proposed for estimating the levels of depression via audio, visual, and audiovisual emotion
sensing, several challenges still exist. For example, it is difficult to extract long-term temporal
context information from long sequences of audio and visual data, and it is also difficult to select
and fuse useful multi-modal information or features effectively. In addition, how to include other
information or tasks to enhance the estimation accuracy is also one of the challenges. In this study, we
propose a multi-modal adaptive fusion transformer network for estimating the levels of depression.
Transformer-based models have achieved state-of-the-art performance in language understanding
and sequence modeling. Thus, the proposed transformer-based network is utilized to extract long-
term temporal context information from uni-modal audio and visual data in our work. This is the
first transformer-based approach for depression detection. We also propose an adaptive fusion
method for adaptively fusing useful multi-modal features. Furthermore, inspired by current multi-
task learning work, we also incorporate an auxiliary task (depression classification) to enhance the
main task of depression level regression (estimation). The effectiveness of the proposed method
has been validated on a public dataset (AVEC 2019 Detecting Depression with Al Sub-challenge) in
terms of the PHQ-8 scores. Experimental results indicate that the proposed method achieves better
performance compared with currently state-of-the-art methods. Our proposed method achieves
a concordance correlation coefficient (CCC) of 0.733 on AVEC 2019 which is 6.2% higher than the
accuracy (CCC = 0.696) of the state-of-the-art method.

Keywords: depression detection; transformer; multi-modal; audio-visual; adaptive fusion; multi-
task; regression; classification; PHQ-8 score

1. Introduction

Depression is one of the most severe mental disorders worldwide, which can severely
affect people’s daily lives. There are still many debates about the causes of depression, but
the three main causes are psychological, genetic, and social and environmental problems.
As numerous people suffer from depression worldwide, it has become important to detect
depression using computer-aided methods. The detection of depression is a challenging
task as many of its symptoms are widely distributed in ages, gender, regions, and cultures.
The limitations in the detection of depression using computer-aided methods necessitate the
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development of more effective methods to accomplish this task. In recent years, numerous
approaches have been proposed to automatically detect the levels of depression.

Recently, many computer-aided methods, especially deep learning (DL)-based meth-
ods, have been proposed to estimate depression levels. Concretely, DL models take data
collected from people suffering from depression as input and then output predicted results.
These data collected from patients include videos, audio, texts, and other information,
which can be perceived as different modalities. Although many contributions have been
made in the field of depression detection, many unresolved issues still exist. First, the data
used in detecting depression are generally rather long in temporal dimension as depression
cannot be detected in a short time. However, processing long-term sequences has always
been a challenge in DL [1]. Recurrent neural networks (RNNs) have been widely used
for the extraction of temporal information to detect depression in the past few years [2—4],
including the baseline model provided by the Detecting Depression with Al Sub-challenge
(DDS) [5] which is one of the challenges in the AVEC 2019 [5]. Traditional RNN structures,
including long short-term memory (LSTM), bi-directional LSTM (Bi-LSTM), and gated
recurrent units (GRUs), can effectively process short-term time sequences. However, they
cannot satisfactorily process long-term sequences. As the length of sequences increases, the
performance of RNNs rapidly decreases due to the forgetting problem. The forgetting issue
of RNNs means that RNNs will lose the primary information when reading later series at
the scenario of processing long-term sequences. Second, there have always been various fu-
sion approaches to fuse information from different modalities, early fusion and late fusion
for example. It has been proven that multi-modal learning can improve the performance
of depression detection in recent research [2,6,7]. However, many proposed DL-based
methods train their models in a simple multi-modal manner, ignoring the differences in
the contribution of different modalities.

In this study, we have proposed a multi-modal adaptive fusion transformer network
to address these two challenges mentioned above. For the first challenge, a transformer
model [8] has been proposed to process long-term sequences while effectively handling the
forgetting issue. To the best of our knowledge, this is the first application of the transformer
method for depression detection. For the second challenge, it is important to weight
modalities as they have different contributions to the final results. Thus, we proposed
an adaptive late-fusion strategy to fuse results from different modalities adaptively. In
the Adaptive Late-Fusion strategy, we will increase the weights of effective modalities
or features, while lessening the weights of ineffective modalities or features. Identifying
which modalities or features are effective is also one of purposes of our research, which
will be shown in Section 5.3. In addition, we employ a multi-task representation learning
strategy in our work as many current research studies [3,9] have proven that multi-task
learning can positively contribute to depression detection. Therefore, in this study, we
apply multi-modal learning and multi-task learning to the transformer-based network to
detect depression on the AVEC 2019 DDS Challenge dataset [5].

The remainder of this paper is organized as follows. Section 2 summarizes the related
works. Section 3 describes the details of the proposed network. Section 4 presents experi-
ments with corresponding results in Section 5. Section 6 presents the discussions. Finally,
Section 7 concludes the paper.

