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Abstract: This paper presents a new configuration of a slotted waveguide antenna (SWA) array
aimed at the X-band within the desired band of 9.38~9.44 GHz for shipboard marine radars. The
SWA array, which typically consists of a slotted waveguide, a polarizing filter, and a metal reflector,
is widely employed in marine radar applications. Nonetheless, conventional slot array designs
are weighty, mechanically complex, and geometrically large to obtain high performances, such as
gain. These features of the conventional SWA are undesirable for the shipboard marine radar, where
the antenna rotates at high angular speed for the beam scanning mechanism. The proposed SWA
array herein reduces the conventional design’s size by 62% using a tapered dielectric-inset guide
structure. It shows high gain performance (up to 30 dB) and obtains improvements in radiation
efficiency (up to 80% in the numerical simulations) and weight due to the use of loss and low-density
dielectric material.

Keywords: beam scanning; dielectric-inset guide; high gain; low weight; marine radar; radiation
efficiency; slotted waveguide array; X-band; size reduction; tapering

1. Introduction

Marine radars have been proven useful in commercial and military settings to provide
information about other seacrafts and land targets [1] for diverse applications, such as
coastal surveillance and surface target detection, collision avoidance, weather, and bird
migration monitoring [2–5]. In this regard, X-band marine radars have become more
attractive as they offer a high spatial and temporal resolution, low cost, flexibility, and
installation ease [6]. The marine environment imposes severe constraints on antennas’
performance and mechanical design. Thus, the marine radar antenna needs to obtain
fan-beam radiation patterns to operate successfully under these harsh conditions.

Several microstrip array antennas have been extensively employed in radar and other
wireless communications systems [7–17]. Although they have promising features, such as
low profile, low cost, and fabrication ease, their low-power handling capacity and high
losses often make them less suitable for marine radar [18–20]. Consequently, the slotted
waveguide array (SWA) antennas [21–25], based on the pioneering work published by
Elliot [26–28], are widely employed in marine radar applications. This is because of their
high-power handling capacity, low losses, and good phase stability. The conventional
designs of SWA arrays typically consist of a slotted waveguide structure, a polarizing filter,
and a large metal reflector to enhance directivity, especially in the vertical plane. By using
this reflector device, especially in the lower frequency bands, the conventional SWA arrays
become weighty, geometrically large, and mechanically complex [29]. They are, therefore,
undesirable for marine radar systems of which the antenna rotates at high-angular speed.
A miniaturization technique is thus required to make the traditional SWA more suitable
for the marine environment without resorting to gain degradation. Nonetheless, reducing
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the reflector size as a simple miniaturization process results in considerable antenna
gain reduction.

In this paper, a 62% size reduction of the SWA array was obtained by incorporating a
tapered dielectric-inset guide structure in the conventional slot array design. At the same
time, directivity in the vertical plane was improved significantly without the inclusion of
the reflector device. The function of the dielectric structure with the staircase model is to
smoothly transform the incident and strongly bound surface waves from the waveguide
into free space characterized by minimum reflection and phase disparity. Thus, the results
indicated that the proposed SWA array produces antenna gain up to 30 dB comparable
to the conventional SWA designs. This new configuration of the SWA array was com-
pared with its conventional counterpart to prove the practicality of the approach used in
this paper.

2. Antenna Configuration

Figure 1 compares the geometry of the conventional SWA array, set as a benchmark
here, to that of the proposed antenna based on the design specifications in Table 1. In
both cases, the antenna consists of a slotted waveguide arrayed with ninety-four slot
radiators to produce a fan-beam radiation pattern at the center frequency f = 9.41 GHz.
The fan-beam, due to the long waveguide axial length (L) along the y-axis, has a narrow
beamwidth of 1.2◦ in the horizontal (x) plane and a broader beamwidth of 20◦ in the
vertical (x) plane to compensate for the roll of the ship [30]. The design, performances,
and analysis of the antennas presented in this article have been performed using CST
Microwave Studio software.
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Figure 1. Full 3D views of slotted waveguide array antenna. (a) Conventional case; (b) Proposed case.

Table 1. Antenna design specifications for X-band marine radar.

