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Abstract: The shallow neural network (SNN) is a popular algorithm in atmospheric parameters
retrieval from microwave remote sensing. However, the deep neural network (DNN) has a stronger
nonlinear mapping capability compared to SNN and has great potential for applications in microwave
remote sensing. The Microwave Humidity and Temperature Sounder (Beijing, China, MWHTS)
onboard the Fengyun-3 (FY-3) satellite has the ability to independently retrieve atmospheric tempera-
ture and humidity profiles. A study on the application of DNN in retrieving atmospheric temperature
and humidity profiles from MWHTS was carried out. Three retrieval schemes of atmospheric param-
eters in microwave remote sensing based on DNN were performed in the study of bias correction
of MWHTS observation and the retrieval of the atmospheric temperature and humidity profiles
using MWHTS observations. The experimental results show that, compared with SNN, DNN can
obtain better bias-correction results when applied to MWHTS observation, and can obtain higher
retrieval accuracy of temperature and humidity profiles in all three retrieval schemes. Meanwhile,
DNN shows higher stability than SNN when applied to the retrieval of temperature and humidity
profiles. The comparative study of DNN and SNN applied in different atmospheric parameter
retrieval schemes shows that DNN has a more superior performance.

Keywords: SNN; DNN; MWHTS; FY-3; atmospheric temperature and humidity profiles; bias correc-
tion; retrieval scheme of atmospheric parameters

1. Introduction

As the basic parameters of the atmosphere, temperature and humidity profiles play an
important role in the research and applications of atmospheric science, such as numerical
weather forecast, climate change research, and strong convective weather forecast and anal-
ysis [1–4]. Global reanalysis datasets developed by the European Centre for Medium-Range
Weather Forecasts (ECMWF) or the National Centers for Environmental Prediction (NCEP)
are generated by the assimilation system that assimilates a lot of information from satellites’
and radiosondes’ data. The global reanalysis datasets are good estimations of the state of
the atmosphere and can be used as a reference in the retrieval of the atmospheric parame-
ters and the climate change research. Although the global reanalysis can provide a variety
of atmospheric parameters with high spatial resolution and high accuracy, it suffers from
a long time delay (one month or more) compared with the satellite observations, which can-
not meet the requirements for real-time in atmospheric applications, such as numerical
weather forecasting, extreme weather monitoring, etc. Microwave radiometer, which takes
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a passive microwave remote sensing approach, is an important instrument to monitor
the Earth–Atmosphere system, and its observation is an important data source to obtain
information about atmospheric temperature and humidity in atmospheric science [5,6].
The retrieval algorithm can be used to convert microwave remote sensing measurements
into atmospheric temperature and humidity parameters [7].

The atmospheric temperature and humidity profile retrieval algorithms based on
passive microwave observation have been developed for more than 60 years, and the
retrieval algorithms can be summarized into two categories: physical retrieval algorithms
and statistical retrieval algorithms [1,8]. The essence of the physical retrieval algorithm is
to estimate the atmospheric temperature and humidity profiles by inverting the radiative
transfer equation, which is an ill-posed problem and usually requires a priori information
to constrain the equation to obtain a unique solution (i.e., the temperature and humidity
retrievals) [9–12]. The essence of the statistical retrieval algorithm is to estimate the atmo-
spheric temperature and humidity profiles based on the statistical relationship between
the atmospheric temperature and humidity parameters and the microwave observations,
without involving any physical concepts [13–16]. In addition, an algorithm has also been
classified as a physical retrieval algorithm if a physical model is used in retrieving, and as
a statistical inversion algorithm otherwise.

Among the many retrieval schemes of atmospheric temperature and humidity profiles
using the passive microwave observations, three neural-network-based schemes have been
successfully and widely applied for most of the atmospheric scenes, especially the clear sky
scene [17,18]. The first retrieval scheme is based on the one-dimensional variational algo-
rithm (1DVAR), which is a typical representative of physical retrieval algorithms. It adjusts
the initial value of the atmospheric parameter through an iterative process, with the aim
that the bias between the observed brightness temperature and the simulated brightness
temperature calculated by the radiative transfer model using the initial value (observation
bias) satisfies a certain threshold, at which point the adjusted initial value is the retrieved
value of the atmospheric parameter [19]. However, the 1DVAR requires the observation
bias to satisfy the unbiased and Gaussian characteristics, so the observation bias must be
quantified and removed, and the removal of this bias can be performed by using a bias-
correction method based on neural networks (NNs) [20,21]. The second retrieval scheme is
based on the statistical relationship between the observed brightness temperature and the
atmospheric temperature and humidity profiles. NNs can be applied to build the statistical
model between the observed brightness temperature and the temperature and humidity
profiles [22–24]. The third retrieval scheme, which is based on the statistical model between
the simulated brightness temperature calculated by the radiative transfer model and the
atmospheric temperature and humidity profiles, is similar to the second retrieval scheme.
However, compared to the second retrieval scheme, the observed brightness temperature
must be corrected before retrieving; that is, the bias between the simulated brightness
temperature and the observed brightness temperature must be reduced as much as possible
(bias correction). Therefore, in the third retrieval scheme, NNs can be both applied to the
bias correction and the statistical modeling of the simulated brightness temperature and
the temperature and humidity profiles. In addition, the third retrieval scheme can be
classified as a physical retrieval scheme due to the calculation of the simulated brightness
temperature are performed by the radiative transfer model [17].

