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Abstract: Imitation learning is an effective approach for an autonomous agent to learn control policies
when an explicit reward function is unavailable, using demonstrations provided from an expert.
However, standard imitation learning methods assume that the agents and the demonstrations
provided by the expert are in the same domain configuration. Such an assumption has made the
learned policies difficult to apply in another distinct domain. The problem is formalized as domain
adaptive imitation learning, which is the process of learning how to perform a task optimally in
a learner domain, given demonstrations of the task in a distinct expert domain. We address the
problem by proposing a model based on Generative Adversarial Network. The model aims to learn
both domain-shared and domain-specific features and utilizes it to find an optimal policy across
domains. The experimental results show the effectiveness of our model in a number of tasks ranging
from low to complex high-dimensional.

Keywords: imitation learning; domain adaptive imitation learning; generative adversarial network

1. Introduction

The demand for autonomous agents capable of mimicking human behaviors has
grown significantly in recent years. For example, self-driving vehicles, assistive robots, and
human–computer interaction fields rely on the ability of agents that can not only make
optimal decisions but also behave like humans [1], which can enable the agents’ actions to
be believable and appear natural. In order for autonomous agents to acquire such human
complex behaviors, they are supplied with reward functions indicating the goals of the
desired behaviors. However, reward functions can be difficult to be defined manually.
In fact, humans can learn complex behaviors from imitation: we observe other experts
performing the tasks, infer the tasks, then attempt to accomplish the same tasks ourselves.
Inspired by this learning procedure, imitation learning has been widely used for training
autonomous agents using expert-provided demonstrations [1–4].

Imitation learning works by extracting information about the behavior of the expert
and learning a mapping between the observation state and demonstrated behavior [1,5].
Unfortunately, the traditional imitation learning algorithms are still far from being compa-
rable with the human imitation due to the lack of the following abilities:

1. Humans tend to imitate the goal of a task rather than a particular behavior of the
expert [6,7].

2. Humans can recognize structural differences (i.e., domain shift) and similarities
between the expert and themselves in order to adapt their behaviors accordingly [8].

The first aspect of human imitation can be modeled using Inverse Reinforcement
Learning (IRL) [9,10]. IRL seeks to estimate a reward function to explain an expert behavior
from demonstrations and subsequently train an agent on it [9–12]. Recent studies [13–20]
utilize Generative Adversarial Network (GAN) [21], which has a discriminator to judge
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whether a given behavior is from an expert or agent, and then a policy is trained using
the discriminator as a reward. However, these approaches do not take into account the
second aspect of human learning: imitation with the presence of domain shift between the
expert and the agent. Such domain shift can mislead the feature learning, resulting in poor
task performance.

The problem is formalized as domain adaptive imitation learning, which is a process
of learning how to perform a task optimally in a learner domain, given demonstrations of
the task in a distinct expert domain [14]. In order to solve this problem, the authors in [14]
proposed a two-step approach: alignment followed by adaptation. Firstly, the Generative
Adversarial MDP Alignment (GAMA) was introduced to learn the state—action maps from
demonstrations. Then, in the adaptation step, an optimal policy for the learner domain
was obtained using the learned alignment from the first step. Despite showing a promising
result, their model was evaluated only in low-dimensional tasks. In addition, they updated
the learned policy by using behavioral cloning, which was vulnerable to cascading errors.
This could lead to poor adaptation performance in more complex high-dimensional tasks.

Unlike most previous studies in domain adaptive imitation learning, this work
proposes a model that aims to learn both domain-shared and domain-specific features.
Such features enable the agents to learn optimal policies without being affected by the shift
between two domains. The learning procedure can be achieved within one training process
by utilizing adversarial training [21]. In summary, the main contributions of this paper are
as follows:

• A features extractor, which is capable of deriving domain-shared and domain-specific
features, is proposed.

• The DAIL-GAN model is proposed. The model leverages adversarial training [21] to
learn the extracted features, while at the same time, seeking for an optimal learner
domain policy.

• A comprehensive experiment on both low and high-dimensional tasks is conducted
to evaluate the performance of the proposed model.

The rest of this paper is organized as follows. In Section 2, the related works of the
proposed model is introduced. Section 3 formulates the domain adaptive imitation learning
problem. The details of the proposed DAIL-GAN model is presented in Section 4 and
evaluated in Section 5. Section 6 discusses and analyzes the evaluation results. Finally,
Section 7 concludes this paper.

