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Abstract: In Kalman filter design, the filter algorithm and prediction model design are the most
discussed topics in research. Another fundamental but less investigated issue is the careful selection
of measurands and their contribution to the estimation problem. This is often done purely on the
basis of empirical values or by experiments. This paper presents a novel holistic method to design
and assess Kalman filters in an automated way and to perform their analysis based on quantifiable
parameters. The optimal filter parameters are computed with the help of a nonlinear optimization
algorithm. To determine and analyze an optimal filter design, two novel quantitative nonlinear
observability measures are presented along with a method to quantify the dominance contribution of
a measurand to an estimate. As a result, different filter configurations can be specifically investigated
and compared with respect to the selection of measurands and their influence on the estimation.
An unscented Kalman filter algorithm is used to demonstrate the method’s capabilities to design
and analyze the estimation problem parameters. For this purpose, an example of a vehicle state
estimation with a focus on the tire-road friction coefficient is used, which represents a challenging
problem for classical analysis and filter parameterization.

Keywords: Kalman filter; estimator design; nonlinear state estimation; nonlinear observability;
tire-road friction coefficient; vehicle dynamics; vehicle state estimation

1. Introduction

The degree of automation and technical support for humans has increased rapidly in
recent years. The basic requirement for any control system is the existence of measurable
control variables. If they cannot be measured directly due to technical or economic reasons,
state estimators are needed. Thus, state estimation forms the backbone of most modern
control problems and is required for their implementation. One proven method for state
estimation is Kalman filtering. The Kalman filter is an algorithm that provides optimal
estimates for the states of a dynamical system sequentially in time. The disturbances
in the underlying mathematical model of the system and measurement equations are
assumed to be white noise [1]. This established and widely used method has been known
and applied for more than 60 years now. Many different modifications of this method
have been developed. Nevertheless, there is still no simple procedure for an optimal
design or parametrization of a Kalman filter. This task is often executed by experienced
control engineers based on empirical knowledge or by trial and error experiments through
Monte-Carlo simulations, see, e.g., [2].

One of the most fundamental requirements for an estimation problem is its observ-
ability. This means that the estimated states, which are reconstructed, have to be contained
in the measurements and uniquely extracted from them. In order to parametrize a filter,
the covariance matrices need to be determined (when dealing with other filter types such
as, e.g., an unscented Kalman filter, there might be even more parameters). This leads
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to the crucial question for the filter design as to which measurands should actually be
used and how they influence the estimation problem. In many cases, the properties of the
measurands for the estimation problem are only evaluated by simple plausibility checks.
For instance, when estimating the state-of-charge (see e.g., [3]) of a battery, it is evident
that the battery voltage should be used as a measurand. But how would other measurands
affect the observability, and might they be even more dominant? Issues like these are
addressed in this paper in a quantifiable way with the help of the novel design and analysis
method presented below.

1.1. State of the Art

The authors of [4] present an automated method that allows the determination of
proper Kalman filter parameterization. To evaluate the estimation accuracy, a performance
index, which is analytically related to the filter parameterization, is introduced. By minimiz-
ing this index, optimal parameterization can be calculated. In [5], a relationship between
the performance values and filter parameterization is investigated. However, neither an
exact relationship between these values nor a calculation rule is presented. A similar rela-
tionship is presented in [6] using the example of a video tracking system. In [7], a method
is shown where the filter is considered as a control system, thus allowing corresponding
tuning criteria to be derived. In [8], the filter parameters are computed via optimization
based on a genetic algorithm. The authors in [9] use Bayesian optimization for this purpose.
Instead of minimizing a cost function, this approach tries to maximize the probability of
improving the current best solution. In [10], a two-step method is presented in which
particle swarm optimization (PSO) is used to tune both the filter parameterization and
prediction model parameters.

Besides filter parameterization, the filter structure, i.e., the selection of state variables
and measurands, is perhaps an even more important design issue. However, the methods
mentioned so far cannot help to solve this problem. The so-called Programmable Kalman
Filter Design Tool (PKFD) is shown in [11]. This tool provides both an optimal parameteri-
zation (system noise, measurement noise, and initial estimation error covariance matrices)
and an optimal filter structure. Nevertheless, the tool rather serves as a rapid prototyping
environment, allowing different Kalman filter setups to be compared, but not giving a
precise analysis of the properties. Figure 1 shows a classification of the Kalman filter design
methodologies mentioned above.

1.2. Contribution of This Paper

In the approaches mentioned so far, the design focus lies solely on the filter parameter-
ization, but not on its structure. To fill this research gap, both design issues are addressed
and evaluated in detail by the holistic method elaborated in this paper.

Using a novel state-specific nonlinear quantitative observability measure, the cur-
rent “observability accuracy” can be determined at any time in an estimation problem.
Additionally, a new “dominance analysis” method allows the percentage contribution of
each measurand to an individual state to be calculated. Based on this knowledge about
the observability and dominance properties of all possible measurands, different filter
setups can be compared with each other. As a result, the benefit of a measurand can be
evaluated in comparison with the effort required to provide it in reality. Furthermore, the
filter covariance matrices (as well as other possible filter parameters) are determined by a
nonlinear optimization algorithm considering the filter self-diagnosis and resulting in a
minimum estimation error.
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Figure 1. Overview of Kalman filter design methodologies.

In summary, the method enables a holistic filter design and provides quantitative
criteria for an optimal filter configuration, namely:

• Optimal filter parameterization using a nonlinear constrained optimization algorithm.
• Optimal filter structure using a quantitative nonlinear state-specific observability

measure and a dominance analysis to evaluate the influence of the measurands’
properties on the estimation problem.

This novel method is universally applicable. As an example, this paper considers its
application to a vehicle state estimation problem using an unscented Kalman filter (UKF).

2. Fundamentals of State Estimation

A well-proven method for state estimation is Kalman filtering. Here, the system
modeling, as well as the measurements, are described by their statistical characteristics,
and an optimal estimation [1] is performed by an iterative procedure (prediction and
measurement update). This section closely follows [3,12]; the interested reader is referred
to these sources for more detail.

2.1. System Description

For many control system tasks, the plant model to be used in state estimation is
naturally described as a nonlinear continuous-time state-space system:

.
x = f(x, u),
y = h(x),
u(t) ∈ Rs×1, x(t) ∈ Rn×1, y(t) ∈ Rm×1, t ∈ R.

(1)

where t is the time, u(t) is the vector of inputs, x(t) is the vector of states, and y(t) is the
vector of outputs. In a sampled data system (e.g., a microcontroller) the continuous-time
model representation in Equation (1) cannot be used directly. Instead, a time-discrete
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representation is needed, and therefore, the time-discrete transformation of Equation (1)
with additive Gaussian noise is used in the sequel:

xk = fk|k−1(xk−1, uk−1) + wk−1,
yk = h(xk) + vk,

wk ∼ N(0, Qk),
vk ∼ N(0, Rk).

(2)

Here, tk is the k-th sample time instant of a periodically sampled data system with
uk = u(tk), xk = x(tk) and yk = y(tk). The vectors wk and vk represent zero biased Gaus-

sian white noise. The covariance matrices Qk and Rk are defined as E
(

wkwT
j

)
= Qkδk−j

and E
(

vkvT
j

)
= Rkδk−j, where δk−j is the Kronecker delta function; that is, δk−j = 1 if k = j,

and δk−j = 0 if k 6= j. Note that as a simplification, Qk is assumed to be a diagonal matrix,
but in general, it may contain cross-correlation terms between the states (see, e.g., [13]).
The operator E(·) calculates the expected value of a random variable [13]. The notation
wk ∼ N(0, Qk) indicates that wk is a Gaussian random variable with a mean vector of 0
and a covariance matrix of Qk = diag

(
σ2

1..nx

)
, with the standard deviation σ.

2.2. Constrained State Estimation

Similar to an optimization problem, a state estimation problem can be advantageously
simplified by introducing constraints on the possible solution space, e.g., by physical
limits, thus reducing the complexity of the problem. There are several methods dealing
with constraints for state estimators, see [14]. As they are beyond the scope of this paper,
they will not be discussed in any further detail here. A summary of the methods with
their advantages and disadvantages can be found in [12]. In the present paper, two linear
constraints are applied (a lower and an upper bound for the maximum tire-road friction
coefficient (TRFC)), see Section 4.1.3. For this purpose, the method described in [12] (p. 79)
is used. By means of a root-finding problem, the feasible state variables are determined.
For linear constraints, as is the case for this paper, the method provides an optimal solution
to the problem.

