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Abstract: In Kalman filter design, the filter algorithm and prediction model design are the most
discussed topics in research. Another fundamental but less investigated issue is the careful selection
of measurands and their contribution to the estimation problem. This is often done purely on the
basis of empirical values or by experiments. This paper presents a novel holistic method to design
and assess Kalman filters in an automated way and to perform their analysis based on quantifiable
parameters. The optimal filter parameters are computed with the help of a nonlinear optimization
algorithm. To determine and analyze an optimal filter design, two novel quantitative nonlinear
observability measures are presented along with a method to quantify the dominance contribution of
a measurand to an estimate. As a result, different filter configurations can be specifically investigated
and compared with respect to the selection of measurands and their influence on the estimation.
An unscented Kalman filter algorithm is used to demonstrate the method’s capabilities to design
and analyze the estimation problem parameters. For this purpose, an example of a vehicle state
estimation with a focus on the tire-road friction coefficient is used, which represents a challenging
problem for classical analysis and filter parameterization.

Keywords: Kalman filter; estimator design; nonlinear state estimation; nonlinear observability;
tire-road friction coefficient; vehicle dynamics; vehicle state estimation

1. Introduction

The degree of automation and technical support for humans has increased rapidly in
recent years. The basic requirement for any control system is the existence of measurable
control variables. If they cannot be measured directly due to technical or economic reasons,
state estimators are needed. Thus, state estimation forms the backbone of most modern
control problems and is required for their implementation. One proven method for state
estimation is Kalman filtering. The Kalman filter is an algorithm that provides optimal
estimates for the states of a dynamical system sequentially in time. The disturbances
in the underlying mathematical model of the system and measurement equations are
assumed to be white noise [1]. This established and widely used method has been known
and applied for more than 60 years now. Many different modifications of this method
have been developed. Nevertheless, there is still no simple procedure for an optimal
design or parametrization of a Kalman filter. This task is often executed by experienced
control engineers based on empirical knowledge or by trial and error experiments through
Monte-Carlo simulations, see, e.g., [2].

One of the most fundamental requirements for an estimation problem is its observ-
ability. This means that the estimated states, which are reconstructed, have to be contained
in the measurements and uniquely extracted from them. In order to parametrize a filter,
the covariance matrices need to be determined (when dealing with other filter types such
as, e.g., an unscented Kalman filter, there might be even more parameters). This leads
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to the crucial question for the filter design as to which measurands should actually be
used and how they influence the estimation problem. In many cases, the properties of the
measurands for the estimation problem are only evaluated by simple plausibility checks.
For instance, when estimating the state-of-charge (see e.g., [3]) of a battery, it is evident
that the battery voltage should be used as a measurand. But how would other measurands
affect the observability, and might they be even more dominant? Issues like these are
addressed in this paper in a quantifiable way with the help of the novel design and analysis
method presented below.

1.1. State of the Art

The authors of [4] present an automated method that allows the determination of
proper Kalman filter parameterization. To evaluate the estimation accuracy, a performance
index, which is analytically related to the filter parameterization, is introduced. By minimiz-
ing this index, optimal parameterization can be calculated. In [5], a relationship between
the performance values and filter parameterization is investigated. However, neither an
exact relationship between these values nor a calculation rule is presented. A similar rela-
tionship is presented in [6] using the example of a video tracking system. In [7], a method
is shown where the filter is considered as a control system, thus allowing corresponding
tuning criteria to be derived. In [8], the filter parameters are computed via optimization
based on a genetic algorithm. The authors in [9] use Bayesian optimization for this purpose.
Instead of minimizing a cost function, this approach tries to maximize the probability of
improving the current best solution. In [10], a two-step method is presented in which
particle swarm optimization (PSO) is used to tune both the filter parameterization and
prediction model parameters.

Besides filter parameterization, the filter structure, i.e., the selection of state variables
and measurands, is perhaps an even more important design issue. However, the methods
mentioned so far cannot help to solve this problem. The so-called Programmable Kalman
Filter Design Tool (PKFD) is shown in [11]. This tool provides both an optimal parameteri-
zation (system noise, measurement noise, and initial estimation error covariance matrices)
and an optimal filter structure. Nevertheless, the tool rather serves as a rapid prototyping
environment, allowing different Kalman filter setups to be compared, but not giving a
precise analysis of the properties. Figure 1 shows a classification of the Kalman filter design
methodologies mentioned above.