2. Related Work

Imitation learning has been a popular method for training autonomous agents from
expert demonstrations [1]. A simple approach to imitation learning is Behavioral Cloning
(BC) [22], which mimics such demonstrations by learning the policy through supervised
learning. Despite being successfully applied in many control problems [2,22,23], BC
was found to be vulnerable to cascading errors [24]. On the other hand, Inverse Rein-
forcement Learning (IRL) [9] methods try to recover a reward function from the expert
demonstrations [9–12]. This reward function is then used to optimize an imitation policy
by running a standard reinforcement learning [25,26]. Accordingly, IRL has succeeded in a
wide range of tasks [27–30]. However, in order to train an IRL model, it requires iterations
of reinforcement learning, which can be extremely computationally expensive for high-
dimensional tasks. Recently, Generative Adversarial Network [21] has been introduced
and successfully employed to tackle complex challenges in image generation, translation,
and enhancement [31–34]. Inspired by the great ability of GAN, recent studies [13,15–20]
have applied it in imitation learning to define expert behaviors by fitting the distributions
of states and actions. These models outperform competing methods when applying to
complex high-dimensional tasks over various amounts of expert data.

Unfortunately, the common major weakness of the above-mentioned models is that
they require the experts to provide demonstrations in the same configuration and domain
as the learners. Thus, the presence of a shift between the expert and learner domains may



Sensors 2021, 21, 4718 3 of 14

lead to a significant performance deterioration of those models. A popular approach is
to employ a domain adaptation, which attempts to recover the learned policy from one
domain and to adapt it to a different domain. The work in [35] proposed a model to recover
domain-agnostic features and utilized it to find optimal policies in the setting of third
person imitation, in which the expert and learner observations come from different views.
Furthermore, the authors in [14] introduced a two-step approach that could be applied to
imitate demonstrations observed from a distinct domain. They proposed to find a state–
action mapping between the expert and learner domains. After that, the learned mapping
was utilized to adapt the learned policy to the learner domain. Although achieving high
performance on low-dimensional tasks, the effectiveness of their methods on more complex
high-dimensional tasks was not fully inspected yet.

Our method is different from previous methods [14,35], which aims to learn both
domain-shared and domain-specific features in expert and learner domains. These features
enable our proposed model to find an optimal learner domain policy that can achieve high
performance without being affected by the shift between two domains.

3. Problem Formulation

In this section, we formalize the domain adaptive imitation learning as a Markov
decision problem. A Markov Decision Process (MDP)M with finite time horizon [36] is
represented as the following equation:

M = (S ,A,P ,R) (1)

where S and A represent the state and action space, respectively; P : S ×A → S denotes
the transition function, and R : S × A → R is the reward function—whereas, a policy
π : S → A forM describes a mapping from states S to actionsA. In general reinforcement
learning setting, the goal is to find an optimal policy π∗ that achieves the highest expected
discounted sum of rewards J:

π∗ = argmax
π

J(π), (2)

subject to J(π) = Eπ

[
T

∑
t=0

γtrt

]
(3)

where γ ∈ (0, 1] is the discount factor and rt = R(st, at) is the reward at timestep t.
However, in the domain adaptive imitation learning setting, the reward function is

not given beforehand. Therefore, the MDP for a domain x without reward is defined as
Mx = (Sx,Ax,Px). In this paper, all examined domains are assumed to be alignable. That
is, if considering two domains x and y,Mx can be reduced toMy, denoted asMx ≥My,
or vice versa [14]. An example is illustrated in Figure 1. Based on this expression, let E and
L be the expert and the learner domain, respectively,ME andML are said to be alignable
if and only ifME ≥ML orML ≥ME [14].

Furthermore, τx = {(st
x, at

x) : t ∈ [0, T]} denotes a demonstration in the domain x,
which is a sequence of state–action pairs. Then, a set of demonstrations DE = {τi

E : i ∈
[1, N]} from E is assumed to be available at the training time. With those assumptions, our
main objective is being able to learn an optimal learner domain policy π∗L against unknown
reward functionRL, given the expert demonstrations DE .
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Figure 1. An example of two MDPs for x and y domains where Mx ≥ My. φ : Sx → Sy and
ψ : Ax → Ay are state and actions maps, respectively. States correspond to nodes and actions to
colors. States 5, 6 in Sx are merged to state e in Sy and blue actions inAx are mapped to green actions
in Ay.

4. The Proposed DAIL-GAN Model

In this section, we introduce our proposed DAIL-GAN model. The model relies
on learning the domain-shared and domain-specific features in order to recover expert
behaviors and adapt them to the learner domain. The architecture of our proposed model is
illustrated in Figure 2. The model includes three deep feed-forward networks F, G, and D
that holds different responsibilities.

Figure 2. The architecture of the proposed DAIL-GAN model.