2. Related Work
2.1. Depression Detection Using Single-Modal Information

As data used in DL for depression detection are time series, irrespective of how many
modalities there are, it is important to effectively extract temporal information from every
single modality. Currently, the most commonly used methods for extracting temporal
information for a single modality are RNN models, including LSTM and GRUs. For
example, the baseline model of the AVEC 2019 DDS Challenge [5] used a single GRU layer
to process time series to detect depression levels. A hierarchical Bi-LSTM was used in [2]

to extract temporal information in order to obtain information with different temporal
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scales. Qureshi, S.A. used the traditional LSTM structure in [3] to obtain sequential features
for every single modality to estimate the levels of depression. Although RNN families
are widely used for extracting temporal information, they still have some drawbacks, the
most significant being the problem called Forgetting. The forgetting issue is explained as
an RNN model that loses previous information when processing long-term sequences.
Although LSTM and GRUs have been proposed to mitigate the negative impact of the
forgetting problem, unsatisfactory results are achieved while processing extremely long-
term sequences. This forgetting issue limits the sequential length that RNN models can
process. The forgetting issue can be handled better now that the transformer model [8]
has been proposed. As a transformer model [8] has a pure attention structure, the impact
of forgetting is small, allowing the model to process longer sequences than traditional
RNN families.

While original transformer models have been successfully used in natural language
processing tasks, recent research studies have employed transformer models in other
fields, such as image processing and emotion recognition image. In particular, Gulati, A.
fused a convolutional neural network (CNN) model and transformer model to process
images, which has been called conformer in paper [10]. In the field of emotion recognition,
authors in [11] first used a transformer model to predict emotions. Because of the similarity
between emotion recognition and depression detection, numerous research studies [12]
have applied emotion methodologies to depression detection. In this work, we used a
transformer model to predict the levels of depression; to the best of our knowledge, this is
the first time a transformer model is used in this field.

2.2. Depression Detection Using Multi-Modal Information

Multi-modal learning is one of the most important strategies in depression detection.
As the data to be analyzed in depression detection are composed of several modalities,
such as video, audio, and text, it is relatively common to perform multi-modal learning.
Currently, numerous research studies [2,6] have proven that multi-modal learning can
improve the accuracy and robustness of depression level prediction. The most commonly
used modalities include audio, videos, and texts, which are collected through interviews
with patients suffering from depression, with their corresponding features, such as MFCCs
and AUposes. For example, the AVEC 2019 DDS Challenge [5] dataset includes features
extracted from original audios and videos, such as MFCC, eGeMAPS, and AUposes.

The multi-modal fusion strategy can be roughly divided into early fusion and late-
fusion. Early fusion means fusion of data at the feature level, whereas late-fusion means
fusion of data at the decision level. Nowadays, most methods fuse information in the early
fusion stage. For instance, authors in [13] used the bag-of-words model to encode audio
and visual features and then fused them to perform multi-modal learning for depression de-
tection. Rodrigues Makiuchi, M. in [14] used texts generated from the original speech audio
by Google Cloud’s speech recognition service with their hidden embedding extracted from
pretrained BERT [15] model while concatenating all modalities, achieving a concordance
correlation coefficient (CCC) score of 0.69 on the AVEC 2019 DDS Challenge dataset. Aside
from audio, video, and text modalities, methods proposed in [16] employed body gestures
as one of the modalities to perform early fusion. For late-fusion, the most representative
method is the baseline model of the AVEC 2019 DDS Challenge [5], which first obtains
results from each uni-modality and then takes the average as the final prediction.

However, most of the current methods did not explicitly weigh modalities with
different performances, whether using early or late-fusion. In our work, we propose
an adaptive late-fusion strategy that can leverage the importance of different modalities.
Specifically, we weigh modalities according to their performances, which means that we
assign high weights to modalities with high performance and low weights to those with
poor performance to obtain final late-fusion results. According to our experimental results,
we can infer that the proposed Adaptive Late-Fusion can improve the performance of
depression detection.
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Origin Interview Video

3. Proposed Technologies

In this section, we first show an overall description of our multi-modal adaptive fusion
transformer network and then provide a detailed description of the Transformer Encoder
module, encoding the time series data from each modality. Subsequently, we elaborate on
how our multi-task methods use a multi-task representation learning network for PHQ-8
regression and 5-class classification. Finally, we fuse acoustic and visual modalities in
Adaptive Late-Fusion to conduct the final depression level prediction. The architecture of
the proposed method is presented in Figure 1.

To illustrate the effectiveness of the transformer model in the depression detection, we
employ the Transformer Encoder to extract temporal information. After features from every
modality are processed by the Transformer Encoder and the Embedding FC Block presented in
Figure 1, they are fed to two FC Blocks designed for multi-task learning, which will be later
described in more detail in the Section 3.3.