1.2. Contribution of This Paper

In the approaches mentioned so far, the design focus lies solely on the filter parameter-
ization, but not on its structure. To fill this research gap, both design issues are addressed
and evaluated in detail by the holistic method elaborated in this paper.

Using a novel state-specific nonlinear quantitative observability measure, the cur-
rent “observability accuracy” can be determined at any time in an estimation problem.
Additionally, a new “dominance analysis” method allows the percentage contribution of
each measurand to an individual state to be calculated. Based on this knowledge about
the observability and dominance properties of all possible measurands, different filter
setups can be compared with each other. As a result, the benefit of a measurand can be
evaluated in comparison with the effort required to provide it in reality. Furthermore, the
filter covariance matrices (as well as other possible filter parameters) are determined by a
nonlinear optimization algorithm considering the filter self-diagnosis and resulting in a
minimum estimation error.



Sensors 2021, 21, 4750

30f29

Kalman Filter Design
Methodologies
I
[ \
Parameterization Structure
(e.g. covariance matrices) (e.g. states, measurements,..)

This Paper
Holistic Design Method

— Choice of different nonlinear Consideration of observability and
constrained optimization algorithms dominance properties of measurands

~ PKFD-Tool [11] -
(rather a rapid prototyping tool)

—>» Determination via an analytical
dependency [4]

— Viarelationship of parameterization and
performance values [5]

— Tuning criteria considering the filter as
a control system [6]

— Via comparison of performance and
filter model parameters [7]

— Optimization via genetic algorithm [8],
Bayesian approach [9],
Particle swarm method [10].

Figure 1. Overview of Kalman filter design methodologies.

In summary, the method enables a holistic filter design and provides quantitative
criteria for an optimal filter configuration, namely:

Optimal filter parameterization using a nonlinear constrained optimization algorithm.
Optimal filter structure using a quantitative nonlinear state-specific observability
measure and a dominance analysis to evaluate the influence of the measurands’
properties on the estimation problem.

This novel method is universally applicable. As an example, this paper considers its
application to a vehicle state estimation problem using an unscented Kalman filter (UKF).

2. Fundamentals of State Estimation

A well-proven method for state estimation is Kalman filtering. Here, the system
modeling, as well as the measurements, are described by their statistical characteristics,
and an optimal estimation [1] is performed by an iterative procedure (prediction and
measurement update). This section closely follows [3,12]; the interested reader is referred
to these sources for more detail.

2.1. System Description

For many control system tasks, the plant model to be used in state estimation is
naturally described as a nonlinear continuous-time state-space system:

x :f(x,u),
y =h(x), @
u(t) e R, x(t) e R, y(t) e R™<L, t € R.

where t is the time, u(t) is the vector of inputs, x(t) is the vector of states, and y(t) is the
vector of outputs. In a sampled data system (e.g., a microcontroller) the continuous-time
model representation in Equation (1) cannot be used directly. Instead, a time-discrete
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representation is needed, and therefore, the time-discrete transformation of Equation (1)
with additive Gaussian noise is used in the sequel:

X = frj—1 (Xk—1, 1) + We—1,
wy ~ N(0,Qy),
U ~ N(O,Rk).

Here, t; is the k-th sample time instant of a periodically sampled data system with
we = u(ty), x = x(t) and y;, = y(fx). The vectors wy and vy represent zero biased Gaus-

. . . . . . T _
sian white noise. The covariance matrices Q, and Rj are defined as E (wkw]- ) = Qidk—;

and E (vkva) = Ry6k_j, where 6 is the Kronecker delta function; that is, 6 _; = 1ifk = j,
and 6;_; = 0if k # j. Note that as a simplification, Qy is assumed to be a diagonal matrix,
but in general, it may contain cross-correlation terms between the states (see, e.g., [13]).
The operator E(-) calculates the expected value of a random variable [13]. The notation
wy ~ N(0, Q) indicates that wy is a Gaussian random variable with a mean vector of 0

and a covariance matrix of Q; = diag (‘712..nx) , with the standard deviation c.

2.2. Constrained State Estimation

Similar to an optimization problem, a state estimation problem can be advantageously
simplified by introducing constraints on the possible solution space, e.g., by physical
limits, thus reducing the complexity of the problem. There are several methods dealing
with constraints for state estimators, see [14]. As they are beyond the scope of this paper,
they will not be discussed in any further detail here. A summary of the methods with
their advantages and disadvantages can be found in [12]. In the present paper, two linear
constraints are applied (a lower and an upper bound for the maximum tire-road friction
coefficient (TRFC)), see Section 4.1.3. For this purpose, the method described in [12] (p. 79)
is used. By means of a root-finding problem, the feasible state variables are determined.
For linear constraints, as is the case for this paper, the method provides an optimal solution
to the problem.