At present, although NNs are widely used to retrieve atmospheric temperature and
humidity profiles using passive microwave observations, it is almost the SNNs that are
extensively used, and they usually contain a hidden layer with a small number of neurons
that are based on the error backward propagation algorithm. Each neuron in the hidden
layer performs a nonlinear computation, and the small number of neurons in the hidden
layer limits the nonlinear mapping capability of SNN. When there are thick clouds or/and
rain in the sight of the microwave radiometer, the nonlinear relationship between the mea-
surements of the microwave radiometer and the atmospheric temperature and humidity
profiles is complicated, and SNN may not be able to accurately model the nonlinearity
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between the input and output samples, which leads to the poor accuracy or even failure of
the retrieval of the temperature and humidity profiles based on SNN. However, compared
with SNN, the nonlinear mapping capability of DNN has been greatly improved [25,26].
Therefore, DNN has great potential for applications in retrieving atmospheric parameters
using passive microwave observations.

MWHTS is a key payload onboard the new generation of polar-orbiting meteorologi-
cal satellites Fengyun-3C (FY-3C, Beijing, China) and FY-3D. It is a microwave radiometer
that integrates humidity and temperature sounding to detect atmospheric humidity and
temperature profiles simultaneously. In this paper, a study on the applications of DNN
in three retrieval schemes for temperature and humidity profiles using MWHTS measure-
ments is recounted. The retrieval results are analyzed and compared with those of SNN,
with the aim of exploring the potential of DNN in retrieving atmospheric parameters
by using passive microwave observations. This paper is organized as follows: Section 2
describes the data and model used in this study. In Section 3, the retrieval algorithm and
experimental design are presented, mainly including the introduction of DNN and the
description of application methods of DNN in three retrieval schemes. Section 4 presents
the experimental results and analysis. Section 5 presents the conclusions.

2. Data and Model
2.1. MWHTS Characteristics

As a total power microwave radiometer, MWHTS is an important payload onboard
FY-3C and FY-3D satellites, which were launched in September 2013 and November 2017,
respectively, and both payloads are operating normally in orbit and have accumulated rich
atmospheric sounding data. MWHTS performs the cross-track scanning along the orbit
with the angle of ±53.35◦ from the nadir to inspect 98 nominal fields of view (FOVs) in
each scan line, which is corresponding to the scanning of the swath of 2645 km in 2.667 s.
MWHTS has eight temperature sounding channels with frequencies near the 118.75 GHz
oxygen absorption line for sounding temperature from the surface to the upper atmosphere
and five humidity sounding channels with frequencies around the 183.31 GHz water vapor
absorption line for sounding water vapor and precipitation from the surface to about
300 hPa, and two window channels with frequencies at 89.0 and 150.0 GHz, respectively,
for providing information about the surface parameters [27]. Table 1 lists major channel
characteristics of MWHTS onboard Fengyun-3C and -3D satellites.

Table 1. Channel characteristics of MWHTS.

Channel Frequency
(GHz)

Sensitivity
(K)

In-Flight
Sensitivity (K)

Calibration
Accuracy (K)

Peak WF
Height (hPa)

1 89.0 1.0 0.23 1.3 window
2 118.75 ± 0.08 3.6 1.62 2.0 30
3 118.75 ± 0.2 2.0 0.75 2.0 50
4 118.75 ± 0.3 1.6 0.59 2.0 100
5 118.75 ± 0.8 1.6 0.65 2.0 250
6 118.75 ± 1.1 1.6 0.52 2.0 350
7 118.75 ± 2.5 1.6 0.49 2.0 surface
8 118.75 ± 3.0 1.0 0.27 2.0 surface
9 118.75 ± 5.0 1.0 0.27 2.0 surface

10 150.0 1.0 0.34 1.3 window
11 183.31 ± 1.0 1.0 0.47 1.3 300
12 183.31 ± 1.8 1.0 0.34 1.3 400
13 183.31 ± 3.0 1.0 0.30 1.3 500
14 183.31 ± 4.5 1.0 0.22 1.3 700
15 183.31 ± 7.0 1.0 0.27 1.3 800
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2.2. Data and Model