Audio ] i - . - R
s CpenSMIEES M / Transformel\‘ Embedding Embedding Cla';s(’;ﬁile?t?grﬁrask ] 5
! \_ Encoder / FC block of MFCC PHQ-8 Score| | 3§
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Figure 1. Overview of our proposed method. The origin data is firstly processed in the Data Processing Stage which has
been done in the AVEC 2019 DDS dataset. Then the Transformer Encoder is used for extracting temporal information. The
Embedding FC Block combined by a RELU activation layer, a dropout layer and a fully-connected layer is used to extract the
hidden embeddings representing each kind of feature. The embeddings from each kind of feature are fed to two FC blocks to
perform multi-task predictions. Finally, the results from different features are fused in the Adaptive Late-Fusion to predict

the final results. The Lg, means the Concordance Correlation Coefficient Loss for PHQ-8 regression and the Lq; means the

Cross Entropy Loss for 5-class classification.

3.1. Input Stream

In the AVEC 2019 DDS Challenge dataset, two main modalities can be obtained,
namely, audio and video modalities. Each modality type contains several kinds of features,
such as MFCC from audio and AUposes from video, which can be obtained by the methods
provided by the AVEC 2019 DDS Challenge. For every type of feature obtained from
the AVEC 2019 DDS Challenge dataset, the model is independently trained. The results
obtained from each type of feature are fused in the independent stage called Adaptive Late-
Fusion. For every type of feature, the transformer model is designed to extract temporal
information, and its detailed structure will be described in the next section, i.e., Transformer
Encoder. Suppose pre-processed features have the shape of R¥**'*¢, where bs standard is
the batch size, t standard is the temporal frames, and d standard is the feature dimension.
After they have been processed by the Transformer Encoder, the features with the shape of
RUs*td are averaged in the temporal ¢ dimension to obtain the shape of R?*¢. The averaged
features are fed to the Embedding FC Block to obtain features with the same dimension,
which are treated as hidden embeddings representing every feature from each modality.
Each FC Block consists of a rectified linear unit (ReLU) activation layer, a dropout layer, and
a linear layer. The dropout layer in the FC Block is designed to overcome overfitting during
training. The hidden embeddings are finally passed to the two FC Layer Blocks to perform
predictions on two tasks: PHQ-8 regression and 5-class classification. After the results from
each modality’s feature are obtained, we employ Adaptive Late-Fusion to obtain the final
prediction results in terms of the PHQ-8 scores.
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3.2. Transformer Encoder

The Transformer Encoder structure employed in this work has been detailed in
Figure 2. Following [8], we use the naive Transformer Encoder structure, along with
the Positional Encoding module, Multi-head Attention module, and Feed-Forward module
in our work. In both the Multi-head Attention and Feed-Forward modules, data streams
are designed as a shortcut structure with additive and normalization operations. An entire
single Transformer Encoder layer architecture is repeated by N times to form a complete
Transformer Encoder. Before being fed to the Transformer Encoder, input streams are
processed by the Positional Encoding module to alter the positional information. Before
being fed into the Multi-head Attention module, an input stream will be independently
mapped to three sub-streams represented as Q, K, and V, respectively. Then, the Multi-
head Attention module will perform global self-attention from Q, K, and V. If the head
number of the Multi-head Attention module is greater than one, the Multi-head Attention
module will perform the self-attention in different temporal scales. The Feed-Forward
module is a simple feed-forward structure composed of two fully connected layers.

Positional Encoding

Transformer Encoder <N
(" \
| |
| of Add Add |
Inputs v || [« | Multi-Head l Feed |Outputs
| |, | Attention 5 Forward J
l > Norm Norm
N— e ——

Figure 2. The structure of the Transformer Encoder employed to extract temporal information of
sequences. After the data processed, the data are fed to the Transformer Encoder to extract temporal
information. A single Transformer Encoder layer is composed by a Multi-Head Attention module
and a Feed-Forward module with an external Positional Encoding module.

The Positional Encoding (PE) module is used to add positional information to the
original input. The Positional Encoding model is important because the Transformer
Encoder has a pure attention structure without any positional information. We use the
same positional encoding method as [8], whose formula is shown in Equation (1):

PE(pos, 2i) = sin(Lﬁ)
10,000 %nodet @
. pos
PE(pos,2i+1) = cos( —),
10,000 %model

where pos denotes the position (i.e., 0, 1, 2, ...) of every frame in features; i denotes the in-
dices of elements in every single frame; and d,,,4.; denotes the dimension of input features.

The Self-Attention module is designed to map a query (Q) and a set of key (K)-value
(V) pairs to an attention value (Z). The Q, K, V are represented as Equation (2):

Q = WoX € RF¥!
K = WgX € REX! ()
V = WyX e REXT
where X represents the origin inputs, while Q, K, and V denote the query vector, key vector
and value vector, respectively. Suppose the dimensions of Q, K, V are F, E, E, respectively.