Parameters Value Parameters Value

Frequency 9.4 GHz ± 30 MHz Polarization Horizontal

Gain ≥28 dB Beamwidth Horizontal: 1.2◦ or less
Vertical: 20◦ or higher

Voltage standing
wave ratio (VSWR) ≤1.5 Sidelobelevel (SLL) Horizontal: −10 dB or less

Vertical: −10 dB or higher
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2.1. Slotted Waveguide Design

The slotted waveguide structure shown in Figure 2 consists of a WR-90 standard
waveguide (a = 22.86 mm, b = 10.16 mm) with aluminum material and a wall thickness,
t = 1.27 mm. An array of tilted slots is milled into the narrow wall of a rectangular
waveguide in order to generate the desired horizontally polarized electric fields [30],
as specified in Table 1. The slots introduce discontinuities in the waveguide’s conduct-
ing walls to interrupt the flow of electric currents along the waveguide axial. Hence,
each slot acts as a dual electric dipole, according to Babinet’s principle, to elicit radia-
tions from the traveling waves propagating in the fundamental TE10 (transverse electric)
mode in the waveguide [31]. The cutoff frequency for the TE10 mode is computed as
fc = c/(2a) = 6.56 GHz (c is the speed of light in a vacuum). The guided wavelength in

this case is λg = λ0/
√

1 − ( fc/ f )2 = 44.43 mm (λ0 is the free space wavelength).
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The tilted slots wrap around the edges of the narrow wall and into the broad wall (see
Figure 2). Thus, each slot has the slot tilt angle θ and slot depth δ parameters. By adjusting
θ, the excitation strength from each slot can be controlled independently. The excitation is
small for a large θ and zeroes for θ = 0◦ which may be used in a non-uniformly excited
array design with different θ values, as depicted in Figure 2, to decrease the sidelobe levels
(SLLs). To reduce the number of design parameters, all slots have the same width w = 3 mm.
The slot length for each slot in this case is Lr = (b + t)/ cos θ + 2(δ − t/2) = 0.4625λg .
The set of values for δ is centered around 1.73 mm at resonance after optimization.

In the design of a non-uniformly SWA array in Figure 2, each slot’s dimensions are
computed and optimized independently to attain the desired amplitude coefficient an at
resonance. Once an for each slot is set, the array factor (AF) based on Taylor distribution is
estimated using (1) and (2) [32].

(AF)2M =
M

∑
n=1

an cos[(2n − 1)u] (1)

u = πd/λ cos θ (2)

M is an integer, n is the number of slots, and d is the slot spacing (see Figure 2). In
this case, µ = 0.5π/ cos θ is used for the chosen slot spacing d = 0.5λg

(
i.e., λ = λg

)
. The
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AF is thus dependent on amplitude coefficient an and the slot tilt angle θ of each slot to
achieve the desired distribution to result in the radiation pattern computed as follows:

Etotal = Esingle · (AF) (3)

Since the slotted waveguide structure in Figure 2 is fed at the excitation port and
terminated in a matched load (absorber) to achieve a traveling wave antenna, its equivalent
circuit becomes a parallel conductance G at resonance, whereas the reactive susceptance B
cancels out. Hence, the resonant conductance gn of N slot is computed from the amplitude
coefficient an using (4), while the slot tilt angle θn is related to conductance gn by (5). Once
the initial θ values are set, the slot tilt angle is further optimized to obtain the final range of
values from−10◦ to 15◦.

gn =
a2

n

∑N
i=1 a2

i
; n = 1, 2, . . . , N (4)

θn = −900.7g2
n + 237.6gn + 2 (5)

The main beam, which is perpendicular to the waveguide axis, lies in the forward
direction along the x-axis (see Figure 1) because of the slot spacing d = 0.5λg and opposite
tilt angles among adjacent slots. Thus, the co-polarization due to the desired horizontally
polarized electric fields EH (see Figure 2) is superimposed in the phase, whereas the verti-
cally polarized electric fields EV , which contribute to undesired cross-polarization, among
the adjacent slots, cancel out because they assume an equal amplitude but opposite direc-
tion. This phenomenon, in theory, inherently reduces the sidelobe levels of a waveguide
slot array due to the low levels of cross-polarized signals.