The datasets used in this study included the following: (1) Level 1b brightness tem-
peratures of MWHTS onboard FY-3D from the National Satellite Meteorological Center
(NSMC) (http://satellite.nsmc.org.cn accessed on 15 November 2019)—the quality of
MWHTS observations at ECMWF has been evaluated, and the detailed description of the
evaluated results can see Lawrence et al. [28]; and (2) European Centre for Medium Range
Weather Forecasts (ECMWF) ERA-Interim reanalysis dataset obtained from the ECMWF
website (http://apps.ecmwf.int/datasets accessed on 15 November 2019). Many global
atmospheric sounding measurements are assimilated with the 12-h analysis window by
using four-dimensional variational analysis to produce ERA-Interim [29,30]. In this study,
the profile parameters and the surface parameters from ERA-Interim were used to build
the atmospheric parameter dataset, where the profile parameters include: temperature,
specific humidity, and specific cloud liquid content, which have a total of 37 pressure levels
unevenly from 1000 to 1 hPa, and the surface parameters include the following: 2 m tem-
perature, 2 m dewpoint temperature, surface pressure, skin temperature, and 10 m u wind
component and 10 m v wind component. The parameters used to build the atmospheric
parameter dataset were with a horizontal resolution of 0.5 × 0.5◦ and a temporal resolution
of 6 h. The data from the ocean area of 25◦ N–45◦ N and 160◦ E–220◦ E from 1 September
2018 to 31 August 2019 were selected to build the atmospheric parameter dataset and
MWHTS brightness temperature dataset.

In the three retrieval schemes used in this study, it was necessary to calculate the
simulations of MWHTS, especially for the retrieval scheme based on the physical retrieval
algorithm, where the radiative transfer model is an essential part. In this study, the fast
radiative transfer model RTTOV (Radiative Transfer for Television and Infrared Observa-
tion Satellite Operational Vertical Sounder, Washington, DC, USA), Version 11.3, developed
by ECMWF, was used to calculate MWHTS simulated brightness temperatures. RTTOV
can calculate simulated brightness temperatures for a wide range of satellite-based mi-
crowave radiometers, with an accuracy that can meet the application requirements [31].
The emission-based RTTOV mode was performed to simulate the brightness temperature
of MWHTS due to the lack of information about ice clouds and rain.

2.3. Data Preprocessing

According to the purpose of this paper, for applying the data used in this study in
the three retrieval schemes, the data-preprocessing process was as follows. First, building
the collocated dataset. As for the criteria of the collocation between the MWHTS observed
brightness temperatures and the atmospheric parameter dataset, the time and absolute
distance in latitude and longitude are less than 0.5 h and 0.1◦, respectively. Second,
calculating the simulated brightness temperatures of MWHTS in the collocated dataset in
which the profile parameters and the surface parameters are input to RTTOV to calculate the
simulations. Then, after filtering out the scattering-affected data in the collocated dataset,
we took the vertical integral cloud liquid water of 0.05 mm as the threshold of precipitation.
If the integral cloud liquid water in one group of collocated dataset exceeds 0.05 mm,
then that group’s data are considered as scattering-affected data and are removed. Finally,
80% of the collocated dataset after filtering out the scattering-affected data containing
the observed brightness temperatures, the simulated brightness temperatures, and the
atmospheric parameters is randomly selected as the analysis dataset with 848129 collocated
samples, and the remaining 20% are set as the testing dataset with 212033 collocated
samples. The overall data preprocessing procedures are summarized in Figure 1.

http://satellite.nsmc.org.cn
http://apps.ecmwf.int/datasets
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3. Algorithm and Experiment Design
3.1. Deep Neural Network

In 2006, deep learning was introduced in the research of Hinton and his students,
which initiated the research wave of multilayer neural networks, and many scholars
began to study the applications of DNN in various fields [32]. In short, DNN can be
understood as a neural network that contains many hidden layers and the hidden layers
contain many neurons. DNN has a similar network structure to SNN widely used in
atmospheric parameters retrieval, i.e., it contains an input layer, several hidden layers,
and an output layer. Moreover, as with SNN, DNN can be based on the backpropagation
learning algorithm, which targets the minimum squared error of prediction and adjusts
the threshold and weight of the network to close the expected value. SNN and DNN are
both fully connected networks, where each neuron in each layer is connected to all neurons
in the next layer. In the hidden layer, each neuron performs nonlinear computation on
all input vectors to achieve a nonlinear description of the relationship between input and
output samples, which makes them have nonlinear mapping capability [33]. Building
a DNN or SNN will involve error backpropagation algorithms, loss functions, and gradient
descent algorithms, etc., as detailed in References [26,34,35]. In addition, the structural
similarity between DNN and SNN makes them operate in similar ways when applied
to microwave remote sensing atmospheric parameters, such as the building of learning
samples, the application of error backpropagation algorithm, the setting of activation
function, etc. However, the differences in the number of hidden layers and the number of
neurons in each hidden layer between DNN and SNN make DNN have a stronger learning
ability than SNN and, therefore, show a superior application.