2.3. DLR Kalman Filter Estimation Framework

For this research work, we use and extend the DLR Kalman Filter estimation frame-
work [12], which uses prediction models based on continuous-time Modelica models and
automatically generates model-based nonlinear state estimators. The approach is based
on an extended FMI (Functional Mockup Interface) 2.0 co-simulation interface [15] that
interacts with the state estimation algorithms implemented in the DLR Kalman Filter
Library [16]. Starting from a multi-physical Modelica model (continuous-time, usually
nonlinear), a nonlinear prediction model is automatically generated in the form of a sam-
pled data system (cf. Equation (2)). The framework employs an intelligent separation of
the model (encapsulated in a standardized FMI 2.0 for co-simulation [15]) and the esti-
mation algorithm by utilizing modern computer technologies and recent developments
in the Modelica language [17]. They enable automated discretization, integration, and
derivative calculation of an object-oriented equation-based prediction model. The FMI
defines a standardized interface to be used in computer simulations to develop complex
cyber-physical systems. The following estimation algorithms are implemented reliably
and efficiently in the DLR Kalman Filter Library: EKF, EKF SR (EKF square-root), EKF UD
(EKF UD-decomposition), UKF (unscented Kalman filter), and UKF SR (UKF square-root),
see [1,18]. Additionally, there are modified algorithms for parameter estimation as well as
an extension to nonlinear moving horizon estimation (MHE) using a fast nonlinear gradient
descent search, as is presented in [12]. Recently, the library’s features were extended to
meet the requirements of embedded targets. This was part of the ITEA EMPHYSIS project
in which a new embedded FMI (eFMI) standard specification was designed [19].
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3. Design Method for Kalman Filters

The structural filter design is based on the observability and dominance analysis
of measurands. This section starts with the introduction of three different observability
measures for nonlinear systems. In addition to the probably best-known one-rank analysis
of the observability matrix, two new approaches for a quantitative statement about observ-
ability are presented. Next, these three methods are compared by means of an illustrative
example. Moreover, the advantages of the two newly developed observability measures are
discussed. Afterward, a new approach—the so-called dominance analysis—is described to
quantify the contribution of a measurand to the estimation. Finally, the holistic filter design
method is shown, which consists of the observability and dominance analysis embedded
in an optimization framework.

3.1. Nonlinear Observability Measures

The observability problem together with its counterpart, the controllability problem,
are important parts of the systems theory. Especially when designing observers, observ-
ability plays a key role. In this section, three methods for nonlinear observability analysis
are presented. For reasons of clarity, the time dependence is not explicitly indicated by an
argument for the respective variables.

The observability of a dynamic system is a property that is independent of the estima-
tion method, but is solely determined by the

• structure of the problem, i.e., which measurements are available and how they are
linked to the states (measurement equation).

• excitation of the system by the input u, which has to take a minimum value (persistence
of excitation).

3.1.1. Observability via Rank Condition

Probably the best-known method for the observability analysis of nonlinear systems
is the rank investigation of the observability matrix. This matrix is built using the n− 1 Lie
derivatives y,

.
y, . . . y(n−1) [13], whereby y indicates the system output from Equation (1).

Hence, the nonlinear observability matrix is:
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⏟    
≔𝒀
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(3) 

The system is globally observable if a unique inverse function of Equation (3) can be 
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𝓞𝑀 =
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𝜕𝒙
|
𝜻ref
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The system is globally observable if a unique inverse function of Equation (3) can be
found, which occurs, however, possible only in very rare cases in practical applications. In-
stead, Equation (3) can be linearized along the reference trajectories
ζref =

[
x u

.
u · · · u(n−1)

]

OM =
∂q
(

x, u,
.
u, . . . , u(n−1)

)
∂x

∣∣∣∣∣∣
ζref

, (4)

making the observability investigation at certain points possible. A linear system of
equations is obtained:

∆Y = OM · ∆x. (5)
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If OM is invertible, i.e., has full rank n, the states x can be obtained via ∆x = O−1
M · ∆Y.

The nonlinear system in Equation (1) is called weakly observable for a given domain if the
observability matrix for this domain does not have a rank loss, i.e., if it holds

rank(OM) = n. (6)

The criterion of a rank loss provides only a binary statement about the observability
and is numerically highly sensitive. Quantitative information, regarding how good or bad
the observability is, is not given. After the presented classical rank-based observability
analysis, the next two sections introduce two new observability measures allowing a
quantitative statement about the observability.

3.1.2. Quantitative Observability Measure Considering Numerical Condition Number

The crucial question for the observability quantification is how far OM is away from a
rank loss. The geometric interpretation of the numerical condition number κ(·) of a matrix
provides an answer to this question. Namely, the reciprocal condition number indicates the
relative distance (w.r.t. the Euclidean norm) of a non-singular matrix to its nearest singular
matrix [20] (p. 242):

min
{‖∆OM,s‖2
‖OM‖2

: OM + ∆OM,s is sin gular
}

=
1

κ(OM)
. (7)

The “distance to the singularity”, which can be quantified via κ(OM), corresponds
to the “distance to a rank loss” of OM and can, therefore, be interpreted as a quantitative
observability measure.

The relationship between the numerical condition number and the observability prop-
erties can be clearly shown by considering the covariance-error-ellipsoid (a.k.a. confidence
ellipsoid) of Equation (5). In Figure 2, this is shown as an example of a system with
order n = 2.
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The length of the orthogonal half-axes of the covariance ellipsoid corresponds to the
inverse root of the singular values

√
si
−1 of OM [21] (p. 692ff.). The numerical condition

number is the ratio of the largest singular value to the smallest one [22]

κ(OM) =
smax

smin
, (8)
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providing a statement about the shape of the ellipsoid. For n = 2, large values of the
condition number mean a narrow ellipse. This means that existing small uncertainties
of one state lead to large uncertainties of another state, which implies bad observability.
A good condition number of OM, i.e., small values of κ(OM), is equivalent to good
observability.

One main disadvantage of the two methods presented above is the high computational
effort required for the calculation of the Lie derivatives in the observability matrix. This
effort grows with the numbers of states and outputs. Furthermore, the statements about
observability are valid only for the whole system, but not for single states. This means
the two presented measures show a loss of observability, even though only a single state
is unobservable. Often, not all states are of equal interest, wherefore a state-specific
quantitative observability measure is presented hereinafter.

3.1.3. State-Specific Quantitative Observability Measure Using Weighted Least Squares

The basic idea of the state-specific observability measure introduced in this section is
assessment of the observability via the weighted least squares (WLS) solution for the states
applied to the linearized measurement equation.

If the output in Equation (1) is linearized along the reference states xref (denoted as the
ground truth states; since the observability is independent of the used estimation algorithm
and depends only on the underlying system structure and excitations (see Section 3.1), the
linearization has to be performed around the reference states, but not around the estimated
ones), the measurement sensitivity matrix Href is obtained as

Href =
∂

∂x
h(x, u)

∣∣∣∣
xref

, (9)

and the linear measurement equation implies

zlin = Href·∆xref + v. (10)

Remark: If an extended Kalman filter is used for the estimation, the measurement sen-
sitivity matrix advantageously results from the filter algorithm as a by-product. However,
instead of linearizing around the estimated states, the linearization has to be performed
around the reference states.

Under the condition that at least as many measurements are available as states, i.e., in
case of m ≥ n, and rank(Href) = n, Equation (10) is overdetermined and thus solvable. This
means that with known measurements z, Equation (10) can be solved directly to find the
states using a curve-fitting approach. A suitable method for this is a least-square approach.
The measurements need to be weighted by the inverse measurement noise covariance
matrix R, so that a weighted least square (WLS) problem formulation [23] can be used,
leading to
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with the matrix Pobs ∈ Rn×n.
Remark: The calculation of Pobs via a singular value decomposition is computationally

demanding (see [22]) and can be calculated by a QR decomposition in a more efficient
way [12] (p. 39ff).