4.1. Feature Extractor Network F

A state–action pair (st
x, at

x) in domain x is input into the feature extractor F to produce
a feature vector fx = F(st

x, at
x). F is trained to capture the structural similarities or the

shared features between E and L domains by minimizing the distance between two features
fE and fL. Therefore, the loss function of F is defined as:

LF(F, G) = E
[∥∥F(st

E , at
E )− F(st

L, at
L)
∥∥] (4)

= E
[∥∥F(st

E , at
E )− F(st

L, G(F(st
E , at
E )))

∥∥] (5)

4.2. Discriminator Network D and Generator Network G

The discriminator D is designed to distinguish between expert feature vector fE
and learner feature vector fL. Specifically, D receives a feature vector fx and outputs a
probability P(x = E|fx) to classify whether fx is from E or L. Meanwhile, the generator G
aims to generate an action at

L so that fL = F(st
L, at
L) looks as similar as possible to fE . In

the proposed DAIL-GAN model, we apply adversarial loss [21] for both networks:
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LGAN(G, D) = E[log D(F(st
E , at
E ))] +E[log (1D(F(st

L, at
L)))] (6)

= E[log D(F(st
E , at
E ))] +E[log (1D(F(st

L, G(F(st
E , at
E )))))] (7)

The optimal policy is achieved using a RL-based policy gradient, which relies on
reward signal r = − log D(F(st

E , at
E )) provided by the learned discriminator.

4.3. Full Objective

During the learning phase, we aim to learn domain-shared features between E and L
domains. Thus, the feature extractor F and the generator G are optimized to minimize the
feature extractor loss LF. At the same time, given a feature vector fx of domain x, we want
to judge whether fx is from E or L by minimizing the domain classification loss LGAN .
This encourages domain-specific features to be captured by F. Overall, our full objective
function is:

max
F,G

min
D

L(F, G, D) (8)

subject to L(F, G, D) = LGAN(G, D)− λLF (9)

We wish to find a saddle point, where:

(F̂, Ĝ) = argmax
F,G

L(F, G, D̂) (10)

D̂ = argmin
D

L(F̂, Ĝ, D) (11)

At the saddle point, the D̂ minimizes the domain classification loss. The feature extrac-
tor F̂ and the generator Ĝ minimize the distance between both domains (i.e., the features are
shared between domains), while maximizing the domain classification loss (i.e., the features
are specific to each domain). The parameter λ controls the trade-off between domain-shared
features and domain-specific features should be learned by F.

The algorithm of the proposed model is outlined in Algorithm 1.

Algorithm 1 DAIL-GAN

1: Input
2: DE A set of expert demonstrations
3: Randomly initialize feature extractor network F, generator G and discriminator D
4: for i = 0, 1, 2, ... do
5: Sample an expert demonstration τi

E ∼ DE
6: Update the parameters of feature extractor network F with the gradient

E[∇Flog(D(fE ))] + E[∇Flog(1− D(fL))]− λE[∇F‖fE − fL‖]

7: Update the discriminator parameters with the gradient

E[∇Dlog(D(fE ))] + E[∇Dlog(1− D(fL))]

8: Update policy πL with the reward signal r = −logD(fE )
9: end for

10: Output
11: πL Learned policy for learner domain
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5. Performance Evaluation

In this section, the performance of the proposed DAIL-GAN model is evaluated
by comparing with various baseline models on a number of tasks ranging from low to
complex high-dimensional. The details of the experimental settings and evaluation results
are presented in the following subsections.

5.1. Experimental Settings
5.1.1. Environments

In this experiment, five simulated environments were considered: Pendulum [37],
Acrobot [37–39], CartPole [37,40], Door [41], and Hammer [41]. The detailed descriptions
and visualizations of these environment are shown in Table 1 and Figure 3, respectively.
From such environments, five domain adaptive tasks were decided, each of which included
two different environments—an expert domain and a learner domain. These tasks can be
divided into two categories as follows:

• Low-dimensional tasks:

– Pendulum–Acrobot: Expert domain is Pendulum and learner domain is Acrobot.
– Pendulum–CartPole: Expert domain is Pendulum and learner domain is CartPole.
– Acrobot–CartPole: Expert domain is Acrobot and learner domain is CartPole.

To provide expert demonstrations, for each task, the Trust Region Policy Optimization
method [42] is first trained on the expert domain using the shaped reward signal. Then,
20 expert demonstrations are collected by executing the learned policies in the expert
domain simulator. Each demonstration includes a sequence of state–action pairs. It
should be noted that we only collect successful demonstrations where the learned
policies can accomplish the task. The impacts of demonstrations on the performance
of the proposed model will be analyzed in our future work.

• High-dimensional tasks:

– Door–Door: The expert and learner domains have different friction parameters.
The friction parameter in expert domain is [1, 1, 1], while, in the learner domains,
it is [4.0, 4.0, 4.0].

– Hammer–Hammer: The expert and learner domains have different mass of the
hammer. The mass of the hammer in expert domain is 0.253442, while, in the
learner domain, it is 1.0.