2.2. Polarization Filter

The instantaneous electric fields E from the inclined slots decompose into the hori-
zontal EH and vertical EV fields, as depicted in Figure 2. As mentioned earlier, the vertical
electric fields EV among the adjacent slots cancel out as the adjacent slots have equal and
opposite tilt angles. However, in practice, the slot tilt angle θ among the adjacent slots
varies for optimization and amplitude distribution purposes. In addition, due to fabrication
errors, θ may differ from the numerical value in the simulation. Hence, the EV among
the adjacent slots do not cancel out entirely due to the varying phases and magnitudes.
Therefore, high sidelobes are observed in the horizontal (xy) plane due to the measurable
levels of unwanted cross-polarized signals (see Figure 3a).
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In order to significantly reduce the sidelobes, a polarization filter is positioned in
front of the slotted waveguide, as shown in Figure 2. The filter constitutes equispaced
orthogonal walls with a spacing parameter ψ ≤ 0.5λg to ensure adequate suppression
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of cross-polarized signals. The filter is positioned ρ distance away from the waveguide
wall (see Figure 2). In principle, the effectiveness of the filter is inversely proportional to
wall spacing ψ and proportional to the distance ρ between the filter and the waveguide
wall. However, the attenuation of the EV denoted by γ is determined primarily from the
wall spacing ψ as expressed in (6) [33]. Referring to Figure 2, the filter’s orthogonal walls
are positioned in such a way that they stand in between the adjacent slots to limit the
efficient propagation of undesired EV to guarantee the sidelobes’ suppression, as observed
in Figure 3a.

γ =
5.46
2 · ψ

·

√
1 −

(
2 · ψ

λ

)2

[dB/m] (6)

It should be noted that both the ψ and ρ parameters have an influence on the radi-
ating slot and the radiation. Therefore, they are optimized and fixed as ψ = 6 mm and
ρ = 20 mm.

2.3. Reflector

Referring to Figure 1, the conventional slot array design has a reflector device with
a flare-out angle to increase the antenna’s aperture to increase the gain from 24 dB to
30 dB, as shown in Figure 3b, to satisfy the requirement in Table 1. Thus, the conven-
tional SWA array has a dimension of 1920 mm × 165 mm × 84.3 mm (L × W × H).
However, the SWA arrays with the reflector device are large in the antenna’s cross-
section (i.e., yz-plane), mechanically complex, and weighty to rotate at a very high an-
gular speed. The proposed antenna in Figure 1b is the result of the effort to design
a reduced size SWA array by using a dielectric-inset structure, over which the bound
surface waves are excited. Thus, its vertical size is about half that of the conventional
case (see Figure 1a), giving the same vertical (xz) plane beamwidth, and shows im-
provement in weight and mechanical simplicity. After the full analysis of the SWA
arrays in Figure 1 was performed, the following are the optimized design parameters:
a = 22.86, b = 10.16 mm for WR − 90, L = 1920 mm, t = 1.27 mm, θ = −10◦ ∼ 15◦,
δ = 1.73 mm, w = 3 mm, ψ = 6 mm, and ρ = 20 mm.

3. Design and Analysis of the Proposed Slotted Waveguide Array Antenna
3.1. Evolution of the Proposed Case

To facilitate the development of the proposed antenna while still providing a physical
understanding of its geometrical structure, the three-dimensional SWA arrays in Figure 1 are
mirrored in their two-dimensional analogues in the xz-plane, as shown in Figure 4. Thus, the
evolution of the proposed case is demonstrated in Figure 4. The conventional antenna, Type
A, with a wide flare-angle reflector gives an ideal gain of more than 30 dB in Figure 5 at the
expense of large antenna size. The simplest approach to reduce the antenna’s physical size is
by reducing the reflector size. Unfortunately, this approach results in a significant decrease
in antenna gain.

The solution to this problem was accomplished by incorporating a tapered dielectric-
inset guide structure in the SWA array to produce antenna Type B in Figure 4. This approach
immediately reduces the height of the conventional antenna by about 50%. However, in
the Type B antenna configuration, an optimum taper profile can only be achieved when the
length parameter Sx in the forward direction is very long, up to 2.5λ, which undermines
the antenna’s compactness. The relationship between Sx and the gain of the antenna can
be expressed mathematically in (7) [34].