Pobs is the covariance matrix of the WLS estimator and indicates the impact of the
uncertainty of the measurements z on the states xWLS. Exactly this quantification, namely,
how well the states can be reconstructed from the measurements, corresponds to the
definition of observability. Thus, the diagonal entries of Pobs

diag(Pobs) =
[

σ2
obs,x1

· · · σ2
obs,xn

]
(12)
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represent a quantitative observability measure. The covariance entries σ2
obs,xi

indicate the

current observability of the ith state. Large variance values imply bad observability, while
small values imply it is good. Compared to classical rank loss-based approaches, the
presented method allows a state-specific quantitative statement about the observability.
Furthermore, the covariance entries σ2

obs,xi
have the same physical units as the states,

making their physical interpretability possible. Due to the simple WLS formulation, the
method can be executed quickly and computationally efficiently.

3.1.4. Comparison of Observability Measures

This section compares the three observability measures using an illustrative example of
the tire road friction coefficient (TRFC) estimation. For this purpose, the nonlinear two-track
model from Section 4.1.2 is exploited (its exact knowledge is not yet required to understand
the example). Since this section is only aimed at comparing the observability measures,
the reference model corresponds to the filter prediction model. Sinusoidal steering with a
constant vehicle speed is simulated as a maneuver. This implies that the system is excited
solely by the lateral acceleration aC

y . Therefore, observable and non-observable phases can
be specifically generated for the TRFC µmax.

Figure 3 shows a maneuver range without excitation between t = 7 s and t = 17 s, in
which no acceleration, braking, or steering are present. It is obvious that in the area where
the vehicle simply rolls straight ahead, the TRFC is not observable.
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Figure 3. Comparison of the three observability measures for the simple µmax (TRFC) estimation example.

At the very top of Figure 3, the excitation by the lateral acceleration aC
y is given. The plots

below show the TRFC µmax, its estimation, and the following three observability measures:

• The rank of OM, which returns only a binary yes/no-observability assessment.
• The reciprocal numerical condition number of OM (due to large condition numbers,

the logarithm base 10 is taken for reasons of clarity). Small values correspond to poor
observability, whereas large values indicate good observability.

• The standard deviation of the TRFC σobs,µmax using the WLS approach. Large values
imply high uncertainty, i.e., poor observability, and small values vice versa. The
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specified uncertainty has the same physical unit as the TRFC, making its direct and
clear interpretation possible.

The jump of µmax to a low friction value can be correctly estimated shortly after its
occurrence at t = 2 s if there is sufficient excitation. From t = 7 s on, there is no excitation
anymore, so the observability is lost. Therefore, the estimated TRFC follows its first order
lag (PT1) behavior given in the system model and tends towards the set value of µmax = 1.

The rank of the observability matrix decreases until t = 13 s, indicating a loss of
observability with a delay of 6 s. The two quantitative measures indicate observability loss
immediately after its occurrence. According to the WLS approach, the current uncertainty
is σobs,µmax ≈ 1.2, which corresponds to the total loss of observability. From t = 17 s on,
there is again sufficient excitation, so that all three measures again show observability, and
the TRFC can be estimated correctly. In the two quantitative measures, it can also be clearly
seen that at each zero crossing of aC

y , the observability becomes poor, as in this case, there
is no excitation for a short time.

This example shows the advantages of the two introduced novel observability mea-
sures. While the well-known rank loss-based criterion indicates the loss of observability
with insufficient accuracy, the measures κ(OM) and σobs,x immediately provide a quanti-
fied statement about how good or bad the current observability is. The condition number
κ(OM) only provides a statement about the whole system. However, in many cases, some
states are observable, while others are not. Since the focus in this paper is directed towards
the TRFC, i.e., the state µmax, the state-specific observability criterion σobs,xi is used below.

3.2. Dominance Measure: Individual Contribution of Measurands to Estimated States

In the structural design of a Kalman filter, an essential question is which measurands
contribute to the estimation of a state and how much. A simple and practical method
to determine this contribution can be realized by considering the equation for the filter
measurement update:
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The row vectors 𝒌𝑥𝑙
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where dk ∈ Rm×1 is called the innovation. The second summand mk ∈ Rn×1 of Equation (13)
indicates an incremental contribution of each measurand to the corresponding state:
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The row vectors kxl ∈ R1×m, l ∈ {1, . . . , n} of the Kalman gain matrix Kk ∈ Rn×m

contain the m gains of the innovation dk for the lth state. Through the element-wise
multiplication

γk,xl
= kxl � dT

k , (15)

the vector γk,xl
∈ R1×m is obtained, whose elements are the proportion of the measure-

ments in the estimation of the lth state. For the investigation of a discrete time inter-
val k ∈ [k0, kend], the absolute values of the measurements can be summed up. For
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better comparability, normalization is performed to quantify the relative shares in the
overall estimation:
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determine this contribution can be realized by considering the equation for the filter meas-

urement update: 

𝒙̂𝑘
+ = 𝒙̂𝑘

− + 𝑲𝑘 ∙ (𝒛𝑘 − 𝒉̂𝑘
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≔𝒎𝑘
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where 𝒅𝑘 ∈ ℝ𝑚×1 is called the innovation. The second summand 𝒎𝑘 ∈ ℝ𝑛×1 of Equation 

(13) indicates an incremental contribution of each measurand to the corresponding state: 

𝒎𝑘 = 

[
 
 
 
 𝒌𝑥1

𝒌𝑥2

⋮
𝒌𝑥𝑛 ]
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d𝑘,2

⋮
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The row vectors 𝒌𝑥𝑙
∈ ℝ1×𝑚, 𝑙 ∈ {1,… , 𝑛}  of the Kalman gain matrix 𝑲𝑘 ∈ ℝ𝑛×𝑚 

contain the 𝑚 gains of the innovation 𝒅𝑘 for the 𝑙𝑡ℎ state. Through the element-wise 

multiplication 

𝜸𝑘,𝑥𝑙
= 𝒌𝑥𝑙

⊙ 𝒅𝑘
𝑇, (15) 

the vector  𝜸𝑘,𝑥𝑙
∈ ℝ1×𝑚 is obtained, whose elements are the proportion of the measure-

ments in the estimation of the 𝑙𝑡ℎ state. For the investigation of a discrete time interval 

𝑘 ∈ [𝑘0, 𝑘𝑒𝑛𝑑], the absolute values of the measurements can be summed up. For better com-

parability, normalization is performed to quantify the relative shares in the overall esti-

mation: 

𝜸̅𝑥𝑙
= [ ∑ |𝛾𝑘,𝑥𝑙,1

|

𝑘end

𝑘= 𝑘0

⋯ ∑ |𝛾𝑘,𝑥𝑙,𝑚
|

𝑘end

𝑘= 𝑘0

]

𝑇
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< 𝜎obs,𝑥𝑙

)

⏟                                    
≔𝒑

⋅
1

∑ 𝒑𝒋
𝑚
𝑗=1

. (16) 

Analysis of the measurands’ influence makes sense only for time points in which the 

state is observable. Due to the indicator function 𝟙(∙) defined as 

𝟙( ) =  {
0, if  ≤ 0 ,
1, if   > 0,
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. This results in a scalar value 

for each measurand. The larger the value, the more dominant the sensor is in the overall 

estimation. Hereinafter, the method is, therefore, referred to as dominance analysis. 
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only those time points k are considered, in which the observability measure for the l-th
state σk,obs,xl

does not exceed a fixed upper bound σobs,xl
. This results in a scalar value

for each measurand. The larger the value, the more dominant the sensor is in the overall
estimation. Hereinafter, the method is, therefore, referred to as dominance analysis.

3.3. Novel Holistic Method for Kalman Filter Design

Based on the concepts described in the previous sections, a holistic method is presented
hereinafter to optimally design a Kalman filter with respect to structure and parameterization.

Optimal filter structure: To tackle the fundamental issue of appropriate measurands’
selection, their respective influence on the estimation problem has to be quantified. On the
one hand, the state-individual quantitative observability measure presented in Section 3.1.3
is used to analyze the properties of a measurand with respect to observability. On the other
hand, the dominance analysis according to Section 3.2 allows the individual contribution of
each measurand to the estimation to be evaluated. This enables the identification of sensor
variables with a high or low information content and to accordingly adjust their selection.