2.3. DLR Kalman Filter Estimation Framework

For this research work, we use and extend the DLR Kalman Filter estimation frame-
work [12], which uses prediction models based on continuous-time Modelica models and
automatically generates model-based nonlinear state estimators. The approach is based
on an extended FMI (Functional Mockup Interface) 2.0 co-simulation interface [15] that
interacts with the state estimation algorithms implemented in the DLR Kalman Filter
Library [16]. Starting from a multi-physical Modelica model (continuous-time, usually
nonlinear), a nonlinear prediction model is automatically generated in the form of a sam-
pled data system (cf. Equation (2)). The framework employs an intelligent separation of
the model (encapsulated in a standardized FMI 2.0 for co-simulation [15]) and the esti-
mation algorithm by utilizing modern computer technologies and recent developments
in the Modelica language [17]. They enable automated discretization, integration, and
derivative calculation of an object-oriented equation-based prediction model. The FMI
defines a standardized interface to be used in computer simulations to develop complex
cyber-physical systems. The following estimation algorithms are implemented reliably
and efficiently in the DLR Kalman Filter Library: EKF, EKF SR (EKF square-root), EKF UD
(EKF UD-decomposition), UKF (unscented Kalman filter), and UKF SR (UKF square-root),
see [1,18]. Additionally, there are modified algorithms for parameter estimation as well as
an extension to nonlinear moving horizon estimation (MHE) using a fast nonlinear gradient
descent search, as is presented in [12]. Recently, the library’s features were extended to
meet the requirements of embedded targets. This was part of the ITEA EMPHYSIS project
in which a new embedded FMI (eFMI) standard specification was designed [19].
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3. Design Method for Kalman Filters

The structural filter design is based on the observability and dominance analysis
of measurands. This section starts with the introduction of three different observability
measures for nonlinear systems. In addition to the probably best-known one-rank analysis
of the observability matrix, two new approaches for a quantitative statement about observ-
ability are presented. Next, these three methods are compared by means of an illustrative
example. Moreover, the advantages of the two newly developed observability measures are
discussed. Afterward, a new approach—the so-called dominance analysis—is described to
quantify the contribution of a measurand to the estimation. Finally, the holistic filter design
method is shown, which consists of the observability and dominance analysis embedded
in an optimization framework.

3.1. Nonlinear Observability Measures

The observability problem together with its counterpart, the controllability problem,
are important parts of the systems theory. Especially when designing observers, observ-
ability plays a key role. In this section, three methods for nonlinear observability analysis
are presented. For reasons of clarity, the time dependence is not explicitly indicated by an
argument for the respective variables.

The observability of a dynamic system is a property that is independent of the estima-
tion method, but is solely determined by the

e  structure of the problem, i.e., which measurements are available and how they are
linked to the states (measurement equation).

e  excitation of the system by the input u#, which has to take a minimum value (persistence
of excitation).

3.1.1. Observability via Rank Condition

Probably the best-known method for the observability analysis of nonlinear systems
is the rank investigation of the observability matrix. This matrix is built using the n — 1 Lie
derivatives y, ¥, ...y"~1 [13], whereby y indicates the system output from Equation (1).
Hence, the nonlinear observability matrix is:

y
|5
[ y ] = q(x: u, il, .__,u(n—l)).
y(n—l)

=Y (3)

The system is globally observable if a unique inverse function of Equation (3) can be
found, which occurs, however, possible only in very rare cases in practical applications. In-
stead, Equation (3) can be linearized along the reference trajectories

gref:[x u oo u(nﬂ)}

aq(x, u,u,...,u("—l))

ox ’
Cref

Oy = (4)

making the observability investigation at certain points possible. A linear system of
equations is obtained:
AY = Oy - Ax. 5)
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If O, is invertible, i.e., has full rank #, the states x can be obtained via Ax = (9;/} -AY.
The nonlinear system in Equation (1) is called weakly observable for a given domain if the
observability matrix for this domain does not have a rank loss, i.e., if it holds

rank(Oy) = n. (6)

The criterion of a rank loss provides only a binary statement about the observability
and is numerically highly sensitive. Quantitative information, regarding how good or bad
the observability is, is not given. After the presented classical rank-based observability
analysis, the next two sections introduce two new observability measures allowing a
quantitative statement about the observability.