The purpose of DNN, as a type of neural network, is to build a statistical model
between input and output samples through supervised learning in a training dataset, and to
make predictions on new input samples from the validation dataset when they are fed into
the established statistical model. In this study, the application of DNN to the retrieval of
atmospheric temperature and humidity profiles using MWHTS observations involved two
main aspects: the building of the DNN-based observation-bias-correction model and the
building of the DNN-based retrieval model for temperature and humidity profile.

For MWHTS-observation-bias correction, DNN was used to build a statistical model
between MWHTS-observed brightness temperatures and MWHTS observation biases for
predicting the observation biases, and the observation biases are defined as follows:

R̃B = R̃− R̃S (1)

where R̃ is the observed brightness temperatures, and R̃S is the simulated brightness tem-
peratures. The predictions of the observation bias are obtained as follows. First, the training
dataset of DNN is established, i.e., the MWHTS observed brightness temperatures in the
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analysis dataset are set as the input samples, and the observation biases in the analysis
dataset are set as the output samples. Then, the four-layer network structure of DNN
(i.e., one input layer, two hidden layers, and one output layer) is built. The training dataset
is used to train the DNN model, and the DNN-based observation-bias prediction model
is built. Finally, the MWHTS observed brightness temperatures from the testing dataset
are fed into the DNN-based observation-bias-prediction model to obtain the predictions of
the observation bias, and the observation biases in the testing dataset are used to verify
the correction effect of the DNN-based observation-bias-prediction model. Further de-
tails of the training and testing of the DNN-based observation-bias-prediction model are
contained in Sections 3.3 and 4, respectively. Based on the predictions of the observation
bias, the observation-bias-correction model and the corrected brightness temperatures
are obtained:

R̃C = R̃− R̃
′
B (2)

where R̃
′
B is the prediction of the observation bias. An illustration of the schematic of the

observation-bias-correction process is displayed in Figure 2.
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For the retrieval of atmospheric temperature and humidity profiles, both MWHTS ob-
served brightness temperature and MWHTS simulated brightness temperature can be used
to build the retrieval model. The DNN-based retrieval model using the observed brightness
temperature is built as follows. The training dataset of DNN is established, i.e., MWHTS ob-
served brightness temperatures in the analysis dataset are set as the input samples, and the
atmospheric temperature and humidity profiles in the analysis dataset are set as the output
samples. Then, the four-layer network structure (i.e., one input layer, two hidden layers,
and one output layer) of DNN is built, and DNN is trained by using the training dataset.
Thus, the DNN-based retrieval model, using the observations, is built. If DNN is trained
with the simulated brightness temperature instead of the observed brightness temperature
in the training dataset, the DNN-based retrieval model using the simulations is obtained.
Finally, the observed brightness temperatures from the testing dataset are fed into the
DNN-based retrieval model using the observation or the corrected brightness temperature
from the testing dataset are fed into the DNN-based retrieval model, using the simulations
to obtain the retrievals of the temperature and humidity profiles, and the temperature
and humidity profiles in the testing dataset are used to verify the retrieval of the tempera-
ture and humidity profiles. Further details of the training and testing of the DNN-based
retrieval models are also contained in Sections 3.3 and 4, respectively. The schematic of
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the retrieval of the atmospheric temperature and humidity profiles using the above two
DNN-based retrieval models are summarized in Figures 3 and 4, respectively.
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3.2. The 1DVAR Algorithm

The 1DVAR algorithm is generally labeled under the general term of physical retrieval
that inputs the initial values of atmospheric parameters to the radiative transfer model and
adjusts the initial values through an iterative process with the aim of fitting the simulations
from the radiative transfer model to the observations from the satellite. The 1DVAR
algorithm mainly includes two parts: one is the radiative transfer model for the simulations
of brightness temperature; the other is the minimization of the cost function. Assuming
that the errors in the observations are neither biased nor correlated, Gaussian distribution,
the optimal estimate of the atmospheric state variable, S, can be obtained by minimizing
the following cost function [36]:

ξ=
1
2
(S− Sa)

TC−1
SS (S− Sa) +

1
2

[
f(S)− R̃

]T
C−1

ΨΨ

[
f(S)− R̃

]
(3)

where CΨΨ is the observation-error covariance matrix, which is the sum of the covariance
error in the brightness temperature simulations and the sensor noise; CSS is the background
covariance matrix; Sa is the background state variable; f is the forward operator that
simulates the satellite observations at the atmospheric state variable, S; and T represents
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the matrix transpose. By minimizing the cost function, ξ, the optimal solution is obtained
as follows:

Sn+1 = Sa + CSSKT
n

[
KnCSSKT

n + CΨΨ

]−1[
R̃− f(S)−Kn(Sa − Sn)

]
(4)

where K is the tangent linear function of f at point S, n is the iteration index, and S1 is the
initial state variable.