Optimal filter parameterization: The DLR’s Multi-Objective Parameter Synthesis
(MOPS) optimization tool [24] is used to determine the optimal filter parameters. MOPS
provides a variety of optimization methods. For the present design method, a pattern
search approach is exploited, being able to deal with constrained nonlinear problems.

The holistic Kalman filter design method is an iterative process combining the concepts
presented above as shown in Figure 4.

Starting from an arbitrary sensor configuration j, j ∈ N, the system and measurement
noise covariance matrices Qj and Rj, as well as the UKF parameters (α, β, κ)j,UKF, are
determined with the help of MOPS. Considering the requirement for an optimal tracking
behavior with the estimation error εx to be minimized, the optimization problem, i.e., the
cost function, can be formulated as
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(18)

s.t. inequality constraints ∣∣εx,k,l
∣∣−√diag

(
P+

k
)
≤ 0, (19)

where cl , l ε {1, . . . , n}, is a specific weight factor for each state estimation error. The
inequality constraint considers the filter self-diagnostics, according to which the filter
only works correctly if the estimation errors lie within the confidence interval, i.e., if the

standard deviation of the estimation errors is ±
√

diag
(
P+

k
)
. According to the Gaussian

distribution, ≈68% of all estimation errors lie within the confidence interval corresponding
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to ±
√

diag
(
P+

k
)
. Thus, about 30% of the values are not considered, although the filter

would work correctly. For that reason, the constraints appear to be rather restrictive.
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Figure 4. Overview of the Kalman filter design and analysis method.

The filter optimally parameterized with MOPS can then be evaluated for a maneuver
by means of the observability analysis with the criterion σobs,µmax presented in Section 3.1.3,
as well as the dominance analysis presented in Section 3.2. This loop can be run through
for a filter configuration j. By comparing different sensor settings, a quantitative statement
of how much a sensor contributes to the observability (observability analysis) and to the
estimation (dominance analysis) can be made. Thus, the effort to provide a measurand, in
reality, can be compared to its benefit for the estimation.

4. Vehicle State Estimator

The presented universally applicable design and analysis method is exemplarily
applied to a vehicle state estimation problem using an unscented Kalman filter (UKF). The
vehicle considered in this paper is the ROboMObil (ROMO)—an innovative robotic electric
vehicle concept developed at the DLR Robotics and Mechatronics Center. The design of
the ROMO is based on the so-called “wheel robot” concept [25] with all wheel by-wire
steering capabilities, where the drivetrain, brakes, steering system, spring, and dampers
are integrated into each of the four wheels. The dissemination of electric vehicles in the
automotive market results in a variety of estimation problems related, e.g., to the battery
state [3] as well as to the vehicle dynamics, see, e.g., [26].

The most important variables for describing driving stability are probably the vehicle
side-slip angle as a measure of the current vehicle stability, and the maximum coefficient of
friction between the tire and the road (TRFC) as a measure of the stability limit. Although
the vehicle side-slip angle can be directly measured by a high-precision IMU (inertial
measurement unit) or an optical road sensor [12], it is only estimated in production vehicles
due to the high costs of such sensors. Methods for estimating the TRFC have been intensely
researched in science and technology for decades [27,28]. The reconstruction of the TRFC
from the measurements is quite complex since a certain excitation threshold has to be
exceeded in order to distinguish between the different coefficients of friction. Knowledge
about the TRFC is of paramount importance for manned driving since the road conditions
are often underestimated even by experienced drivers. At the same time, the TRFC also
plays a key role for autonomous driving functions because computers, unlike human
drivers, have no intuition that, for example, the speed should be reduced on a wet road
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covered with leaves. In addition to the vehicle side-slip angle and the TRFC, the vehicle
velocity over ground and the vehicle yaw rate are also estimated. However, the focus will
lie on the TRFC due to its growing importance and the complexity of its estimation.

4.1. Vehicle Models

In this section, two vehicle models are presented. The first one is a detailed and highly
accurate full vehicle model, which serves as the reference. Since the model is simulated
only once per maneuver to generate the reference data, the high effort required for this
computation is acceptable. The second model is the filter prediction model, which is
permanently simulated during the design and analysis process. Therefore, this model has
to be computationally more efficient than the first one.

4.1.1. High Fidelity Reference Model

The full vehicle model is a detailed, high-precision validated multiphysics Modelica
model, which, as a reference, represents real vehicle behavior in a very accurate manner [29].
In addition to the vehicle model, there is an extensive environmental model in which
parameters such as the road gradient, the ambient temperature, or the coefficient of friction
between tire and road can be defined. Moreover, there is a driver model that allows
individual trajectories to be driven in addition to predefined standard maneuvers. The
chassis is a kinematic multi-body model. Pacejka’s Magic Formula 5.2 [30] is used as the
tire model. The spring and damper characteristics are described by nonlinear characteristic
curves. The overall model has over 100 states and a nonlinear system of equations with a
dimension >500.

4.1.2. Filter Prediction Model

A nonlinear two-track model is used for the prediction model in the filter, see Figure 5.
The quantities marked by (·)C are expressed in the car coordinate system with an origin
in the center of gravity (CoG), while those indicated by (·)Wi are in the ith wheel robot
coordinate system. The vehicle state is described by four states: side-slip angle βC, vehicle

velocity over ground vC, maximum tire-road friction coefficient µmax, and yaw rate
.
ψ

C
.

The equations of motion are thus obtained as:

.
β

C
=

1
vC

(
−aC

x sin
(

βC
)
+ aC

y cos
(

βC
))
−

.
ψ

C
, (20)

.
vC

= aC
x cos

(
βC
)
+ aC

y sin
(

βC
)

, (21)

.
µmax =

1
Tµ

(1− µmax), (22)

..
ψ

C
=

1
Iz

MC
z . (23)

For the tire model representing the main nonlinearity in the vehicle model, a slightly
simplified version of Pacejka’s Magic Formula 5.2 [30] is used. The detailed tire model
can be found in Appendix B. The maximum tire-road friction coefficient TRFC, which
is tire-specific in reality, is described as a whole-vehicle equal parameter in this paper.
The TRFC is a parameter in the tire model, which is often described in the literature
as

.
µmax = 0 (representing a random walk process under the presence of white noise).

Another possibility is to model
.
µmax as a first-order filter (PT1). When the excitation is

insufficient, the friction value would converge to a predetermined value [31], e.g., µmax = 1
(see Equation (22) with Tµ = 1s), which corresponds to a high friction value. This state
description is also called artificial stabilization [32]. An additional benefit of the PT1
formulation is its anti-windup effect in a constrained estimation. As presented in the next
section, the TRFC is constrained in the measurement update to a maximum value of 1. In a
random walk state description, for example, this would cause the integrators to accumulate
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the TRFC even during saturation (wind-up). The system would need some iteration
steps to “unload” again. A detailed presentation of the model equations complementing
Equations (20)–(23) can be found in Appendix A.
Fig5_VehicleDynamicsQusntitiesTwoTrackModel.emf
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Figure 5. Vehicle dynamics quantities of the nonlinear two-track model based on [26].

4.1.3. Constraint of the Tire Road Friction Coefficient

For the estimation problem presented here, it is useful to integrate prior physical
knowledge about the state TRFC µmax into the estimation via the constraints. The currently
utilized frictional force between the tire and the road, i.e., the instantaneous friction value
µact, is calculated via the relationship of the Kamm circle (see Figure 6):

µact =
FC

res

∑4
i=1 FWi

z
=

1
g

√
aC

x
2
+ aC

y
2. (24)

Obviously, the measured longitudinal and lateral vehicle accelerations can be exploited
to approximate the currently utilized friction value. With the assumption that the vehicle is
in a stable state of motion, the friction value at time step k for the dynamic lower bound is
determined to be:

µmax,low,k ≥ µact,k. (25)
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For the maximum possible TRFC, a value of 1 is assumed (depending on the tire type,
however, values for µmax up to 1.2 are also possible on dry surfaces [28]). For the upper
bound, this provides:

µmax,up,k ≤ 1. (26)

The presented constraints primarily concern the Kalman filter measurement update
step. The values of the prediction step are also indirectly limited, see Equation (22). Without
additional limitation of the predictor, this fact would lead to a wind-up effect of the integral
terms when the system is saturated. This has to be avoided in the interest of an optimal
estimation (in this paper, implemented by a PT1 modeling approach, Section 4.1.2).