3.1.2. Quantitative Observability Measure Considering Numerical Condition Number

The crucial question for the observability quantification is how far O, is away from a
rank loss. The geometric interpretation of the numerical condition number «(-) of a matrix
provides an answer to this question. Namely, the reciprocal condition number indicates the
relative distance (w.r.t. the Euclidean norm) of a non-singular matrix to its nearest singular
matrix [20] (p. 242):

AO
min{”M’S2 OM+AO)y s is singular} = L ?)
[Omll,

K(Om)

The “distance to the singularity”, which can be quantified via «(O}y), corresponds
to the “distance to a rank loss” of O and can, therefore, be interpreted as a quantitative
observability measure.

The relationship between the numerical condition number and the observability prop-
erties can be clearly shown by considering the covariance-error-ellipsoid (a.k.a. confidence
ellipsoid) of Equation (5). In Figure 2, this is shown as an example of a system with
order n = 2.

P(Ax,)

P(Axy)

Figure 2. Confidence covariance ellipse.

The length of the orthogonal half-axes of the covariance ellipsoid corresponds to the
inverse root of the singular values /s; “Lof Oy [21] (p. 692ff.). The numerical condition
number is the ratio of the largest singular value to the smallest one [22]

K(Oy) = ) ®)

Smin
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providing a statement about the shape of the ellipsoid. For n = 2, large values of the
condition number mean a narrow ellipse. This means that existing small uncertainties
of one state lead to large uncertainties of another state, which implies bad observability.
A good condition number of Oy, i.e., small values of k(Oyy), is equivalent to good
observability.

One main disadvantage of the two methods presented above is the high computational
effort required for the calculation of the Lie derivatives in the observability matrix. This
effort grows with the numbers of states and outputs. Furthermore, the statements about
observability are valid only for the whole system, but not for single states. This means
the two presented measures show a loss of observability, even though only a single state
is unobservable. Often, not all states are of equal interest, wherefore a state-specific
quantitative observability measure is presented hereinafter.

3.1.3. State-Specific Quantitative Observability Measure Using Weighted Least Squares

The basic idea of the state-specific observability measure introduced in this section is
assessment of the observability via the weighted least squares (WLS) solution for the states
applied to the linearized measurement equation.

If the output in Equation (1) is linearized along the reference states x. (denoted as the
ground truth states; since the observability is independent of the used estimation algorithm
and depends only on the underlying system structure and excitations (see Section 3.1), the
linearization has to be performed around the reference states, but not around the estimated
ones), the measurement sensitivity matrix Hy¢ is obtained as

ih(x, u)| 9

H p—
ref ox -

and the linear measurement equation implies
Zlin = Hyef AXref + 0. (10)

Remark: If an extended Kalman filter is used for the estimation, the measurement sen-
sitivity matrix advantageously results from the filter algorithm as a by-product. However,
instead of linearizing around the estimated states, the linearization has to be performed
around the reference states.

Under the condition that at least as many measurements are available as states, i.e., in
case of m > n, and rank(H,f) = n, Equation (10) is overdetermined and thus solvable. This
means that with known measurements z, Equation (10) can be solved directly to find the
states using a curve-fitting approach. A suitable method for this is a least-square approach.
The measurements need to be weighted by the inverse measurement noise covariance
matrix R, so that a weighted least square (WLS) problem formulation [23] can be used,
leading to

ref

=Pops (11)

XwLs = (I'IzefR_1 Href)_lHT Rlz

with the matrix Py,g € R"*".

Remark: The calculation of P, via a singular value decomposition is computationally
demanding (see [22]) and can be calculated by a QR decomposition in a more efficient
way [12] (p. 391f).

P, is the covariance matrix of the WLS estimator and indicates the impact of the
uncertainty of the measurements z on the states xyys. Exactly this quantification, namely;,
how well the states can be reconstructed from the measurements, corresponds to the
definition of observability. Thus, the diagonal entries of P,q

diag(Pobs) = |: Ugbs,x] Ugbs,xn (12)
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represent a quantitative observability measure. The covariance entries 0% indicate the
7

current observability of the i state. Large variance values imply bad observability, while
small values imply it is good. Compared to classical rank loss-based approaches, the
presented method allows a state-specific quantitative statement about the observability.
Furthermore, the covariance entries Ugbs,xi have the same physical units as the states,
making their physical interpretability possible. Due to the simple WLS formulation, the
method can be executed quickly and computationally efficiently.