In this study, the parameters of the 1DVAR for retrieving atmospheric temperature
and humidity profiles using MWHTS observations were specifically set as follows. The av-
erages of the temperature and humidity profiles in the analysis dataset were taken as both
the background state variable, Sa, and the initial state variable, S1. MWHTS observation
bias was corrected by using DNN, as detailed in Section 3.1, above. After removing bi-
ases in the observations, the biases between the observations and the simulations and
the sensitivities of MWHTS measured in flight (see Table 1), which are often considered
as the instrument channel noise, were used to compute the observation-error covariance
matrix, CΨΨ ; the atmospheric temperature and humidity profiles in the analysis dataset
were used to generate the background covariance matrix, CSS. For details on the calcu-
lation of the observation-error covariance matrix and the background covariance matrix,
see References [20,37,38]. The building procedure of the MWHTS 1DVAR retrieval system
by setting the parameters of 1DVAR is shown in Figure 5.
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3.3. Design of Retrieval Experiment

In this study, three commonly used retrieval schemes were designed for retrieving
atmospheric temperature and humidity profiles by using MWHTS brightness temperatures
to study the effect of DNN on the retrieval accuracy of temperature and humidity profiles
in different retrieval schemes. In order to compare the performance of DNN in retrieving
temperature and humidity profiles, studies of SNN in the three retrieval schemes were
carried out. The three retrieval schemes for retrieving atmospheric temperature and
humidity profiles using MWHTS brightness temperatures were specifically designed
as follows.

The first retrieval scheme: The 1DVAR retrieval retrieved the atmospheric temperature
and humidity profiles based on the MWHTS 1DVAR retrieval system. First, according
to the description in Section 3.1, the DNN-based and the SNN-based observation-bias-
correction models were built, and they were used to correct MWHTS observed brightness
temperatures in the testing dataset, respectively. Then the DNN-based corrected bright-
ness temperatures and the SNN-based corrected brightness temperatures were obtained.
Then the parameters of the 1DVAR were set according to the description in Section 3.2,
and the MWHTS 1DVAR retrieval system was established. Finally, the DNN-based cor-
rected brightness temperatures and the SNN-based corrected brightness temperatures
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were input to the MWHTS 1DVAR retrieval system, and the retrieval results of the atmo-
spheric temperature and humidity profiles based on DNN and SNN models were obtained,
respectively. The schematic of the 1DVAR retrieval scheme is summarized in Figure 6.
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The second retrieval scheme: The NN-based retrieval using the observations retrieved
the atmospheric temperature and humidity profiles by the NN-based retrieval model
using the observations. The DNN-based retrieval model using the observations and
the SNN-based retrieval model using the observations were established, respectively,
as described in Section 3.1. Then the MWHTS observed brightness temperatures in the
testing dataset were input to the DNN-based retrieval model using the observations and
the SNN-based retrieval models using the observations, respectively. Then, the retrieval
results of atmospheric temperature and humidity profiles based on DNN and SNN models
were obtained, respectively.

The third retrieval scheme: The NN-based retrieval using the simulations retrieved
the atmospheric temperature and humidity profiles by the NN-based retrieval model
using the simulation. The DNN-based retrieval model using the simulations and the SNN-
based retrieval model using the simulations were established, respectively, as described in
Section 3.1. Then, the DNN-based corrected brightness temperature and the SNN-based
corrected brightness temperature obtained in the first retrieval scheme were input to the
DNN-based and SNN-based retrieval models using the simulations, respectively. Then the
retrieval results of atmospheric temperature and humidity profiles based on DNN and
SNN models were obtained, respectively.

In this study, the DNN and the SNN design used in the three retrieval schemes
both produced the best results in terms of reproducing the observations bias and the
atmospheric temperature and humidity profiles. The input layers of DNN and SNN
used in the observation-bias correction have 15 neurons, which receive the observations
of 15 channels of MWHTS, and the output layers have 15 neurons, which output the
observation biases corresponding to the observations in the input layers. In the retrievals
of the temperature and humidity profiles, the input layers of DNN and SNN also have
15 neurons, which receive the simulations or the observations of MWHTS; the output layers
have 74 neurons, which output the temperature and humidity profiles.