4.2. Sensors and Measurands

Any information about the vehicle state is provided by the measurands. Consequently,
the selection of the measured variables is a central issue in the filter design. The ROMO is
equipped with sensors to determine the following variables:

• Wheel speed ωWi

• Inertial measurement unit (IMU) fused with GPS for measuring accelerations, veloci-

ties, and angles at the center of gravity aC
x , aC

y ,
.
ψ

C
, vC, βC

• Driving and braking torque at the wheels MWi
D and MWi

B

• Self-aligning torque at the wheels MWi
Z

with the index i ∈ { f l, f r, rl, rr} for the tire position. The ROMO is equipped with
several other sensors that are not relevant for this research work, see [12]. All signals
are provided by the ROMO’s vehicle dynamics control (VDC) [33]. Most of the listed
variables are also used by the ESC (electronic stability control), and are thus, in principle,
also available in a production vehicle. The ROMO’s sensors are analyzed in [12] with
respect to the noise properties, bias, delay, etc. As a result, the sensor measurements can be
represented as signals with realistic properties to synthetically generate the measurement
data by simulating the reference vehicle model.

Virtual Measurands: In addition to the directly available measurements, the so-called
virtual measurands can be used. They are calculated from an advantageous conversion of
directly measurable quantities. One of the benefits of using virtual measurands is the wheel-
related consideration, providing a more precise physical description of the TRFC. Another
advantage is the inclusion of additional measurands in the estimation problem (driving
and braking torques as well as wheel speeds). The concept of using virtual measurands for
vehicle state estimation is based on [32]. For a detailed derivation, reference is, therefore,
made to this. To distinguish the virtual measurands from the real ones, they are marked by
a tilde.

For the calculation of the virtual measurands, the vehicle is considered as a single-track
model (STM). For that reason, the axle-wise mean value of the two steering angles (left

and right) can be used as a simplification δ
Wp
STM =

(
δWi + δWi

)
/2, with p ∈ {front, rear}, as

well as the mean value of the wheel speeds on the left- and right-hand sides of the front

axle ω
W f
STM =

(
ωW f l + ωW f r

)
/2.

Virtual vehicle velocity: The virtual speed ṽC is obtained from the wheel speed ω
W f
STM

and the effective tire radius reff at the front axle:

ṽC = ω
W f
STM · reff. (27)

Virtual longitudinal axle force: A virtual longitudinal axle force can be determined
from the driving and braking torques at the wheels and the tire radius:

F̃
Wp
x =

M
Wp
B + M

Wp
D

reff
. (28)
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Virtual lateral axle force: The lateral acceleration at the center of gravity, the yaw rate,
the virtual longitudinal axle force, and the effective steering angle are used to calculate a
virtual lateral axle force:

F̃
W f
y = 1

cos
(

δ
Wf
STM

) ·
[

aC
y ·lr ·m+

..
ψ

C
·Jz

l − sin
(

δ
W f
STM

)
· F̃W f

x

]
,

F̃Wr
y = 1

cos
(

δWr
STM

) ·
[

aC
y ·l f ·m−

..
ψ

C
·Jz

l − sin
(

δWr
STM

)
· F̃Wr

x

]
.

(29)

Virtual side-slip angle: The calculation of the virtual side-slip angle β̃C is based on
the assumption that the slip angle at the front axle α̃f can be approximated by the associated

cornering stiffness c̃α, f as α̃ f ≈ F̃
W f
y /c̃α, f . The identification of the cornering stiffness c̃α, f is

performed via a parameter optimization for representative driving dynamics maneuvers
with DLR MOPS. With the help of the approximated tire-slip angle α̃ f , the virtual side-
slip angle is obtained using virtual longitudinal and lateral vehicle velocities ṽC

x and ṽC
y ,

respectively, [32]:

β̃C = arctan

(
ṽC

y

ṽC
x

)
. (30)

4.3. Estimator Setups

The first step of estimator design is the selection of a specific filter type. In intensive
investigations, a UKF with a sampling time of 20 ms has proven to be a good compromise
between computational effort and accuracy. A linear Kalman filter is not an option because
of strong nonlinearities. An MHE is also not taken into account due to the enormous
computation time required. An extended Kalman filter (EKF) basically needs less computa-
tional effort than a UKF, but it delivers good results only for small sampling times. At the
same time, a UKF provides satisfactory estimates, i.e., with a lower computational cost,
even for higher sampling times.

The filter parameters, namely, the system noise and measurement noise covariance ma-
trices Q and R, respectively, as well as the factors αUKF, βUKF, γUKF for the approximation
of the probability densities, are determined with the help of the design method presented
in Section 3.3. The entries of the state vector x ∈ R4×1, which have to be estimated, are the
side-slip angle, the vehicle velocity over ground, the maximum tire-road friction coefficient,
and the yaw rate (see Equation (20)–(23)):

x =
[

βC vC µmax
.
ψ

C
]T

. (31)

The inputs u ∈ R11×1 consist of four-wheel steering angles, four-wheel speeds, the
longitudinal and lateral acceleration, and the yaw rate:

u =
[

δWi ωWi aC
x aC

y
.
ψ

C
]T

. (32)

The state µmax is constrained by the method presented in Section 2.2. According to the
available sensor signals presented in the previous section, 12 variables can be measured.
The measured variables y are divided into four setups for further analysis and compared
with each other. The influence of different measurands on the observability of the states is
assessed by the nonlinear quantitative observability measure according to Equation (12).
The contribution of different measurands to the estimation is quantified in the dominance
analysis according to Section 3.2 Table 1 shows the four measurement setups. The green
color indicates that the respective sensor signal is used as a measurement.
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Table 1. Overview of the measurands for each of the estimator setups.

1 
 

 Setup 1 represents the maximum configuration with all 12 available measurands. In
comparison, the real side-slip angle and the real vehicle velocity are no longer available for
setup 2. In setup 3, the tire self-aligning torque (SAT) is additionally removed. In Setup
4, the virtual longitudinal and lateral axle forces are not considered anymore (no driving
and braking torque sensors at wheels available). With the remaining five measurands, this
setup represents the minimum configuration.

4.4. Test Track and Maneuver

The selection of suitable excitations is of paramount importance for the analysis of
an estimation filter. The excitations should contain the broadest possible spectrum of
components that can arise during filter operation. In the present case, which deals with
vehicle state estimation, a suitable test track or driving maneuver has to be chosen. A
maneuver on a lying and crossing eight, a so-called figure-eight maneuver, is used. It
covers many characteristic properties of the vehicle dynamics, and therefore, enables an
optimal filter analysis:

• Entering a curve: Combined lateral and longitudinal excitation (braking and steering).
• Driving along a curve: Isolated and stationary lateral excitation (steering at a constant

vehicle velocity).
• Exiting a curve: Combined lateral and longitudinal excitation (acceleration and steering).
• Straight line segment: Isolated longitudinal excitation with acceleration and braking.

The track is divided into segments with different TRFCs in the range of 0.5 ≤ µmax ≤ 1
(see Figure 7), which roughly correspond to driving on a road with a thin layer of ice and a
dry road with a high coefficient of friction, respectively.
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Figure 7. Overview of the test scenario: Test track and vehicle dynamics quantities generated by the high-fidelity reference
model, see Section 4.1.1.

Further specifications of the track and the test maneuver can be found in Table 2.

Table 2. Overview of the test maneuver specifications.

Value Min Max

TRFC µmax [−] 0.5 1
Vehicle velocity vC [m/s] 2.5 28

Longitudinal acceleration aC
x
[
m/s2] −5.2 2.2

Lateral acceleration aC
y
[
m/s2] −5.3 5.7

Track length s [m] 1100

5. Results

This section presents the results of the four filter setups mentioned above, which are
parameterized and analyzed with the help of the design method according to Section 3.3.
In the beginning, the results of the estimated states by a UKF are shown, i.e., the tracking
performance of the filters (Section 5.1). On the one hand, the fit value is used to assess the
estimation quality, i.e., to evaluate the error between estimates and true trajectories [34].
This gives a percentage fit value (100% perfect fit) and is thus a well-interpretable metric.
On the other hand, the root-mean-square error (RMSE) is used as a physically interpretable
error measure, see Appendix C.