We also use 20 expert demonstrations for each task. The demonstrations are collected
from humans using the Mujoco HAPTIX system [43] and publicly available [41].

Table 1. Description of five simulated environments used in our experiment.

Task State Space Action Space Description

Pendulum [37] 3 (continuous) 1 (continuous) Swinging up a pendulum.
Acrobot [37–39] 6 (continuous) 3 (discrete) Swinging the end of the lower link up to a

given height
CartPole [37,40] 4 (continuous) 2 (discrete) Preventing the pendulum from falling over by

applying a force to the cart.
Door [41] 39 (continuous) 28 (continuous) A 24-DoF hand attempts to undo the latch and

swing the door open.
Hammer [41] 46 (continuous) 26 (continuous) A 24-DoF hand attempts to use a hammer to drive

the nail into the board.
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(a) Pendulum (b) Acrobot (c) CartPole

(d) Door (e) Hammer
Figure 3. Visual rendering of five simulated environments used in our experiment.

5.1.2. Baselines

The performance of the proposed DAIL-GAN model was evaluated in comparison
with the following baseline methods:

• Trust Region Policy Optimization (TRPO) [42] is a Reinforcement learning-based
model. The model was trained directly on the learner domain and had access to the
shaped reward function. This baseline set an upper bound for the performance of
domain adaptation algorithms.

• GAMA-PA [14]: The model introduced a two-step approach for domain adaptation in
imitation learning. It first learns the state–action maps between expert and learner
domains, and then utilizes it to learn an optimal policy. The model parameters are
employed as reported in [14] in order to ensure a fair comparison.

5.1.3. Network Structure and Hyperparameters

Deep feed-forward networks with two hidden layers are used for three F, G, D
networks of the proposed model. The network hyperparameters are shown in Table 2. In
this experiment, the learning rate was 0.0003. Adam was used as an optimizer.

Table 2. DAIL-GAN hyperparameters used in the experiment. Each number corresponds to the
number of nodes in a network layer.

Feature Extractor F Generator G Discriminator D

Low-dimensional
Tasks

(st
x, at

x) - 32 - 32 - 16 (fx) - 32 - 32 - (at
L) (fx) - 32 - 32 - 1

High-dimensional
Tasks

(st
x, at

x) - 128 - 128 - 64 (fx) - 128 - 64 - (at
L) (fx) - 128 - 64 - 1

5.2. Results

In this subsection, the evaluation results of the proposed DAIL-GAN model on low-
and high-dimensional tasks are presented to highlight its superior capability in domain
adaptive imitation learning.
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5.2.1. Low-Dimensional Tasks

Table 3 reports the quantitative evaluations of the proposed DAIL-GAN model on low-
dimensional tasks, in terms of average cumulative rewards. The numerical results clearly
indicate that, for all evaluated tasks, TRPO [42] provided the best performance as its average
cumulative rewards were at the highest. This was actually predictable because TRPO [42]
had direct access to states and shaped rewards of the learner domain. On the other hand,
inputs of GAMA-PA [14] and DAIL-GAN were limited to expert demonstrations only. As
a result, their performances deteriorated compared to TRPO [42]. However, Table 3 also
determines that the proposed DAIL-GAN outperformed GAMA-PA [14] across all three
tasks. Additionally, for the Pendulum–Acrobot task, the proposed model almost achieved
as high performance as TRPO [42]. In order to understand the observed results more deeply,
Figures 4–6 visualize the behaviors of learned policies provided by the evaluated models
when performing the Pendulum–Acrobot, Pendulum–CartPole, and Acrobot–CartPole
tasks, respectively.

Table 3. The performance of the proposed models on low-dimensional tasks. These scores represent
the cumulative rewards obtained from executing a learned policy in the simulator, averaged over
100 episodes.

Task TRPO [42] GAMA-PA [14] DAIL-GAN

Pendulum–Acrobot −63.18 ± 7.05 −386.31 ± 49.20 −83.31 ± 32.61
Pendulum–CartPole 497.13 ± 28.56 144.03 ± 89.09 289.74 ± 171.21

Acrobot–CartPole 497.13 ± 28.56 93.05 ± 88.97 153.86 ± 81.79

Figure 4. Pendulum–Acrobot.
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Figure 5. Pendulum–CartPole.

Figure 6. Acrobot–CartPole.

In the expert demonstration of the Pendulum–Acrobot task in Figure 4 and the
Pendulum-CartPole task in Figure 5, expert behaviors were to apply a strong force,
expressed by a rotation velocity, at first to make the pendulum swing upright. After that,
a few light forces were applied to maintain it vertically. Observing from Figure 4, the
policies trained with GAMA-PA [14] failed to apply strong enough forces to swing the
lower link as high as the proposed DAIL-GAN. In addition, Figure 5 expresses that the
GAMA-PA [14] could not move the cart at an appropriate velocity to keep the pole verti-
cal. We speculate that it was because the expert demonstration also did not show much
movement after successfully swinging the pendulum upright as it only applied light forces.
Meanwhile, the policies learned by our DAIL-GAN model could accomplish the task.
Interestingly, we observed that the learned policies are able to produce behaviors that are
relatively similar to the expert: the cart was first pushed to the left by a strong force; then,
small forces are applied to prevent the pole from falling over.