3.1.4. Comparison of Observability Measures

This section compares the three observability measures using an illustrative example of
the tire road friction coefficient (TRFC) estimation. For this purpose, the nonlinear two-track
model from Section 4.1.2 is exploited (its exact knowledge is not yet required to understand
the example). Since this section is only aimed at comparing the observability measures,
the reference model corresponds to the filter prediction model. Sinusoidal steering with a
constant vehicle speed is simulated as a maneuver. This implies that the system is excited
solely by the lateral acceleration ag. Therefore, observable and non-observable phases can
be specifically generated for the TREC pimax.

Figure 3 shows a maneuver range without excitation betweent =7 sand t = 17 s, in
which no acceleration, braking, or steering are present. It is obvious that in the area where
the vehicle simply rolls straight ahead, the TRFC is not observable.

No steering input
Excitation 5 T . ! : : : .
m B | + 4 { -
c |= 0
ay [52] -5 I i i i ! ! .
0 5 10 15 20 25 30
TREC 1] | T T T T _ T
)
Hmax [-] = R T I st o | W . -
0 l l I ] : ~ =~ Ref
0 5 10 15 20 25 30
4 { L f I I T
Rank(Oy) 3.5f i i ! ! | | |
3L 1 I 1 { 1 i 4
0 5 10 15 20 25 30
1 0.4 T T T T T
0N | | I . g
log(K(oM)) 0 | % | | |
0 5 10 15 20 25 30
15 [ ; : , , ,
Oobs it max [-] Oél H ' ' . - j\ - ]\ I 7
0 : ' ' ' -
0 5 10 15 20 25 30

t [s]
Figure 3. Comparison of the three observability measures for the simple pimax (TRFC) estimation example.

At the very top of Figure 3, the excitation by the lateral acceleration af is given. The plots
below show the TRFC pimax, its estimation, and the following three observability measures:

The rank of Oy, which returns only a binary yes/no-observability assessment.
The reciprocal numerical condition number of O, (due to large condition numbers,
the logarithm base 10 is taken for reasons of clarity). Small values correspond to poor
observability, whereas large values indicate good observability.

e  The standard deviation of the TRFC 0 1, using the WLS approach. Large values
imply high uncertainty, i.e., poor observability, and small values vice versa. The
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specified uncertainty has the same physical unit as the TRFC, making its direct and
clear interpretation possible.

The jump of pmax to a low friction value can be correctly estimated shortly after its
occurrence at t = 2 s if there is sufficient excitation. From t = 7 s on, there is no excitation
anymore, so the observability is lost. Therefore, the estimated TRFC follows its first order
lag (PT1) behavior given in the system model and tends towards the set value of pmax = 1.

The rank of the observability matrix decreases until ¢+ = 13 s, indicating a loss of
observability with a delay of 6 s. The two quantitative measures indicate observability loss
immediately after its occurrence. According to the WLS approach, the current uncertainty
1S Ogbs jmax = 1.2, which corresponds to the total loss of observability. From t = 17 s on,
there is again sufficient excitation, so that all three measures again show observability, and
the TRFC can be estimated correctly. In the two quantitative measures, it can also be clearly
seen that at each zero crossing of afj:, the observability becomes poor, as in this case, there
is no excitation for a short time.

This example shows the advantages of the two introduced novel observability mea-
sures. While the well-known rank loss-based criterion indicates the loss of observability
with insufficient accuracy, the measures x(O)) and o, » immediately provide a quanti-
fied statement about how good or bad the current observability is. The condition number
«(Oyr) only provides a statement about the whole system. However, in many cases, some
states are observable, while others are not. Since the focus in this paper is directed towards
the TRFC, i.e., the state ymax, the state-specific observability criterion Tobs,x; 18 used below.