For the hidden layers of DNN and SNN applied in the three retrieval schemes, the con-
figurations of neurons, layers, and activation function were determined by extensive testing
(CPU: Intel I5, 1.8 GHz; Memory: 16 GB; GPU: NVIDIA GeForce GTX 1060 6 GB). In the
extensive testing, the trained DNN and SNN for the observation-bias correction were eval-
uated by the Root Mean Square Error (RMSE) between the predictions of the observation
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bias and the observation biases in the testing dataset, and the trained DNN and SNN
for the retrieval of the temperature and humidity profiles were evaluated by the RMSE
between the retrievals and the temperature and humidity profiles in the testing dataset.

In the three retrieval systems, one hidden layer for SNN and two hidden layers for
DNN can ensure adequate training of the model in the extensive testing. Then the Rectified
Linear Unit (ReLU) was selected as the activation function in this study because it can
overcome the problems of saturation and vanishing gradients [26]. Moreover, compared
with Leaky ReLU and sigmoid, DNN or SNN with ReLU can obtain the highest prediction
accuracies in the three retrieval schemes. SNN was trained with a different number of
neurons in the hidden layer, and the number of neurons increases from 5 to 50, one by one.
However, DNN was trained with the number of neurons in the hidden layers; the number
of neurons increases from 10 to 1000 in steps of 10, and the same number of neurons
was used in both hidden layers. It can be found that small differences in the number of
neurons in the hidden layer have a significant impact on the prediction accuracy of the
SNN, while the impact on the DNN is small. Targeting the prediction accuracy of the neural
network, the number of the hidden layer, the number of neurons in the hidden layers,
and the activation function were determined by extensive testing for the three retrieval
schemes listed in Tables 2 and 3. In addition to that, it is important to avoid overfitting in
the training. Early stopping can terminate training before overfitting occurs, which split the
training dataset and use a subset (20%) as a validation dataset to monitor the performance
of NN in the training. An arbitrary maximum number of training epochs is specified,
and the training will be terminated if the loss on the validation dataset does not change
over a given number of epochs (i.e., patience). The maximum numbers of epochs and
the patience for DNN and SNN used in the three retrieval schemes were 2000 and 100,
respectively.

Table 2. The DNN configuration.

Retrieval Scheme Number of Hidden
Layers

Number of Neurons
in Hidden Layer Activation Function

1st 2 500,500 ReLU
2st 2 300,300 ReLU
3st 2 300,300 ReLU

Table 3. The SNN configuration.

Retrieval Scheme Number of Hidden
Layers

Number of Neurons
in Hidden Layer Activation Function

1st 1 33 ReLU
2st 1 21 ReLU
3st 1 24 ReLU

4. Experimental Results

This section presents the experimental results of DNN and SNN models used to
correct the MWHTS observation bias, as well as the retrieval results of atmospheric tem-
perature and humidity profiles when DNN and SNN models are applied to the three
retrieval schemes described in Section 3.3, and also presents the experimental results of
the stability test of DNN and SNN models in retrieving the atmospheric temperature and
humidity profiles.

4.1. Bias-Correction Results

According to the experimental design in Section 3.3, the DNN-based and the SNN-
based observation-bias-correction models can be built to correct the MWHTS observation
bias in the testing dataset, and then to obtain the DNN-based corrected brightness temper-
ature and the SNN-based corrected brightness temperature, respectively. The comparisons
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of the probability density distribution of the observation bias for each channel of MWHTS
before and after the bias correction are shown in Figure 7.
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As can be seen in Figure 7, before bias correction, the observation bias is large in each
channel, and after correcting by DNN and SNN, respectively, the observation bias is signif-
icantly reduced. Comparing the DNN-based and SNN-based observation-bias-correction
model, the DNN-based bias-correction results are significantly better than the SNN-based
bias-correction results, and the observation bias corrected by DNN is more consistent with
the unbiased and Gaussian properties of the observed brightness temperature required
by the 1DVAR algorithm. In order to compare the bias-correction performance of DNN
and SNN in each channel of MWHTS in more detail and quantitatively, the RMSE between
the observed brightness temperature and the simulated brightness temperature before and
after the bias correction is calculated, as shown in Figure 8.