Using the state-specific quantitative observability measure, observability analysis
is performed in Section 5.2 for every state in each of the four setups. To compare the
respective setups with each other, the following evaluation measure is defined:

∆Obs,i,j = 1− ∑k σobs,xi (Setup j)
∑k σobs,xi (Setup 4)

. (33)
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Here, the curves of the observability measure of the ith state σobs,xi are summed up
over all time steps k for every setup j and divided by the corresponding value of reference
configuration 4. This provides a percentage value showing the observability improvement
of setup j compared to setup 4 (minimum configuration). Next, in Section 5.3, dominance
analysis is performed for each setup using the state µmax as an example to investigate the
influence of the respective measurands on the estimation. The results of the dominance
analysis are presented in Section 5.4 and used to rank the measurands according to their
importance for the estimation. Finally, the most significant insights of the design analysis
are summarized in Section 5.5.

5.1. Vehicle State Estimation

The estimation results are presented in Table 3 using the fit value and the RMSE for
the four different filter setups for each of the estimated states.

Table 3. Overview of the estimation error quantities of the four states for each setup.

Criteria Fit [%] RMSE

State ^
β

C ^
v

C ^
µmax

.̂
ψ

C ^
β

C

[
◦
]

^
v

C
[m/s]

^
µmax [−]

.̂
ψ

C
[
◦
]

Setup
1 90.7 97.5 79.6 99.9 0.07 0.09 0.04 0.01
2 89.4 97.5 73.8 99.9 0.08 0.09 0.05 0.01
3 84.1 97.5 59.0 99.9 0.12 0.09 0.08 0.01
4 82.9 97.1 14.9 86.5 0.13 0.09 0.15 1.50

Very good or very bad estimation results are represented by the colors green or red,
respectively. Figure 8 shows the estimated trajectories corresponding to the performance
values listed in Table 3 as well as the reference values.

Setup 1 (maximum configuration) can estimate all four states with a very good accuracy.
Since the side-slip angle and the vehicle velocity are measured directly, the fit values

are over 90%. The TRFC can be reconstructed from the measurements very well resulting
in a fit value of almost 80% or, equivalently, an RMSE of 0.04. The loss of the direct side-slip
angle and vehicle velocity measurements in the second setup has only a minor effect on the
estimation performance. The coefficient of friction loses almost six percentage points in the
fit value compared to setup 1. However, it can be well-reconstructed thanks to the sensors,
which are still available. In the third setup, in which the measurement of the tire self-
aligning torque (SAT) is removed, larger changes in the estimation accuracy are observed.
Nevertheless, the TRFC can be still estimated satisfactorily with a fit value of almost 60%
or, equivalently, an RMSE of 0.08. For the fourth setup (minimum configuration), where
the driving and braking torque information at the wheels is no longer available, the TRFC
cannot be estimated satisfactorily, i.e., with a fit value of less than 15% or an RMSE of
0.15. It is noteworthy that the side-slip angle, the estimation of which is based only on the
virtual measurand β̃C, can still be well-reconstructed with a fit value of more than 80%. The
vehicle velocity can be estimated by all setups identically well (fit value >97%). The yaw
rate is available as a direct measurand and does not have to be reconstructed. Therefore,
this state is not further examined and its time course is not shown in Figure 8. After having
discussed the estimation quality in general, some specific estimation segments are analyzed
in more detail below.

The individual state variables are obviously strongly coupled with each other, so that
the estimation deviations over time are seen not only in a single state. In 1©, the side-slip
angle is heavily underestimated for setup 4, caused by an overestimation of the coefficient
of friction in the same time range 4©. The opposite case can be seen in 2©, where the
side-slip angle for setups 3 and 4 is overestimated because the corresponding coefficients
of friction in 6© are considerably underestimated.
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The observed strong coupling between the deviations in the estimated side-slip angle
β̂C and the coefficient of friction µ̂max is also indicated, without going into further detail,
by high correlation coefficients between the estimation errors of these variables. For that
reason, it can be stated that a good estimate of the coefficient of friction can only be obtained
by a good estimate of the side-slip angle.

In 3© and 5©, the coefficient of friction shows for setup 4 a step-like behavior at the
beginning of isolated longitudinal excitation phases (see velocity plot), converging then to
a value of 1. An isolated braking maneuver 7© demonstrates similar behavior. For setup
4, the excitation is obviously insufficient in these regions to reconstruct the coefficient of
friction from the measurements. The state is no longer observable in this case, which is
also confirmed by the quantitative observability measure in the following section, and
tends towards the preset friction value of 1 due to the modeled first-order dynamics of
µmax (artificial stabilization, see Section 4.1.2).

5.2. Observability Analysis

The comparison of the observability properties of different setups (see Equation (33))
can be found in Table 4. The percentage improvement of the observability related to setup
4, with its minimum sensor equipment, is shown here for all states.

Table 4. Overview of the states’ observability improvement compared to setup 4.

∆Obs(Setup 4, Setup i) [%]

State ^
β

C ^
v

C ^
µmax

.̂
ψ

C

Setup
1 63.1 85.9 96.4 -
2 61.1 72.7 96.4 -
3 41.8 68.6 87.53 -
4 Reference

No analysis is performed for the estimated yaw rate since this state is directly mea-
sured for each setup and is thus fully observable per se. In general, it can be seen from
Table 4 that the more measurands there are available (setup 4 = minimum number of
measurands, setup 1 = maximum number), the better the observability. The trajectories of
the quantitative observability measure σobs,xi

over time are shown in Figure 9.

Side-slip angle β̂C

Although the side-slip angle is directly measured in setup 1, its observability is hardly
any better compared to setup 2 measuring this angle only virtually. Setup 2 leads to a
large increase in observability compared to setup 3. This means that the measurand tire

self-aligning torque (SAT) M
W f
z of setup 2 provides highly relevant information for the

side-slip angle. The fact that the observability of setup 3 is by over 40% better than that of
setup 4 implies that the driving and braking torques at the wheels also represent a good
information source for the side-slip angle estimation.

Generally, it can be noted that setups 1 and 2 have similar and the best observability
accuracies of the vehicle side-slip angle. Setup 3 provides significantly worse observability,
while setup 4 delivers the worst one.

Vehicle velocity v̂C

The observability measure σobs,v (see center of Figure 9) of setup 1 is with a few
exceptions the smallest, which can be anticipated, since the vehicle velocity is directly
measured. Peaks with poor observability are present in each setup. They appear when there
is a sign change in the longitudinal vehicle acceleration (i.e., switching from acceleration to
deceleration and vice versa). In these moments, there is no excitation for a short period
because of the acceleration reversal. This phenomenon makes the observability worsen and
is captured by the quantitative criterion. The fact that, in these moments, setup 2 is better
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than setup 3 implies that the additional measurand SAT contains information also about the
vehicle velocity and additionally supports the estimation of v̂C in such moments. Overall,
the observability is very good for all setups, even for the minimally equipped setup 4,
meaning that not many sensors are required when only the vehicle velocity is estimated.
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Figure 9. Quantitative observability measure of setup 1 to setup 4 (standard deviations of the WLS estimators, see
Equation (11), with low/high values corresponding to good/poor observability).

Tire road friction coefficient µ̂max
The observabilities of setups 1 and 2 are nearly identical. In both cases, the observabil-

ity is improved by over 96% compared to the reference setup. This fact implies that the
measurands’ side-slip angle and vehicle velocity, which can only be found in setup 1, do
not yield in this case any benefits in terms of observability.
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The observability of setup 3 is worse than that of setup 1 or 2 because of missing
measurands required for maneuver segments with lateral excitation (namely, βC, vC, and

M
W f
z ). In contrast, segments with longitudinal excitation—such as, e.g., 9©—demonstrate a

similarly good observability accuracy as setups 1 and 2. This indicates that the sensor sig-
nals driving and braking torques MWi

D and MWi
B , respectively, contain enough information

about the TRFC in this case.
In
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, setups 3 and 4 deliver worse observability than setups 1 and 2. This phe-
nomenon is also reflected in the estimation accuracy shown in 6© (see Figure 8), where
significant underestimation is present in both setups. In maneuver segments with isolated
longitudinal excitation, namely
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(braking), the total loss of
observability for setup 4 is captured by the observability measure when σobs,µmax ≥ 1. In
the corresponding time plots of the estimated TRFC in Figure 8, namely 3©, 5©, and 7©,
µmax converges to its default stabilized value of 1 due to lack of observability.