For the Acrobot–CartPole task in Figure 6, the behaviors of the expert were that
the link was swung back and forth to gain enough velocity to reach a higher height.
Similarly, the GAMA-PA’s learned policy could move the cart faster compared to the
Pendulum–CartPole task. However, it still failed to maintain appropriate velocity to keep
the pole standing. On the contrary, our DAIL-GAN was able to remain the pole vertical.
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It is important to note that the learned policy of our model could move the cart in both
directions, which is also similar to the expert behaviors.

The above observations show that the proposed DAIL-GAN model not only succeeded
in imitating the expert behaviors but also adapted the learned policies well to a distinct
learner domain. Meanwhile, although the GAMA-PA [14] could learn the state–action
maps from expert to learner domain, its adaptation algorithm was inefficient to help it
accomplish the tasks.

5.2.2. High-Dimensional Tasks

In this subsection, the performance of the proposed DAIL-GAN versus the referenced
models on the high-dimensional task is assessed. The average cumulative rewards of the
evaluated models are shown in Table 4. As expected, the TRPO model achieved the highest
average cumulative reward since it was trained directly on the learner domain. It is also
revealed that DAIL-GAN outperformed GAMA-PA, although they were both unable to
accomplish the Door–Door task. In addition, Figures 7 and 8 depict the policies learned by
TRPO [42], GAMA-PA [14], and our DAIL-GAN model, from which we observed some
interesting behaviors.

Table 4. The performance of the proposed models on high-dimensional tasks. These scores represent
the cumulative rewards obtained from executing a learned policy in the simulator, averaged over
100 episodes.

Task TRPO [42] GAMA-PA [14] DAIL-GAN

Door–Door 2449.06 ± 1175.25 −65.19 ± 0.77 −33.51 ± 8.87
Hammer–Hammer 17,030.25 ± 4357.23 −252.52 ± 4.91 −78.84 ± 19.28

Figure 7. Door–Door.
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Figure 8. Hammer–Hammer.

As illustrated in Figure 7, the expert behaviors were understandable since their demon-
strations were collected from humans: grab the handle, rotate it, then open the door.
In Figure 8, the expert behaviors were to pick up and hammer multiple times in order to
drive the nail into the board. While the policy trained with the TRPO could accomplish the
task, it produced behaviors that were not human-like, i.e., unnatural use of the wrist to
rotate the handle. The main reason behind these unnatural behaviors was that the TRPO
depended on a careful reward shaping, and it was challenging to formalize human-like
behaviors into a mathematical reward function. On the other hand, with the use of expert
demonstrations, the GAMA-PA and the proposed DAIL-GAN were expected to generate
human-like behaviors. However, the policy learned by GAMA-PA failed to control the
hand properly, as shown in Figures 7 and 8, due to the failure of the adaptation step in a
high-dimensional task. Meanwhile, it can be observed from Figures 7 and 8 that the policy
trained with DAIL-GAN could produce more natural and human-like behaviors to move
the robot hand closer to the door handle or the hammer. Unfortunately, our DAIL-GAN
model could not rotate the handle or pick up the hammer in order to accomplish the task.
Nevertheless, the human-like behaviors of the trained policies proved that our model could
effectively extract and imitate expert behaviors from their demonstrations.

6. Discussion

This section discusses the overall performance of the proposed DAIL-GAN model,
followed by the importance of the feature extractor.

The quantitative and qualitative results assessed from the previous section have shown
the potential of the proposed DAIL-GAN model in tackling the domain adaptation problem
in imitation learning. On both low- and high-dimensional tasks, DAIL-GAN could imitate
expert behaviors from their demonstrations. In particular, the policies acquired by DAIL-
GAN could even generate natural and human-like behaviors despite the high complexity
of the Door–Door and Hammer–Hammer tasks. This indicates that the proposed DAIL-
GAN could scale up to a complex manipulation task with a high-dimensional state and
action space. Furthermore, the proposed model could adapt the learned policies to a
distinct learner domain and accomplish low-dimensional tasks without being affected by
the presence of domain shift between expert and learner domains. Although the success
rate remained limited and depended on the complexity of the tasks, the proposed model
can be improved to provide a better performance toward practical real-world imitation
learning tasks.