Wgq, Wk, Wy are linear transform matrices for Q, K, V, respectively, which are learned to
find best Q, K, V during the training process.
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In self-attention, we first calculate the similarity between Q and K as Equation (3):

T
A= =" ¢ RI*E (3)

VE

where A is a similarity matrix or score matrix with a dimension of F x E. Its element 4;;
can be represented as:

aji = q]‘ki/\/E, 4)

where g; and k; are j-th element of Q and i-th element of K, respectively. We use softmax
to normalize aj; as:

a; = softmax(aj;) = exp(a;i)/ Liyexp(aj), ®)
The attention value (z;) for g; can be represented as:
zj= Y1 a;‘ivi' (6)
where v; is the i-th element of V. The Z € RF*! can be represented as:
Z=AYV, @)

where A’ is the normalized similarity matrix, whose element is 11/.1-.
The final Feed-Forward module is made up of two fully-connected layers whose
hidden units can be specified as hyperparameters.

3.3. Multi-Task Learning

Inspired by current multi-task learning works, we incorporate an auxiliary task (de-
pression classification) to enhance the main task of depression level regression (estimation).
To achieve the purpose of multi-task learning, after the features are processed by the
Embedding FC Block, the hidden embedding for each type of feature will be fed to two FC
Blocks to separately perform two tasks, i.e., PHQ-8 regression and 5-class classification. The
FC Blocks comprise of an ReLU activation, a dropout layer, and a linear layer. Since we
can only achieve the original PHQ-8 regression task using the AVEC 2019 DDS Challenge
dataset, we generate 5-class classification labels from the original PHQ-8 score labels, as
detailed in the Data Processing section.

Our multi-task loss function in the training stage can be formulated as:

Loss=a* Ly, +bxLg, (8)

where L,, and L are loss functions for PHQ-8 regression and 5-class classification, re-
spectively. a and b in Equation (8) are designed to leverage the coefficient between these
two tasks and can be set as hyperparameters. Specifically, the loss function for PHQ-8
regression can be formulated as follows:

B 25gy_
S;+S7+(7-79)?

Le=1 )

where § and y denote the predicted depression levels and true labels with 7 and 7 denoting
their corresponding mean values, S; and Sy, denote the variances of 7 and y and Sy, means
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the covariance of them. We employ the commonly used cross-entropy loss as the loss
function of our 5-class classification task, which is shown as follows:

1 N C
Ly=—+ Z Z 1[c:yi] log Pic/ (10)
N i=1lc=1

where C denotes the number of classification classes; N, the number of samples; 1[C:]/i]’ a
binary indicator; and p; ., the predicted probability that sample i belongs to class c.

3.4. Adaptive Late-Fusion

To fuse results from different modalities and adjust weights for each type of feature
adaptively, we employ the proposed late-fusion strategies called Adaptive Late-Fusion to
fuse results obtained from every single feature.

The general late-fusion strategy that is widely used takes the average from results
obtained from each feature of different modalities, which can be formulaically expressed
as follows:

Z%:o Predictions,,
count(m)

FinalPredictions_Averaged = , (11)
where M denotes the number of selected features, and Predictions,, denotes the predictions
from feature m. In this study, the general late-fusion strategy is known as Averaged Late-
Fusion. The Adaptive Late-Fusion method proposed in our work aims to increase the
weights of features with high performance while decreasing the weights of features with
low performance. Specifically, we calculate the weights for each feature and take the
weighted average from all modalities. Weights are calculated according to the CCC from
each type of feature, and thus, the feature types with higher CCC will have larger weights
in the proposed Adaptive Late-Fusion. The formulaic expression of our proposed Adaptive
Late-Fusion is shown as follows:

M
CCCgum = ) CCCyy

m=0

(12)
M . .
P t
FinalPredictions_Weighted = Z ( redzc(z:(ziém * CCCn) ,
Sum

m=0

where M denotes the number of selected features; Predictions,,, the predictions from feature
m; CCCg,n, the sum of CCCs for all features; and CCC,,, the CCC score of feature m.

We implement our Adaptive Late-fusion Strategy in two ways. In one way, we select
all modalities and all types of features and fuse the results from them, which means that
the results obtained will account for every modality. In the other way, we only fuse the top
M features ranked by the CCC [17] metric, which means that we will drop features with
poor performance.