3.2. Dominance Measure: Individual Contribution of Measurands to Estimated States

In the structural design of a Kalman filter, an essential question is which measurands
contribute to the estimation of a state and how much. A simple and practical method
to determine this contribution can be realized by considering the equation for the filter
measurement update:

Mk (13)

where d;, € R™*1 s called the innovation. The second summand m;. € R"*! of Equation (13)
indicates an incremental contribution of each measurand to the corresponding state:

kx1 dk,l
my = k?cz : d’:('2 :
kxn dk,m
=K (14)

The row vectors ky, € R>xm | € {1,...,n} of the Kalman gain matrix K; € R"*"™
contain the m gains of the innovation dj for the I state. Through the element-wise
multiplication

Vex, = kx, O df, (15)

the vector ;. ., € R™ is obtained, whose elements are the proportion of the measure-
ments in the estimation of the I'" state. For the investigation of a discrete time inter-

val k € [ko,keng], the absolute values of the measurements can be summed up. For
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better comparability, normalization is performed to quantify the relative shares in the
overall estimation:

Kend Kend T
_ . 1
Vx, = 2 |yk,xl,1| 2 |yk,xl,m| : ﬂ(gk,obs,xl < Uobs,xl) : ym p_-
K= ko K= ko J=15
=p (16)

Analysis of the measurands’ influence makes sense only for time points in which the
state is observable. Due to the indicator function 1() defined as

_ (0,ifx <0,
1) = {1, ifx >0, 17)

only those time points k are considered, in which the observability measure for the /-th
state 0y ops,x, does not exceed a fixed upper bound g y,- This results in a scalar value
for each measurand. The larger the value, the more dominant the sensor is in the overall
estimation. Hereinafter, the method is, therefore, referred to as dominance analysis.

3.3. Novel Holistic Method for Kalman Filter Design

Based on the concepts described in the previous sections, a holistic method is presented
hereinafter to optimally design a Kalman filter with respect to structure and parameterization.

Optimal filter structure: To tackle the fundamental issue of appropriate measurands’
selection, their respective influence on the estimation problem has to be quantified. On the
one hand, the state-individual quantitative observability measure presented in Section 3.1.3
is used to analyze the properties of a measurand with respect to observability. On the other
hand, the dominance analysis according to Section 3.2 allows the individual contribution of
each measurand to the estimation to be evaluated. This enables the identification of sensor
variables with a high or low information content and to accordingly adjust their selection.

Optimal filter parameterization: The DLR’s Multi-Objective Parameter Synthesis
(MOPS) optimization tool [24] is used to determine the optimal filter parameters. MOPS
provides a variety of optimization methods. For the present design method, a pattern
search approach is exploited, being able to deal with constrained nonlinear problems.

The holistic Kalman filter design method is an iterative process combining the concepts
presented above as shown in Figure 4.

Starting from an arbitrary sensor configuration j, j € N, the system and measurement
noise covariance matrices Q; and R;, as well as the UKF parameters (a, B, «) j UKEs are
determined with the help of MOPS. Considering the requirement for an optimal tracking
behavior with the estimation error €, to be minimized, the optimization problem, i.e., the
cost function, can be formulated as

2

o+
k| Xk — X ,

= min
Qj.Rj.(a,B.K)juKF
=Exk

(18)
s.t. inequality constraints

|lex 1| —\/diag(P;) <0, (19)
where ¢;, 1 € {1,...,n}, is a specific weight factor for each state estimation error. The

inequality constraint considers the filter self-diagnostics, according to which the filter
only works correctly if the estimation errors lie within the confidence interval, i.e., if the

standard deviation of the estimation errors is +/diag(P;"). According to the Gaussian
distribution, ~68% of all estimation errors lie within the confidence interval corresponding
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to +,/diag (P,j) Thus, about 30% of the values are not considered, although the filter
would work correctly. For that reason, the constraints appear to be rather restrictive.

Optimal Parameterization Optimal Structure
4 Y4 N
MOP;I(?\P;]]“IXIBZMIOH Discrete estimation algorithm
( ) DLR Kalman-Filter-Library (MATLAB)
Pattern . | EKF [EKF-SR |UKF| UKF-SR|[MHE| - |
Simplex
search -
enetic =+ Bt
QO j SQP algorithm)| %5, P . = Q}* I
’ Particle l xf, P}
Sensor setting j | Ro swarm R; | Observability analysis
z = [Z1 " Zmy]]] LA G P} . | Dominance analysis
J j Ti Measurement k.j
= ime update dat ~t
¥ I~ Xq ] (Predict) update Xy j

(Correct)

INTERFACE

W

j=j+1

J ~max{g J; } fmjzss-

Figure 4. Overview of the Kalman filter design and analysis method.

The filter optimally parameterized with MOPS can then be evaluated for a maneuver
by means of the observability analysis with the criterion ogps j.,,.., presented in Section 3.1.3,
as well as the dominance analysis presented in Section 3.2. This loop can be run through
for a filter configuratio