The promising performance of the proposed DAIL-GAN also praises the effectiveness
of the proposed feature extractor F. The feature extractor aims to learn both domain-shared



Sensors 2021, 21, 4718 12 of 14

and domain-specific features between expert and learner domains. In Figure 5, the learned
policy tended to move the cart to the left by a strong force initially, then followed by small
forces; this behavior was similar to that of the expert demonstration. Such a similarity
indicated that the feature extractor could extract the structural similarities or domain-
shared features between expert and learner domain, resulting in comparable behaviors
between them. Furthermore, it can also be observed in Figure 5 that, although strong
forces were applied, the learned policies still managed to keep the pole stay upright. This
showed that the feature extractor was able to learn the differences between the expert
and learner domains so that it could adapt the learned policies to the learner domain
and accomplish the task. In summary, the feature extractor has proven its important
role in our model. It could acquire shareable behaviors in both domains by learning the
domain-shared features and adapting those behaviors to the learner domain regardless of
the domain shift by learning the domain-specific features.

7. Conclusions

In this paper, we proposed a novel model for domain adaptive imitation learning,
in which a feature extractor was introduced to learn the domain-shared and domain-
specific features. The comprehensive evaluation on both low and high-dimensional tasks
demonstrates that the policies learned by the proposed model can imitate expert behaviors
and adapt them to a distinct learner domain. Thus, the potential of our proposed model
and the effectiveness of the feature extractor were verified. In future work, we intend
to extend the proposed model to improve its performance on more complex real-world
imitation tasks.

Author Contributions: Conceptualization, T.N.D., C.M.T., and P.X.T.; methodology, T.N.D., C.M.T.,
and P.X.T.; software, T.N.D.; validation, T.N.D., P.X.T., and E.K.; writing—original draft preparation,
T.N.D. and C.M.T.; writing—review and editing, P.X.T. and E.K.; visualization, T.N.D.; supervision,
P.X.T. and E.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://sites.google.com/view/d4rl/home (accessed on 1 July 2021).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

RL Reinforcement Learning
IRL Inverse Reinforcement Learning
GAN Generative Adversarial Network
BC Behavior Cloning
MDP Markov Decision Process

References
1. Argall, B.D.; Chernova, S.; Veloso, M.; Browning, B. A survey of robot learning from demonstration. Robot. Auton. Syst. 2009,

57, 469–483. [CrossRef]
2. Duan, Y.; Andrychowicz, M.; Stadie, B.C.; Ho, J.; Schneider, J.; Sutskever, I.; Abbeel, P.; Zaremba, W. One-shot imitation learning.

arXiv 2017, arXiv:1703.07326.
3. Sermanet, P.; Lynch, C.; Chebotar, Y.; Hsu, J.; Jang, E.; Schaal, S.; Levine, S.; Brain, G. Time-Contrastive Networks: Self-Supervised

Learning from Video. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Brisbane,
Australia, 21–25 May 2018; Institute of Electrical and Electronics Engineers Inc.: Brisbane, Australia, 2018; pp. 1134–1141.
[CrossRef]

https://sites.google.com/view/d4rl/home
http://doi.org/10.1016/j.robot.2008.10.024
http://dx.doi.org/10.1109/ICRA.2018.8462891


Sensors 2021, 21, 4718 13 of 14

4. Liu, Y.; Gupta, A.; Abbeel, P.; Levine, S. Imitation from Observation: Learning to Imitate Behaviors from Raw Video via Context
Translation. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia,
21–25 May 2018; Institute of Electrical and Electronics Engineers Inc.: Brisbane, Australia, 2018; pp. 1118–1125. [CrossRef]

5. Schaal, S. Is imitation learning the route to humanoid robots? Trends Cogn. Sci. 1999, 3, 233–242. [CrossRef]
6. Baker, C.L.; Tenenbaum, J.B.; Saxe, R.R. Goal inference as inverse planning. In Proceedings of the Annual Meeting of the

Cognitive Science Society, Nashville, TN, USA, 1–4 August 2007; Volume 29.
7. Bao, Y.; Cuijpers, R.H. On the imitation of goal directed movements of a humanoid robot. Int. J. Soc. Robot. 2017, 9, 691–703.

[CrossRef]
8. Tomov, M.S.; Schulz, E.; Gershman, S.J. Multi-task reinforcement learning in humans. Nat. Hum. Behav. 2021, 5, 764–773.

[CrossRef] [PubMed]
9. Ng, A.Y.; Russell, S.J. Algorithms for inverse reinforcement learning. In Proceedings of the ICML, Stanford, CA, USA, 29 June–2

July 2000; Volume 1, p. 2.
10. Abbeel, P.; Ng, A.Y. Apprenticeship learning via inverse reinforcement learning. In Proceedings of the Twenty-First International

Conference on MACHINE Learning, Banff, AB, Canada, 4–8 July 2004; p. 1.
11. Levine, S.; Popovic, Z.; Koltun, V. Nonlinear inverse reinforcement learning with gaussian processes. Adv. Neural Inf. Process. Syst.