4. Experiments
4.1. The AVEC 2019 DDS Challenge Dataset

The DDS dataset was obtained from AVEC 2019 [5], where the level of depression
(PHQ-8 questionnaire [18]) was assessed from audiovisual recordings of patients’ clinical
interviews conducted by a virtual agent driven by a human as a Wizard-of-Oz (WoZ) [19].
The recording audio has been transcribed by Google Cloud’s speech recognition service and
annotated for a variety of verbal and nonverbal features. Each interview in the AVEC 2019
DDS dataset comprises interview IDs, PHQ-8 binary labels, PHQ-8 scores, and the partici-
pant’s gender. The dataset contains baseline features extracted from audiovisual recordings
by common frameworks based on open-source toolboxes. It spans three expressions levels:
functional low-level descriptors (hand-crafted), bag-of-words, and unsupervised deep rep-
resentations. The audio features are provided by openSMILE [20], and the video features
are provided by openFace [21].
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For every sample in the AVEC 2019 DDS dataset, the PHQ-8 scores range € [0,24].
Following [3], we define the cut-points at [0,5,10,15,20] for minimal depression, mild
depression, moderate depression, moderately severe depression, and severe depression,
respectively. The distribution of the AVEC 2019 DDS dataset is shown in Figure 3. The
dataset includes MFCC, Bow_MFCC, eGeMAPS, Bow_eGeMAPS, DS_DNet, and DS_VGG
for audio and FAUs, BoVW, ResNet, and VGG for video, where Bow indicates the bag-
of-word method; DS, the deep spectrogram; and DNet and VGG, the data processed by
pretrained DenseNet and VGG_Net, respectively. In this dataset, every modality feature
has the shape of R**¥, where t denotes the length of the sequence, and d represents the
dimension of the modality.

o

01 23 45 6 7 B O 1011 12131415 18171819 2021 2 23 24 001 234 56 78 91201121514 151617 1519 202 2324
PHQ8 Score PHQ-8 Score

(a) Train Set (b) Development Set

Figure 3. The distribution of the training and development set of the AVEC 2019 DDS Chal-
lenge dataset.

4.2. Data Processing

Because the data sequences are too long to fit in 48GB of memory, which is our best
GPU capacity with double RTX3090 GPU cards, we must shorten the dataset’s original
data. To shorten the sequences, we sample N frames from the original features for every
modality feature. Specifically, we evenly split the sequence into s segments; for each
segment, we randomly sample L = N/s successive frames. Finally, we concatenate the s
segments obtained from each segment. Consequently, we can obtain N frames from each
kind of feature in this manner. For different types of features in the AVEC 2019 DDS dataset,
we select different N and s, which can be treated as hyperparameters as the dimensions of
different features are different.

We generate the MFCC_functional, eGeMAPS_functional, and AUpose_functional
from MFCC, eGeMAPS, and AUpose, respectively, using the approach provided by the
AVEC 2019 DDS to enhance the modality and avoid the side effect of processing extremely
long-term sequences. Specifically, the functional features have the same lengths as 1768
and the mean value and standard deviation of the original data.

To achieve the goal of multi-task learning, we obtain classification labels from the
original PHQ-8 scores, as illustrated by [3]. The corresponding relationships between
the original PHQ-8 scores and 5-class classification labels and the label distributions are
presented in Table 1.

Table 1. Distribution of Training and development splits with the relationships between 5-class
classification labels and PHQ-8 regression labels.

Task Train Dev
Regression Task 163 56
minimal [0—4] 77 26
mild [5-9] 36 15
Classification Task moderate [10-14] 26 8

moderately severe
[15-19] 17 6
severe [20-24] 7 1
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4.3. Evaluation Functions

We use well-known standard evaluation metrics for depression detection to eval-
uate regression/classification results. We use the Concordance Correlation Coefficient
(CCCQC) [17] as a measure of PHQ-8 estimated scores (regression task), which is the common
metric in dimensional depression detection to measure the agreement between true PHQ-8
scores (i) and predicted PHQ-8 scores (i7). The CCC is formulated as follows:

28y,

cce = S
§;+ S5+ (7 —79)?

(13)

where S; and Sy, denote the variances of § and y, whereas S, denote the corresponding
covariance value. The CCC is based on Lin’s calculation [17]. The range of the CCC is from
—1to 1, where —1 represents perfect disagreement and 1 represents perfect agreement.

As another measure for the regression task, we also use the root mean square error
(RMSE), which is defined as Equation (14), where i and y denote the predicted and true
depression levels, respectively, and N represents the number of samples.

2N i) 14
RMSE = B (14)

4.4. Experimental Setup

To demonstrate the effectiveness of our proposed method, we apply it, along with
the original baseline GRU model [5], to obtain a direct comparison between them. The
AVEC 2019 DDS dataset is split into training, development, and test sets. We utilized only
the training and development sets for a fair comparison with the state-of-the-art methods
following [3,4]. Our experiments were conducted on 219 subjects: 163 subjects for training
and 56 subjects for development. The Adam optimization algorithm [22] was employed
to learn the parameters in our networks. The learning rate was set to 1 x 10~°. The batch
size was set to 48 for low- and middle-level features and 24 for high-level features. We
trained our model for 500 epochs for low and middle-level features and 200 epochs for
high-level features. During training, we set 4, b to 1.0, 0.0 for single-task and 0.9, 0.1 for
multi-task in the loss function of Equation (8). For the Transformer Encoder block, we set
the head number of Multi-head Attention to 1, the hidden dimension of the Feed-Forward
layer to 2048, and the number of the encoder layer to 6 following the original Transformer
structure [8]. Our model is implemented with the framework of PyTorch [23], whereas our
experiments are conducted on double Nvidia RTX 3090 GPU cards.