5.3. Dominance Analysis

The measurands were analyzed with respect to their observability property in the
previous subsection, and their contributions to the estimation are presented now in what
follows (dominance properties). Due to the focus of the paper, the dominance analysis is
limited to the state TRFC µmax. However, the methodology would also allow analysis to be
performed of other states as well. Table 5 shows the contributions of the measurands to the
estimation of the state µmax for different setups.

Table 5. Overview of the measurands’ dominance for the TRFC estimation.

Contribution
¯
γµmax

yi→µmax [%]

Measurand ~
β

C ~
v

C
F̃y

Wf F̃y
Wr F̃x

Wf F̃x
Wr M

Wf
z aC

x aC
y

.
ψ

C
βC vC

Setup
1 ≈0 0.2 0.3 1.7 34.7 22.6 31.4 2.1 1.5 0.8 0.5 4.2
2 ≈0 2.8 8.9 ≈0 32.5 25.0 29.8 ≈0 0.8 0.2 - -
3 3.7 2.0 16.0 0.9 16.5 29.1 - 17.5 13.5 0.8 - -
4 45.3 2.8 - - - - - 6.3 37.8 7.8 - -

Although a total of 12 measurands are available in setup 1, only three measurands—

namely, F̃x
W f and F̃x

Wr (i.e., driving and braking torque MWi
D and MWi

B , respectively) and

the SAT M
W f
z are used by the filter to reconstruct µmax and account for almost 90% of the

dominance. The measurements of the side-slip angle βC and the vehicle velocity vC appear,
at first glance, to be very valuable, with a negligible contribution of less than 5% in total.
The dominance of the three measurands mentioned above does not change for setup 2. The

removal of βC and vC seems to be compensated by the virtual axle lateral force F̃y
W f .

In setup 3, where one of the dominant measurands, the SAT M
W f
z (30% of the total

dominance), is no longer available, the contribution of the remaining sensors changes. One

part of the estimation contribution of M
W f
z seems to be compensated by the virtual axle

lateral forces, and another part by the measurement of the vehicle lateral acceleration aC
y .

At the same time, part of the contribution of the virtual axle forces F̃x
Wj is taken over by the

longitudinal acceleration aC
x . However, the measurands F̃x

Wj still remain dominant. The
virtual side-slip angle makes a small contribution to the TRFC estimate for the first time in
setup 3.

In setup 4, all previously dominant measurands are no longer available. The virtual
side-slip angle β̃C and the vehicle lateral acceleration aC

y take over the dominance of the
sensors with a total contribution of more than 80%. The virtual vehicle velocity ṽC as well
as the longitudinal acceleration aC

x account for less than 10% of the overall dominance. As
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shown in the previous section, the problem is not observable for large parts of longitudinal
maneuvers in setup 4. For that reason, it is completely plausible that no information can be
extracted from the corresponding measurands.

For all setups, it seems that the yaw rate
.
ψ

C
is involved in the estimation of the TRFC

with a relatively small contribution. However, it should be noted that
.
ψ

C
is used to calculate

the virtual lateral axle forces F̃y
Wj as well as the virtual side-slip angle β̃C resulting in its

additional indirect contribution through these variables.

5.4. Measurands Ranking

Based on the dominance analysis of the four different setups performed in the previous
section (see Table 5), the influence and thus the “value” of each measurand for estimating
the TRFC can be assessed. In Table 6, a ranking of the measurands is given.

Table 6. Measurands’ ranking based on their importance for the TRFC estimation.

Rank Measurement Equation No.

1 F̃x
W f , F̃x

Wr (i.e., MWi
D , MWi

B ) (28)

2 M
W f
z (A21)

3 aC
x , aC

y , F̃y
W f , F̃y

Wr (A4), (29)

4 vC,
.
ψ

C (21), (23)
5 βC (20)
6 ṽC, β̃C (27), (30)

The measurands with the biggest contribution to the TRFC estimation are the virtual
longitudinal axle forces calculated from the wheel driving and braking torques. They
are followed by the tire self-aligning torque (SAT). The sensor signals from the IMU, i.e.,
accelerations and velocities, are ranked next. The virtual side-slip angle and virtual vehi-
cle velocity share last place in the ranking. Due to their purely approximate calculation
(ṽC with uncertainty in the tire radius, see Equation (27), β̃C with uncertainty in the corner-
ing stiffness approximation, see Equation (30)), they are used more as additional sources.
The information from directly available sensor signals, i.e., real ones, should be preferred.
When looking at the table sequence, it is noticeable that information about the coefficient
of friction is extracted from (listed in descending order)

• forces or moments
• accelerations (including virtual lateral axle forces since they are calculated from

these measurands)
• velocity or rotational speeds
• virtual measurands ṽC, β̃C.

Since the tire forces and moments represent the most precise physical descriptor of the
TRFC in terms of causality, they contain the most information about this state. For other
descriptors, (inaccurate) conversion is necessary. It could be a purely analytical relationship
(e.g., a = F/m) or an integration (e.g., v =

∫
a).

5.5. Summary of the Design Analysis

The side-slip angle could be estimated quite well with a total fit value of over 80%
with all setups, even with those that only have virtual measurands and IMU information.
The vehicle velocity could be reconstructed very well by all setups with a fit value of 97%.
Therefore, it can be stated that no additional complex sensor technology is required to
estimate this state. The coefficient of friction between the tire and the road is the state that
is most difficult to reconstruct. The removal of sensors, starting from setup 1, shows large,
direct effects on the estimation accuracy and observability properties.
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The wheel driving or braking torques MWi
D and MWi

B , respectively—and the tire self-

aligning torque M
W f
z have proven to be the most valuable measurands for estimating the

TRFC. All of them lead to very good observability and represent dominant measurands for
reconstructing the coefficient of friction. The torques MWi

D and MWi
B seem to be important

for information extraction from longitudinal excitations, and the SAT M
W f
z for lateral

excitations. In this case, measurements of the side-slip angle and vehicle velocity do not
provide any significant advantage. Therefore, the considerable effort required to provide
these measurands can be saved in the case of production vehicles.

A setup that only uses the basic information from the IMU (setup 4) provides unsatis-
factory results for TRFC estimation (approx. 15% fit value). For maneuvers with higher
excitation, better estimation results are possible since the problem is then more observable.
The estimation errors of the side-slip angle and TRFC are correlated, so that a good estimate
of the TRFC is only possible if there is a good estimate of the side-slip angle.

6. Conclusions

In this paper, a novel and universal design and analysis method for nonlinear Kalman
filters was presented. The method allows a systematic investigation of the measurands’
influence on the estimation problem in terms of

• Observability properties: Two novel quantitative nonlinear observability measures
were presented.

# Evaluation of the overall system via the numerical condition number of the
observability matrix.

# A state-specific and physically interpretable observability measure via a weighted
least-squares approach.

• Dominance properties: A new method quantifying the contribution and information
content of a measurand for the state reconstruction.

To determine an optimal filter parameterization, the method uses an optimization
algorithm. As an example, the method was applied to a vehicle state estimation problem
focusing on the coefficient of friction between the tire and the road. For this purpose,
an unscented Kalman filter with constraints was used. A nonlinear two-track model
served as the prediction model, while a high-accuracy Modelica multi-body model was
used as the reference model. The TRFC, whose estimation was the most challenging
one among all states, could be reconstructed with a fit value lying between 15% and
80%. Using the design method, four filter setups with different available sensors (from
a maximum to a minimum number of them) were analyzed and compared. Here, it was
shown that for the structural design of an estimation filter, it is worth doing preliminary
investigations about the influence of the measurands. For this estimation problem, it
could be identified, for example, that the measurements of the side-slip angle and vehicle
velocity over ground, which are costly to provide in a production vehicle, have a negligible
influence on the investigated estimation properties for certain setups. Both sensors possess
a total contribution to the estimation (dominance) of less than 5%. Thus, a sensor for
measuring these signals is not necessary.