2011, 24, 19–27.
12. Ziebart, B.D.; Maas, A.L.; Bagnell, J.A.; Dey, A.K. Maximum entropy inverse reinforcement learning. In Proceedings of the AAAI,

Chicago, IL, USA, 13–17 July 2008; Volume 8, pp. 1433–1438.
13. Ho, J.; Ermon, S. Generative Adversarial Imitation Learning. Adv. Neural Inf. Process. Syst. 2016, 29, 4565–4573.
14. Kim, K.; Gu, Y.; Song, J.; Zhao, S.; Ermon, S. Domain Adaptive Imitation Learning. In Proceedings of the 37th International

Conference on Machine Learning, Virtual, 13–18 July 2020; Volume 119, pp. 5286–5295.
15. Baram, N.; Anschel, O.; Caspi, I.; Mannor, S. End-to-End Differentiable Adversarial Imitation Learning. In Proceedings of the

34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Precup, D., Teh, Y.W., Eds.; PMLR:
Sydney, Australia, 2017; Volume 70, pp. 390–399.

16. Behbahani, F.; Shiarlis, K.; Chen, X.; Kurin, V.; Kasewa, S.; Stirbu, C.; Gomes, J.; Paul, S.; Oliehoek, F.A.; Messias, J.; et al. Learning
from demonstration in the wild. In Proceedings of the IEEE 2019 International Conference on Robotics and Automation (ICRA),
Montreal, QC, Canada, 20–24 May 2019; pp. 775–781.

17. Li, Y.; Song, J.; Ermon, S. InfoGAIL: Interpretable Imitation Learning from Visual Demonstrations. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, NIPS’17, Long Beach, CA, USA, 4–9 December 2017; Curran
Associates Inc.: Red Hook, NY, USA, 2017; pp. 3815–3825.

18. Zhang, X.; Li, Y.; Zhou, X.; Luo, J. cGAIL: Conditional Generative Adversarial Imitation Learning—An Application in Taxi
Drivers’ Strategy Learning. IEEE Trans. Big Data 2020. [CrossRef]

19. Chi, W.; Dagnino, G.; Kwok, T.M.; Nguyen, A.; Kundrat, D.; Abdelaziz, M.E.; Riga, C.; Bicknell, C.; Yang, G.Z. Collaborative
robot-assisted endovascular catheterization with generative adversarial imitation learning. In Proceedings of the 2020 IEEE
International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 2414–2420.

20. Zhou, Y.; Fu, R.; Wang, C.; Zhang, R. Modeling Car-Following Behaviors and Driving Styles with Generative Adversarial
Imitation Learning. Sensors 2020, 20, 5034. [CrossRef] [PubMed]

21. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial
Networks. arXiv 2014, arXiv:1406.2661.

22. Pomerleau, D.A. Alvinn: An Autonomous Land Vehicle in a Neural Network; Technical Report; Carnegie-Mellon Univ Pittsburgh pa
Artificial Intelligence and Psychology: Pittsburgh, PA, USA, 1989.

23. Rahmatizadeh, R.; Abolghasemi, P.; Bölöni, L.; Levine, S. Vision-based multi-task manipulation for inexpensive robots using
end-to-end learning from demonstration. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation
(ICRA), Brisbane, Australia, 21–25 May 2018; pp. 3758–3765.

24. Ross, S.; Gordon, G.; Bagnell, D. A reduction of imitation learning and structured prediction to no-regret online learning.
In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference
Proceedings, Fort Lauderdale, FL, USA, 11–13 April 2011; pp. 627–635.

25. Finn, C.; Levine, S.; Abbeel, P. Guided cost learning: Deep inverse optimal control via policy optimization. In Proceedings of the
International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016; pp. 49–58.

26. Kalakrishnan, M.; Pastor, P.; Righetti, L.; Schaal, S. Learning objective functions for manipulation. In Proceedings of the 2013
IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 1331–1336.

27. Arora, S.; Doshi, P. A survey of inverse reinforcement learning: Challenges, methods and progress. Artif. Intell. 2021, 297, 103500.
[CrossRef]

28. Naumann, M.; Sun, L.; Zhan, W.; Tomizuka, M. Analyzing the Suitability of Cost Functions for Explaining and Imitating Human
Driving Behavior based on Inverse Reinforcement Learning. In Proceedings of the 2020 IEEE International Conference on
Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 5481–5487.