Our proposed networks have several hyperparameters to be optimized. The length of
inputs for the Transformer Encoder (N) and the number of selected modalities for fusion (M)
are the most important architectural decisions. After the exploration, we select N = 2048
for low- and middle-level features and N = 720 for for high-level features in this work.
For M, M = 3 and M = 6 are the best choices for multi-task and single-task in Adaptive
Late-Fusion, respectively. We will elaborate our exploration procedure in more detail in
the Section 6.

5. Results

In this section, we will describe the results of our experiments. We first discuss the
effect of the selection of the Transformer Encoder. Then, we describe the effectiveness of
multi-task learning and multi-modal learning. Finally, we compare our results with those
of some state-of-the-art methods.

5.1. GRU vs. Transformer Encoder

To investigate the effect of transformer-based networks on the CCC scores and RMSE
values, we use single features as inputs of the networks, and the task is set to PHQ-8
regression. The results are presented in Table 2.
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Table 2. Comparison between The GRU baseline model [5] and The Transformer-based model for different features from

audio and video modality. For every kind of feature from each modality, we use two metrics including CCC and RMSE. The

data in bold means the results with better performance.

CCC RMSE
Baseline [5] Proposed Method Baseline [5] Proposed Method

MFCC 0.198 0.289 7.28 5.70

MEFCC_functional - 0.386 - 7.78

Low-level eGeMAPs 0.076 0.0002 7.78 8.69
eGeMAPs_functional - 0.138 - 8.10

AUposes 0.115 0.602 7.02 5.64

AUposes_functional - 0.277 - 6.23

BoW-MFCC 0.102 0.060 6.32 8.58

Middle-level BoW-eGeMAPs 0.272 0.169 6.43 8.56
BoW-AUposes 0.107 0.210 5.99 9.045

Deep Spectrogram_DNet 0.165 0.204 8.09 8.67

High-level Deep Spectrogram_VGG 0.305 0.141 8.00 8.72
Facial_ResNet 0.269 0.373 7.72 7.56

As presented in Table 2, the transformer model outperforms the GRU baseline
model [5] in terms of the CCC metric for low- and high-level features. The CCC score of
the AUpose feature is higher than those of other types of features. The transformer-based
network achieves higher accuracy for low and high-level features, so we can conclude that
the transformer model outperforms the GRU [5] in terms of processing low- and high-level
features. However, for middle-level features, we can deduce that the transformer-based
network does not outperform the GRU model.

5.2. Single-Task vs. Multi-Task

To determine whether the proposed model benefits from multi-task learning, we
compare single-task results (PHQ-8 regression) with multi-task results (PHQ-8 regression
and 5-class classification). As presented in Table 3, multi-task representation learning for
PHQ-8 regression with 5-class classification for depression level detection exhibits better
performance than single-task representation learning. The results indicate that depression
detection can be improved using multi-task representation learning.

Table 3. Comparison between single-task and multi-task with metrics of CCC, RMSE. Single-Task
includes the PHQ-8 regression task while Multi-Task includes the PHQ-8 regression task and the
5-class classification task. The data in bold means the results with better performance.

Tasks CCC RMSE
Our: Single-Task 0.679 4.150
Our: Multi-Task 0.733 3.783

5.3. Single Modality vs. Averaged Multi-Modal Fusion vs. Adaptive Multi-Modal Fusion

To illustrate the effectiveness of multi-modal learning, our proposed method has been
tested on all features available in the AVEC 2019 DDS dataset. As presented in Table 4,
applying multi-modal late-fusion outperforms any uni-modal learning in any tasks, except
for the Averaged All Late-Fusion. The Averaged All Late-Fusion has poor performance as
it does not take the importance of different modalities into account.
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Table 4. Comparison between single modality and multiple modalities fusion and Comparison
betweenn averaged multi-modal fusion and adaptive multi-modal fusion. We employ CCC and
RMSE as metrics. For every kind of fusion strategy, we perform two ways of late fusion including all
fusion and top M fusion. The data in bold means the results with better performance.