Gain = 8Sx/λ (7)
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Thus, the incident, strongly bound surface wave field from the slotted waveguide,
which is butted to the base of the dielectric structure, is transformed smoothly into a
radiation field that is characterized by maximum antenna gain (see Figure 5, Type B) with
an in-phase field.
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By truncating the long tapered section of the dielectric structure to produce antenna
Type C (see Figure 4), the width of the antenna is reduced to 108 mm. Thus, a 29% size
reduction is achieved in the forward direction as Sx decreases to about 1.7λ. However, the
gain of antenna Type C drops considerably to 26 dB in Figure 5a, since the phase disparity
of the incident surface wave on the uniform cross-section of the truncated dielectric
structure increases significantly. This causes the destructive interference of the surface
wave field, transforming into a radiation field at the termination to result in a beam split
(see Figure 5b, Type C).

To solve the beam splitting problem of antenna Type C without resorting to an
increase in the antenna’s size, the dielectric-inset guide structure was modified by tapering
the termination with a staircase approximation to form the end-gradient in antenna
Type D. The staircase model of the tapered dielectric is synthesized as a series of short
slab segments, wherein the uniform cross-sectional areas in the forward direction are
diminished progressively, as shown in Figure 4. Thus, the width and height parameters
of each dielectric slab segment of the staircase model of the taper profile were optimized
individually to allow for the redistribution of propagating signals in the dielectric medium
so that at the dielectric–air interface, all the signals exiting the medium assume the same
approximated phase velocity to maximize radiation efficiency. In effect, a conformal beam
pattern is restored for the proposed SWA array Type D as the gain improves to about 29 dB
in Figure 5. By incorporating the dielectric-inset guide structure into the SWA design, the
proposed antenna, Type D, achieves a 62% size reduction while maintaining the antenna’s
high gain result, which is comparable to the conventional case-Type A.

It should be noted that the long axial length (L) of the antenna is preserved in all the
designs to ensure that the beam has a narrow width in the horizontal plane to satisfy the
required half power beamwidth (HPBW) of 1.2◦.

3.2. End Gradient Optimization

The optimization of the dielectric-inset guide structure significantly improves the ra-
diation pattern of the antenna. The taper profile of the optimized dielectric structure is
depicted in Figure 6, wherein the end gradient of the dielectric is synthesized as a series
of dielectric slab segments of equal width ∆w and uniform cross-sectional areas of grad-
ually smaller heights Hi, i = 1, 2, . . . , 6. In other words, the tapered dielectric region is
modeled as a sequence of sufficiently short (in terms of wavelength), uniform slab segments
of diminishing cross-section in the forward direction, i.e., along the x-axis, as shown in
Figure 6. The taper is segmented into five regions (i = 2, 3, . . . , 6) with successively smaller
heights. In this step-synthesis technique, the step discontinuity on the dielectric structure
is regarded as a radiating aperture of a serial uniform slabs. At each step discontinuity, the
fundamental transverse electric (TE) surface wave, which is assumed to be incident in the
+x direction from x = −∞, is perturbed to cause redistribution of the instantaneous phases
of the surface wave field on the uniform cross-section for phase matching. Consequently,
the optimum taper profile of the dielectric is taken as one which smoothly transforms the
strongly bound surface wave field into a radiation field with minimal phase disparity and
reflection. This suggests that surface wave fields constructively interfere as they assume the
same approximated phase velocity to maximize radiation efficiency.
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the end gradient and feed gradient.