We plan to perform the analysis with additional sensors in the future, especially
with new types of sensors such as camera, radar, and lidar. The vehicle state estimation
problem should be implemented with the most promising setups in real driving tests, both
prototypically and on an ECU (embedded system).
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Lists of Symbols, Nomenclature and Abbreviations
Formula symbols Unit Description
βC [rad] Vehicle’s side slip angle
vC [m/s] Vehicle’s velocity over ground
.
ψ

C
[rad/s] Vehicle’s yaw rate

MWi
z [N] Tire self-aligning torque

ωWi [rad/s] Wheel speed
δWi [rad] Wheel steering angle
µmax [−] Coefficient of friction between tire and road
Abbreviations Explanation
DLR German Aerospace Center
EKF/UKF Extended/Unscented Kalman filter
FMU/FMI Functional mockup unit/interface
IMU Inertial measurement unit
MHE Moving horizon estimation/estimator
MOPS Multi-objective parameter synthesis (DLR optimization tool)
ROMO short for ROboMObil—DLR’s robotic electric vehicle
SAT Tire self-aligning torque
STM Single track model
TRFC Tire road friction coefficient
WLS Weighted least squares
Nomenclatures Explanation
(·)Wi Quantity expressed in the i-th wheel robot coordinate system
(·)C Quantity expressed in the car coordinate system with origin in CoG
(̃·) Virtual measurand
(̂·) Estimated state

Appendix A. Two-Track Model

For the equations of the two-track model given below, reference is also made to
Figure 5. The air resistance forces are given by:

FC
Air,x =

1
2

cw ρ AxvC2 cos
(

βC
)

, FC
Air,y =

1
2

cw ρ AxvC2 sin
(

βC
)

. (A1)

The longitudinal and lateral forces at the center of gravity are determined by:

FC
x = −F

W f l
y sin

(
δW f l

)
− F

W f r
y sin

(
δW f r

)
− FWrl

y sin
(
δWrl

)
− FWrr

y sin
(
δWrr

)
+F

W f l
x cos

(
δW f l

)
+ F

W f r
x cos

(
δW f r

)
+ FWrl

x cos
(
δWrl

)
+FWrr

x cos
(
δWrr

)
− FC

Air,x

(A2)

FC
y = F

W f l
y cos

(
δW f l

)
+ F

W f r
y cos

(
δW f r

)
+ FWrl

y cos
(
δWrl

)
+ FWrr

y cos
(
δWrr

)
+F

W f l
x sin

(
δW f l

)
+ F

W f r
x sin

(
δW f r

)
+ FWrl

x sin
(
δWrl

)
+ FWrr

x sin
(
δWrr

)
−FC

Air,y.

(A3)

The accelerations at the vehicle center of gravity are calculated as follows:

aC
x =

FC
x

m
, aC

y =
FC

y

m
. (A4)
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The quasi-stationary wheel loads are geometrically calculated from the lateral and longitu-
dinal acceleration at the vehicle center of gravity:

F
W f l
z = m

(
lr
l g− hc

l aC
x

)(
1
2 −

hc
b f g aC

y

)
, F

W f r
z = m

(
lr
l g− hc

l aC
x

)(
1
2 + hc

b f g aC
y

)
,

FWrl
z = m

( l f
l g + hc

l aC
x

)(
1
2 −

hc
br g aC

y

)
, FWrr

z = m
( l f

l g + hc
l aC

x

)(
1
2 + hc

br g aC
y

)
.

(A5)

Appendix B. Tire Model

For the tire model, a slightly simplified version of Pacejka’s Magic Formula 5.2 [30]
is used. As a simplification, among others, the wheel camber is neglected (γWi = 0),
all lambda scaling values are chosen to be λ = 1 (except for the coefficient of friction
dependent factors λµx = λµy = µmax), and the transient tire behavior is neglected. The tire
position is described by the index i ∈ { f l, f r, rl, rr}.

The wheel load-dependent tire radius is:

RWi = RWi
0 − ρi,0

(
Drollatan

(
Broll

ρi
ρi,0

)
+ Froll

ρi
ρi,0

)
. (A6)

The longitudinal tire slip:

sWi
x = −vWi

x −ωWi RWi∣∣∣vWi
x

∣∣∣ . (A7)

The wheel load increment:

∆FWi
z =

FWi
z − FWi

z0

FWi
z0

. (A8)

The lateral tire slip:

s
W f l
y = tan

(
αW f l

)
+ S

W f l
Hy , s

W f r
y = − tan

(
αW f r

)
+ S

W f r
Hy ,

sWrl
y = tan

(
αWrl

)
+ SWrl

Hy , sWrr
y = − tan

(
αWrr

)
+ SWrr

Hy .
(A9)

Pure longitudinal tire forces

FWi
x0 = DWi

x sin
(

Cxatan
(

BWi
x sWi

x − EWi
x

(
BWi

x sWi
x − atan

(
BWi

x sWi
x

))))
+ SWi

Vx, (A10)

EWi
x =

(
pEx1 + pEx2∆FWi

z + pEx3∆FWi
2

z

)(
1− pEx4sgn

(
sWi

x

))
, (A11)

DWi
x =

(
pDx1 + pDx2∆FWi

z

)
µmax, KWi

x = FWi
z

(
pKx1 + pKx2∆FWi

z

)
e(pKx3∆F

Wi
z ), (A12)

BWi
x =

KWi
x

CxDWi
x

, Cx = pCx1, SWi
Vx = FWi

z

(
pVx1 + pVx2∆FWi

z

)
µmax. (A13)

Pure lateral tire forces

FWi
y0 = DWi

y sin
(

Cyatan
(

BWi
y sWi

y − EWi
y

(
BWi

y sWi
y − atan

(
BWi

y sWi
y

))))
+ SWi

Vy, (A14)

DWi
y =

(
pDy1 + pDy2∆FWi

z

)
µmax, (A15)

EWi
y =

(
pEy1 + pEy2∆FWi

z

)(
1− pEy3sgn

(
sWi

y

))
, (A16)
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KWi
y = pKy1Fz0 sin

(
2atan

(
FWi

z
pKy2Fz0

))
, (A17)

BWi
y =

KWi
y

CyDWi
y

, Cy = pCy1, (A18)

SHy = pHy1 + pHy2 ∆FWi
z , SVy = FWi

z

(
pVy1 + pVy2∆FWi

z

)
µmax (A19)

Combined tire forces: Furthermore, the influence of a combined slip is taken into account
for the longitudinal and lateral forces by multiplying the tire forces for a pure slip from
Equation (A10) and Equation (A14) with a weighting function dependent on the total
slip [30]:

FWi
x = FWi

x0 · G
Wi
x,sy , FWi

y = FWi
y0 · G

Wi
y,sx . (A20)

Tire self-aligning torque
MWi

z0 = −tWi FWi
yo + MWi

zr . (A21)

The pneumatic trail:

tWi = DWi
t cos

(
CWi

t atan
(

BWi
t α

Wi
t − EWi

t

(
BWi

t α
Wi
t − atan

(
BWi

t α
Wi
t

))))
cos
(

αWi
)

, (A22)

α
Wi
t = αWi + SWi

Ht. (A23)

The residual torque:

MWi
zr = DWi

r cos
(

atan
(

BWi
r α

Wi
r

))
cos
(

αWi
)

, α
Wi
r = αWi + SWi

H f , (A24)

SWi
H f = SWi

Hy +
SWi

Vy

KWi
y

, BWi
t =

(
qBz1 + qBz2∆FWi

z + qBz3∆FWi
2

z

)
µmax

(A25)

CWi
t = qCz1, DWi

t = FWi
z

(
qDz1 + qDz2 ∆FWi

z

)Rw0

Fz0
, (A26)

EWi
t = qEz1 + qEz2 ∆FWi

z + qEz3 ∆FWi
2

z , SWi
Ht = qHz1 + qHz2 ∆FWi

z , (A27)

BWi
r =

qBz9

µmax
+ qBz10 BWi

y Cy, DWi
r = FWi

z

(
qDz6 + qDz7 ∆FWi

z

)
. (A28)

Appendix C. Error Measures

The root-mean-square error (RMSE) between a reference vector xref, i and a vector x̂i
with n sample points is defined as:

RMSE =

√
1
n

n

∑
i=1

(x̂i − xref, i)
2. (A29)

The percentage fit value is calculated as:

Fit [%] =

1−

√
∑n

i=1(x̂i − xref, i)
2√

∑n
i=1

(
xref,i − 1

n ∑n
i=1 xref,i

)2

 · 100. (A30)
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