CCC RMSE

Single-Task Multi-Task Single-Task Multi-Task
MEFCC 0.289 0.471 5.700 5.158
MEFCC_functional 0.386 0.460 7.780 7.269
eGeMAPs 0.0002 0.000 8.688 8.688
eGeMAPs_functional 0.138 0.107 8.102 8.345
AUposes 0.602 0.620 5.643 5.355
AUposes_functional 0.277 0.390 6.227 7114
BoW_MEFCC 0.060 0.063 8.584 11.575
BoW_eGeMAPs 0.169 0.181 8.560 8.555
BoW_AUposes 0.210 0.184 9.045 10.760
DeepSpectrogram_Dnet 0.204 0.171 8.672 8.662
DeepSpectrogram_VGG 0.141 0.170 8.721 8.145
Facial_ResNet 0.373 0.360 7.561 6.900
Averaged all fusion 0.478 0.539 4.591 4.334
Averaged best top M fusion 0.654 0.722 4.602 3.852
Adaptive all fusion 0.628 0.682 4.046 3.782
Adaptive best top M fusion 0.687 0.733 3.829 3.783

The result indicates that the fusion of the best top M modalities improves the estima-
tion of depression levels in terms of the CCC metric better than other fusions as modalities
with poor performance are excluded to avoid a negative impact on the accuracy of depres-
sion detection. We can infer that the Adaptive Late-Fusion strategy can perform better than
the Average Late-Fusion in estimating the levels of depression.

To investigate the different weights between different features, we counted the best
three features with their corresponding weights in Adaptive Late-Fusion because M = 3 is
the best choice for multi-task learning and nearly the best choice for single-task learning. As
presented in Table 5, although the selections of modalities are different for different tasks,
the main influencing features are AUposes and MFCC_Functional. The results indicate that
low-level features are more important than deep- and middle-level features for estimating
the levels of depression.

Table 5. The selection of modalities in TOP-3 Adaptive Late-Fusion and their corresponding weights.

Tasks Best 3 Features and Corresponding Weights
Modality Video Audio
Single-Task Features AUposes MEFCC MFCC_Functional
Weights 0.40 0.30 0.30
Modality Video Audio
Multi-Task Features AUPoses ResNet MFCC_Functional
Weights 0.44 0.27 0.29

5.4. Comparison with State-of-the-Art Methods

In Table 6, our approaches are compared with other state-of-the-art methods and the
baseline. The baseline model [5] uses a GRU to extract temporal information and then
takes the average of the results from every uni-modality. The hierarchical Bi-LSTM [2]
hierarchically employs a Bi-LSTM to obtain temporal sequence information. Multi-scale
temporal dilated CNN [7] employs dilated CNNs with different scales to process temporal
information, followed by average pooling and max pooling to fuse temporal features.
It should be noted that multi-scale temporal dilated CNN [7] uses features from texts
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extracted from pretrained models. Bert-CNN and Gated-CNN [14] use the Gated-CNN
to extract features from each audiovisual modality sequence and the Bert-CNN to obtain
features from texts before fusing the features to predict the final depression levels. The
results indicate that our baseline has superior performance over other DL methods. The
comparison of the predicted results with the ground truth is presented in Figure 4, and
samples with different classification labels are colored differently.

Table 6. Comparison of the proposed method and the state-of-the-art with CCC metrics and modali-
ties used. The data in bold means the results with better performance.

Methods CCC Modalities Used
Baseline [5] 0.336 Audio/Video
Hierarchical BiLSTM [2] 0.402 Audio/Video/Text
Multi-scale Temporal Dilated CNN [7] 0.466 Audio/Video/Text
Bert-CNN & Gated-CNN [14] 0.696 Audio/Video/Text
Ours Best 0.733 Audio/Video
25 A
Perfect Coordination
@ PHQ-8[0-4] Class-0
@ PHQ-8[5-9] Class-1
207 @ PHQ-8[10-14] Class-2
PHQ-8[15-19] Class-3
@ ®  PHQ-8[20-24] Class-4 °
g 15 1
= °
8 b °
5 107 ¢ ° oo
L ®e °q
°
° ®e ®  JPS
51 ® ()
[ ] : ® 9 o® *
0 ' oo 8 °
(I) é 1I0 1I5 2I0 2I5
True PHQ-8

Figure 4. Correlation graph between the predicted and true PHQ-8 scores. Each color represents
different classes.

6. Discussion
6.1. Effect of Frames Lengths

The length of inputs (i.e., the number of sequence frames) affects the accuracy of the
depression detection of the networks and should thus be selected carefully. To study how
the performance of our proposed method changes as we modify the length of input frames,
we fix the task as regression and modalities as the fusion of top three features (M = 3) and
compare the CCC score and RMSE at different selections of frames. As feature dimensions
significantly differ, we select the same frames for low- and middle-level features, whereas
we select different frames for high-level features. Although the use of the transformer
model can capture long-term information, it consumes a lot of memory. The pair of 2048/720
frames for low and middle-level features and high-level features is the limitation of our
hardware. As presented in Table 7, an increase in input frames improves the results. We
select N = 2048 for low- and middle-level features and N = 720 for for high-level features in
this work. Here N is the number of frames.
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Table 7. The CCC and RMSE results for different frames of input on fixed 3-top modalities fusion
regression single task. 2048/720 means that we select N = 2048 for low-level and middle-level features
and N = 720 for high-level features. The data in bold means the results with better performance.