The instantaneous phase of the radiation field from the dielectric surface with no
taper profile received at points A, B, and C, assumed to be within the far-field region
from the antenna, i.e., R = 2D2/λ (maximum linear dimension of an antenna is D), is
shown in Figure 7a. It can be noted that there is a significant phase difference between
the received fields at these points, resulting in a scattering wave to cause reflection and
destructive interference. However, the introduction of the taper region of the optimized
dielectric structure modeled with staircase approximation, in Figure 6, leads to a sub-
stantial reduction in the phase disparity at these received points within the desired band,
as shown in Figure 7b. The radiation field at these points, therefore, assumes the same
approximated phase velocity to mimic the behavior of a plane wave that maximizes
radiation efficiency due to the constructive interference. The optimal taper profile of the
dielectric in Figure 6 with the staircase model has geometrical parameters fixed as follows:
∆ w = 4 mm, H2 = 39.48 mm, H3 = 36.33 mm, H4 = 31.07 mm, H5 = 26.64 mm and
H6 = 18.45 mm.
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It should also be noted that the base of the dielectric-inset guide structure, where
the slotted waveguide is butted, has also been tapered using the staircase approxima-
tion (see Figure 6) to result in a minimum reflection and gradually transition the inci-
dent, strongly bound field to the dielectric medium. This feed taper, therefore, signifi-
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cantly reduces the Voltage Standing Wave Ratio (VSWR) on the uniform section of the
guide to improve the radiation characteristics of the antenna. The matching slab seg-
ments at the base of the dielectric structure in Figure 6 have been optimized and fixed as:
∆wa = 2 mm, ∆wb = 3 mm, ∆wc = 5 mm, Ha = 10 mm, Hb = 20 mm, and Hc = 35 mm.

3.3. Dielectric Material Selection

The selection of a proper dielectric material for the design of the antenna’s dielectric
structure is primarily based on the material’s relative permittivity (εr), loss tangent (tan δ),
and most importantly, weight or density. It is evident that as εr increases, the bandwidth
reduces, and the radiation efficiency decreases due to the increase in the quality factor
(Q-factor). It should be noted that as the εr increases, the dielectric component no longer
works under the TE10 mode required for a low sidelobe and high gain. This suggests that
the lower the εr, the higher the radiation power for a fixed tan δ, as shown in Figure 8.
Furthermore, extremely lightweight materials are highly recommended for the design of
a dielectric component, since heavy materials undermine the compactness achieved by
the proposed SWA array. Thus, to choose the right material for the dielectric component,
several property data among commercial dielectric materials are compared in Table 2. It
should be noted that model D has the lightest weight in terms of density and the lowest εr
among the materials. Therefore, it is chosen as the material of the dielectric component of
the proposed antenna.
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Figure 8. Normalized radiation power from the dielectric rod structure with varied relative permit-
tivity, εr.

Table 2. Comparison of the properties of different dielectric materials.

Material A B C D

Relative permittivity (εr) 2.1 2.53 1.7 1.53
Loss tangent (tan δ) 0.00015 0.0001 0.0001 0.00035
Density (kg/cm3) 2.2 1 × 10−3 1 × 10−3 8 × 10−5

4. Results and Discussion

Figure 9a,b show a photograph of the fabricated SWA array and outdoor antenna
installation with a radome, respectively.
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Figure 9. Photographs of the fabricated SWA array with a compact dielectric structure. (a) Assembled
antenna prototype without a radome; (b) Outdoor proposed antenna installation in a radome.

The experimental results of the reflection coefficients shown in Figure 10a exhibit a
broad bandwidth for S11 < −20 dB to cover the entire frequency band of interest. The
experimental results of the gain and radiation efficiency are shown in Figure 10b. The
measured gain curve, which ironically slightly outperforms the simulated one, has a peak
gain of 30.06 dB at 9.41 GHz. The radiation efficiency is above 85% in the desired band of
9.38−9.44 GHz.
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Figure 11a–f show the measured and simulated radiation patterns of the proposed
SWA array in the xy-plane (horizontal) and xz-plane (vertical) at 9.38, 9.41, and 9.44 GHz.
They show that measured beam patterns, to a large extent, agree well with the simulated
results. However, the measured xz-plane beam patterns have SLL lower than −12 dB,
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which is substantially higher than that of the simulated results at the frequency points. This
is attributable to the complexity of the antenna’s configuration. Thus, the combined effect
of the different structural layers of the antenna has a higher tendency for errors to occur
during manufacturing and assembly. This could easily be corrected when the antenna is
assembled properly. The measured xy-plane HPBWs are all 1.2◦ at these three frequency
points. The corresponding measured xz-plane HPBWs are 28◦, 27.8◦and 27.7◦.
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Figure 11. Measured and simulated radiation patterns of the proposed SWA array. (a) Horizontal (xy)-plane, 9.38 GHz;
(b) Horizontal (xy)-plane, 9.41 GHz; (c) Horizontal (xy)-plane, 9.44 GHz; (d) Vertical (xz)-plane, 9.38 GHz; (e) Vertical
(xz)-plane, 9.41 GHz; (f) Vertical (xz)-plane, 9.44 GHz.