As can be seen from Figure 8, both DNN and SNN can effectively correct the observa-
tion bias of MWHTS. For MWHTS window channels 1 and 10 and the channel 9 with peak
WF height close to the surface, the observation biases before bias correction are large due
to the fact that the surface parameters, the calculation accuracy of the surface emissivity,
and the cloud-water parameters in the detection path can enhance the nonlinearity of
microwave radiative transfer, which in turn adversely affects the microwave radiation
measurements in these channels, and therefore, this may be the main reason why both
the DNN-based and the SNN-based observation-bias-correction models are not significant
in these channels above. For temperature sounding channels 2–8, since these channels
mainly detect the temperature information of the upper atmosphere, the nonlinearity of
microwave radiative transfer is relatively weak, and the bias-correction effects of both
DNN and SNN models are relatively obvious. In particular, the corrected observation
biases of channels 3–6 are less than 0.7 K, and the bias-correction magnitudes are up to
3K. For the humidity sounding channels 11–15, the microwave radiation measured by
these channels mainly comes from the water vapor parameter, which has obvious spa-
tial and temporal variation characteristics, and the matching error between the observed
brightness temperature and the simulated brightness temperature in the training dataset
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of the neural networks also has an impact on the bias-correction results. Among them,
the bias-correction effect of channel 15 is the most significant, and the bias-correction
amplitude can reach 2.5 K. Comparing DNN and SNN in the bias correction, DNN shows
superior bias-correction performance in all channels of MWHTS, especially in window
channels 1 and 10 and channels 9 and 15, whose peak WF heights are close to the surface,
which have stronger nonlinearities in microwave radiation transmission. This verifies that
DNN has a stronger nonlinear mapping capability in MWHTS-observation-bias correction
than SNN. In a word, DNN has more significant bias-correction performance than SNN
when applied to MWHTS-observation-bias correction. However, the retrieval performance
of the DNN-based corrected brightness temperatures and the SNN-based corrected bright-
ness temperatures in retrieving atmospheric temperature and humidity profiles needs to
be further verified in the first retrieval scheme and the third retrieval scheme.
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4.2. Results of Retrieval Experiment

This section presents the retrieval results of the temperature and humidity profiles
of the three retrieval schemes as designed in Section 3.3. The retrieval accuracies of the
three retrieval schemes are verified and analyzed by using the temperature and humidity
profiles in the testing dataset, which, from ERA-Interim, are used as the truth values. Based
on the distribution characteristics of peak WF heights of MWHTS channels, the retrievals at
levels from 1000 to 30 hPa for temperature and from 1000 to 250 hPa for relative humidity
are validated, respectively. RMSE between the retrievals and the atmospheric temperature
and humidity profiles from ERA-Interim is considered as the standard quantification to
validate the retrievals.

4.2.1. The Retrieval Results of the 1DVAR Retrieval

According to the experimental design of the first retrieval scheme, the MWHTS ob-
served brightness temperature in the testing dataset, the DNN-based corrected brightness
temperature, and the SNN-based corrected brightness temperature obtained in Section 4.1
are respectively input to the MWHTS 1DVAR retrieval system to retrieve the atmospheric
temperature and humidity profiles. The comparisons of the retrieval accuracies of the three
brightness temperatures are shown in Figure 9, and are also concluded in Table 4, which are
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given at five different atmospheric levels corresponding to 100, 300, 500, 800, and 950 hPa
for temperature and four levels for humidity since the 100 hPa levels are not reliable.
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Table 4. Summary of the retrieval RMSE of the 1DVAR retrieval with respect to ERA-Interim.

Temperature RMSE (K) Humidity RMSE (%)

Level
(hPa) SNN DNN Without Bias

Correction SNN DNN Without Bias
Correction

100 0.51 0.61 1.85 - - -
300 1.85 1.52 3.86 8.00 6.49 8.20
500 2.01 1.69 3.19 17.94 11.01 18.75
800 1.58 1.49 2.48 27.12 24.05 37.93
950 2.11 2.09 3.54 12.01 11.97 20.01

As can be seen from Figure 9, the bias correction of the observed brightness tempera-
ture provides a significant improvement in the retrieval accuracy of the temperature and
humidity profiles, up to about 2 K at 300 hPa for the temperature retrievals and up to about
11% at 800 hPa for the relative humidity retrieval. It can be seen that the bias correction
of observation bias is crucial for the retrieval accuracy of the MWHTS 1DVAR retrieval
system. Comparing the performances of the DNN-based and SNN-based observation-bias-
correction models in the MWHTS 1DVAR retrieval system, for the temperature profile
retrieval, the retrieval accuracies of the DNN-based corrected brightness temperature and
the SNN-based corrected brightness temperature are comparable for the upper atmosphere
above 200 hPa and the bottom atmosphere from 800 to 1000 hPa. While between 250 and
800 hPa, the retrieval accuracy of the DNN-based corrected brightness temperature is
significantly higher than that of the SNN-based corrected brightness temperature, and the
retrieval accuracy can be improved by 0.4 K at 450 hPa. For the humidity profile retrieval,
the retrieval accuracy of the DNN-based corrected brightness temperature is better than
that of the SNN-based corrected brightness temperature in the range of 250 to 850 hPa,
especially at 600 hPa, where the retrieval accuracy can be improved by 8.5%. Comparing
the performance of the two observation-bias-correction models in the MWHTS 1DVAR
retrieval system, it can be found that the DNN-based corrected brightness temperature can
obtain higher retrieval accuracies of temperature and humidity profiles.
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4.2.2. The Retrieval Results of the NN-Based Retrieval Using the Observations

According to the experimental design of the second retrieval scheme, the observed
brightness temperature in the testing dataset is input to the DNN-based and SNN-based
retrieval models using the observations, respectively. The output results are the retrieval
results of temperature and humidity profiles, and the retrieval accuracies are verified as
shown in Figure 10 and Table 5.
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Figure 10. The retrieval RMSEs of the NN-based retrievals using the observations with respect to
ERA-Interim.