29. Bing, Z.; Lemke, C.; Cheng, L.; Huang, K.; Knoll, A. Energy-efficient and damage-recovery slithering gait design for a snake-like
robot based on reinforcement learning and inverse reinforcement learning. Neural Netw. 2020, 129, 323–333. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/ICRA.2018.8462901
http://dx.doi.org/10.1016/S1364-6613(99)01327-3
http://dx.doi.org/10.1007/s12369-017-0417-8
http://dx.doi.org/10.1038/s41562-020-01035-y
http://www.ncbi.nlm.nih.gov/pubmed/33510391
http://dx.doi.org/10.1109/TBDATA.2020.3039810
http://dx.doi.org/10.3390/s20185034
http://www.ncbi.nlm.nih.gov/pubmed/32899773
http://dx.doi.org/10.1016/j.artint.2021.103500
http://dx.doi.org/10.1016/j.neunet.2020.05.029
http://www.ncbi.nlm.nih.gov/pubmed/32593929


Sensors 2021, 21, 4718 14 of 14

30. Zelinsky, G.J.; Chen, Y.; Ahn, S.; Adeli, H.; Yang, Z.; Huang, L.; Samaras, D.; Hoai, M. Predicting Goal-directed Attention Control
Using Inverse-Reinforcement Learning. arXiv 2020, arXiv:2001.11921.

31. KWON, H.; KIM, Y.; YOON, H.; CHOI, D. CAPTCHA Image Generation Systems Using Generative Adversarial Networks.
IEICE Trans. Inf. Syst. 2018, 543–546. [CrossRef]

32. Qi, M.; Li, Y.; Wu, A.; Jia, Q.; Li, B.; Sun, W.; Dai, Z.; Lu, X.; Zhou, L.; Deng, X.; et al. Multi-sequence MR image-based synthetic
CT generation using a generative adversarial network for head and neck MRI-only radiotherapy. Med. Phys. 2020, 47, 1880–1894.
[CrossRef]

33. Song, J.; He, T.; Gao, L.; Xu, X.; Hanjalic, A.; Shen, H.T. Unified binary generative adversarial network for image retrieval and
compression. Int. J. Comput. Vis. 2020, 128, 2243–2264. [CrossRef]

34. Chen, H.; Wang, Y.; Shu, H.; Wen, C.; Xu, C.; Shi, B.; Xu, C.; Xu, C. Distilling portable generative adversarial networks for
image translation. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020;
Volume 34, pp. 3585–3592.

35. Stadie, B.C.; Abbeel, P.; Sutskever, I. Third-Person Imitation Learning. In Proceedings of the International Conference on Learning
Representations (ICLR), Toulon, France, 24–26 April 2017.

36. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
37. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. Openai gym. arXiv 2016,

arXiv:1606.01540.
38. Sutton, R.S. Generalization in reinforcement learning: Successful examples using sparse coarse coding. In Advances in Neural

Information Processing Systems; MIT Press: Cambridge, MA, USA, 1996; pp. 1038–1044.
39. Geramifard, A.; Dann, C.; Klein, R.H.; Dabney, W.; How, J.P. RLPy: A value-function-based reinforcement learning framework for

education and research. J. Mach. Learn. Res. 2015, 16, 1573–1578.
40. Barto, A.G.; Sutton, R.S.; Anderson, C.W. Neuronlike adaptive elements that can solve difficult learning control problems.

IEEE Trans. Syst. Man Cybern. 1983, 5, 834–846. [CrossRef]
41. Rajeswaran, A.; Kumar, V.; Gupta, A.; Vezzani, G.; Schulman, J.; Todorov, E.; Levine, S. Learning Complex Dexterous Manipulation

with Deep Reinforcement Learning and Demonstrations. In Proceedings of the Robotics: Science and Systems (RSS), Pittsburgh,
PA, USA, 26–30 June 2018.

42. Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; Moritz, P. Trust Region Policy Optimization. In Proceedings of the International
Conference on Machine Learning, PMLR, Lille, France, 7–9 July 2015; pp. 1889–1897.

43. Kumar, V.; Todorov, E. Mujoco haptix: A virtual reality system for hand manipulation. In Proceedings of the 2015 IEEE-RAS 15th
International Conference on Humanoid Robots (Humanoids), Seoul, Korea, 3–5 November 2015; pp. 657–663.

http://dx.doi.org/10.1587/transinf.2017EDL8175
http://dx.doi.org/10.1002/mp.14075
http://dx.doi.org/10.1007/s11263-020-01305-2
http://dx.doi.org/10.1109/TSMC.1983.6313077

	Introduction
	Related Work
	Problem Formulation
	The Proposed DAIL-GAN Model
	Feature Extractor Network F
	Discriminator Network D and Generator Network G
	Full Objective

	Performance Evaluation
	Experimental Settings
	Environments
	Baselines
	Network Structure and Hyperparameters

	Results
	Low-Dimensional Tasks
	High-Dimensional Tasks


	Discussion
	Conclusions
	References