As the proposed SWA array operates in X-band, the conventional SWA array, set as a
benchmark, should also operate in X-band for comparative physical size to ensure a fair
comparison. Under this condition, an SWA array with a high-profile reflector for a high
gain result was simulated. The two-dimensional equivalents in the xz or vertical plane
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of the proposed and conventional models are shown in Figure 12a. The simulated gain
curves are plotted in Figure 12b.

• Ant-A: Proposed SWA array comprising of a slotted waveguide, compact dielectric
structure, and miniaturized reflector.

• Ant-B: Commercial SWA array composed of a slotted waveguide and a relatively
larger reflector.
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The proposed antenna possesses an average gain of 29 dB, which has been found to be
comparable to that of the conventional type. However, the proposed antenna configuration
achieves a 50% size reduction in lateral size that lies along the z-axis and 29% in the forward
or radiation direction along the x-axis. Thus, the antenna’s total size is reduced by 62%,
while keeping its high gain within the band of interest. Moreover, a low loss, low-density
material was chosen for the design of the dielectric structure to maintain this physical
advantage over the conventional counterpart without resulting in a heavy weight and
low efficiency.

Table 3 compares the requirements of the marine radar to the measurement data
of the proposed SWA array. It shows that the proposed SWA array can fulfil all of the
requirements except for the SLL in the vertical plane. This is primarily due to fabrication
and assembly errors, which may result from misalignment between the different structural
components of the proposed SWA array. Thus, proper assembly of the various components
will easily alleviate the high SLL in the measured results.
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Table 3. Comparison between the requirements and the measured data.

Parameters Requirement Numerical Data Measured Data

Frequency 9.4 GHz 9.4 GHz 9.4 GHz o

Gain ≥ 28 dB ≥ 29.62 dB ≥ 29.4 dB o

VSWR ≤ 1.5 ≤ 1.5 ≤ 1.5 o

Polarization Horizontal Horizontal Horizontal o

Beamwidth
Horizontal (Az) ≤ 1.2◦ ≤ 1.2◦ ≤ 1.2◦ o

Vertical (El) ≥ 20◦ ≥ 27.7◦ ≥ 27.8◦ o

SLL
Horizontal (Az) ≤ −20 dB ≤ −20 dB ≤ −20.8 dB o

Vertical (El) ≤ −30 dB ≤ −31 dB ≤ −12 dB X
Az and El denote azimuth and elevation planes, respectively.

5. Conclusions

In summary, a new configuration of slotted waveguide array (SWA) antennas, com-
prising a slotted waveguide, polarizing filter, and tapered dielectric-inset guide structure,
was proposed for use in a shipboard marine radar in X-band. The concept of using the
dielectric-inset guide structure to reduce the size of an SWA array was presented. Com-
parison between the proposed and the conventional SWA arrays was also presented,
confirming the practicality of this approach. The experimental results indicated that a
size reduction of 62% could easily be achieved for the SWA array, while preserving the
antenna’s superior performance, i.e., a higher gain and radiation efficiency at the same
time. A staircase model of the tapered section of the implemented dielectric structure was
introduced. The incident, guided surface wave field on the uniform cross-section was
perturbed for phase matching purposes to ensure that it transformed into a radiation field
that is characterized by the maximum intensity with little reflection. Thus, the antenna
exhibited a peak gain of 30.06 dB and radiation efficiency above 80% in the desired band of
9.38~9.44 GHz. The measured horizontal plane HPBWs are about 1.2◦ at the various fre-
quency points. The corresponding measured xz-plane HPBWs are about 28◦. The selected
dielectric has low-density properties to maintain low weight. This proposed SWA array
has promising physical and electrical features, making it more suitable for modern marine
radar applications than the conventional case.
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