Frames (N)

(Low&Middle-Level Features/High-Level Features) cce RMSE
2048/720 0.654 4.602
1536 /540 0.634 4.526
1024/360 0.560 5.102

6.2. Effect of the Selection of Features

To study the effect of feature selection in the late-fusion, Figure 5 presents the results of
different M selection in terms of the CCC scores with different multi-task combinations. The
most appropriate number of selected top modalities for different tasks varies. The results
indicate that the CCC scores increase with an increase in the number of top modalities
selected and reach a maximum at M = 3 for both single-task and multi-task in Averaged
Late-Fusion. M = 3 and M = 6 are the best choices for multi-task and single-task in
Adaptive Late-Fusion, respectively. Therefore, we select the corresponding best M for
different tasks in different fusion strategies.

Adaptive TOP-M Fusion

Averaged TOP-M Fusion

Topd

Tops

0es w/’{/ /"_v/\\_q

Topé  Top? Top8 Topd Topld Topll Topl2 Topl Top2 Top3 Topd Top5 Topé Top7 Top8 Topd Topl0 Topll Topl2

==g==Single-Task Multi-Task —&—Single-Task — Multi-Task

(b) Adaptive Top-M Fusion

Figure 5. The CCC scores for different number of top M modalities fusion. Each color represents different tasks. The points

with best results are marked as red.

6.3. The Robustness from Adaptive Late-Fusion

Compared with Average Late-Fusion, Figure 5 shows that using Adaptive Late-Fusion
not only achieves good results but also increases detection robustness, implying that the in-
clusion of low performance features has a slightly negative impact on the detection results.

6.4. Limitations of Our Methods

As shown in Figure 4, the predicted results of participants with high scores tend to be
on the lower side. The reason is due to the imbalance of the training samples. As shown
in Figure 3 (Section 4.1), the training set distribution is unbalanced, more samples have
participants with low PHQ-8 scores, whereas few samples have participants with high
scores. As a result, our model predicts a slightly lower PHQ-8 score than the true label
for participants with high scores. The prediction accuracy can be improved by increasing
the number of participants with high scores.It should be reminded that as data obtained
from AVEC 2019 DDS have been processed to specific features for private issues, the data
pre-processing stage in Figure 1 can be skipped. The pre-processing methods applied in
the AVEC 2019 DDS Challenge dataset may affect the final performances for some detailed
reasons, but it can provide the platform on which we can perform the fair comparison of
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modality processing and fusion. With current hardware, we think the pre-proceeding stage
will have little limitation to the real-time detection scenario.

Although our methods have achieved good results, they still have many shortcomings.
For instance, the depression level cannot be inferred from short-term sequences because
it is a persistent long-term characteristic obtained from a human. Like many existing
methods, the proposed method tends to pay more attention to the prediction accuracy
by using long-term sequences for temporal feature extraction. How to extract effective
features from short-term sequence and realize fast computer-aided diagnosis will be our
future work.

7. Conclusions

In this study, we presented a multi-modal adaptive fusion transformer network for
depression detection using multi-task representation learning with facial and acoustic
features, which achieves the best results on the development set of the AVEC 2019 DDS
dataset when comparing with other methods shown in Table 6. The experimental results
indicated that the use of the transformer model for depression detection can improve the
final prediction performance. Our ablation study demonstrated that multi-task representa-
tion learning, with tasks such as PHQ-8 regression and 5-class classification, outperforms
single-task representation learning for depression detection. The experimental results indi-
cated that Adaptive Late-Fusion contributes more significantly than Averaged Late-Fusion
to the depression detection performance while also increasing robustness when fusing bad-
performance features. By fusing the selected modalities, our proposed approach achieved a
CCC score of 0.733 on the AVEC 2019 DDS dataset, outperforming the alternative methods
investigated in this work.
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Abbreviations

The following abbreviations are used in this manuscript:

GRU Gated Recurrent Unit

LSTM  Long short-term memory

RNN Recurrent Neural Network

FC Fully-connected layer

Cccc Concordance Correlation Coefficient

RMSE  Root-mean-square deviation

AVEC  The Audio/Visual Emotion Challenge

DDS Detecting Depression with AI Sub-Challenge

Re PHQ-8 Regression Task
Cl 5-class Classification Task
Ge Gender Binary Classification Task

PHQ-8 Patient Health Questionnaire eight-item depression scale
CNN Convolution Neural Network
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