Table 5. Summary of the retrieval RMSE of the NN-based retrievals using the observations with
respect to ERA-Interim.

Temperature RMSE (K) Humidity RMSE (%)

Level (hPa) SNN DNN SNN DNN

100 1.85 1.82 - -
300 2.31 2.21 10.94 10.39
500 1.95 1.86 12.63 11.90
800 1.94 1.69 18.42 16.81
950 1.81 1.68 8.26 7.63

From Figure 10, it can be seen that for temperature profile retrieval, the DNN and
SNN can obtain comparable retrieval accuracies in the upper atmosphere above 200 hPa,
but in the range of 200–1000 hPa, DNN can obtain higher retrieval accuracy, and the
maximum improvement is about 0.3 K at 700 hPa compared with SNN. For humidity profile
retrieval, the retrieval accuracy of DNN is higher than that of SNN at all atmospheric levels,
with a maximum improvement of about 2.5% at 850 hPa compared to SNN. The comparison
of the retrieval results of MWHTS observations based on DNN and SNN shows that
DNN can obtain higher retrieval accuracies of atmospheric temperature and humidity
profiles than SNN in the study of retrieving the temperature and humidity profiles using
MWHTS observations.

4.2.3. The Retrieval Results of the NN-Based Retrieval Using the Simulations

According to the experimental design of the third retrieval scheme, the DNN-based
corrected brightness temperature and the SNN-based corrected brightness temperature
obtained in the first retrieval scheme are input to the DNN-based and SNN-based retrieval
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models using the simulations, respectively, to obtain the retrieval results of the atmospheric
temperature and humidity profiles, and the comparison of the retrieval accuracies is shown
in Figure 11, and Table 6.
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ERA-Interim.

Table 6. Summary of the retrieval RMSEs of the NN-based retrievals using the simulations with
respect to ERA-Interim.

Temperature RMSE (K) Humidity RMSE (%)

Level (hPa) SNN DNN SNN DNN

100 2.89 2.05 - -
300 10.13 2.51 25.67 12.40
500 4.80 2.66 73.11 13.85
800 9.13 2.03 78.78 18.40
950 2.67 2.01 9.79 8.52

From Figure 11, it can be seen that, for the retrieval results of DNN, the retrieval
accuracies of both temperature and humidity profiles are comparable to those of the first
retrieval scheme and the second retrieval scheme. However, for the retrieval results of
SNN, the retrieval accuracy of the temperature profile at 350 hPa is about 12 K and the
retrieval accuracy of the humidity profile at 800 hPa is about 79%. Such poor retrieval
accuracy undoubtedly proves that the application of SNN in the third retrieval scheme is
a failure. In order to find the reason for the failure of SNN applied in the third retrieval
scheme, another experiment is carried out in which the simulated brightness temperature
in the testing dataset is used to replace the corrected brightness temperature used in the
third retrieval scheme, which is input to the DNN-based and SNN-based retrieval models
using the simulations, respectively, to obtain the retrievals of atmospheric temperature and
humidity profiles. The retrieval accuracies are shown in Figure 12 and Table 7.
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Table 7. Summary of the DNN-based and the SNN-based retrieval RMSEs using MWHTS simulated
brightness temperatures.

Temperature RMSE (K) Humidity RMSE (%)

Level (hPa) SNN DNN SNN DNN

100 1.44 1.76 - -
300 1.83 1.80 6.80 6.60
500 1.54 1.79 7.38 7.08
800 1.50 1.61 12.37 10.21
950 1.49 1.61 7.87 6.27

From Figure 12, it can be found that for the temperature retrieval results of SNN,
the retrieval accuracy of SNN is improved substantially compared with that of the NN-
based retrieval using the simulations, and comparable to that of DNN can be obtained,
even slightly higher in the range of 300–1000 hPa. For the temperature retrieval results of
DNN, the retrieval accuracy is improved by 0.8 K at 500 hPa compared with that of the
NN-based retrieval using the simulations. For the humidity retrieval results of SNN, the re-
trieval accuracy of SNN is improved substantially compared with the retrieval results of
the NN-based retrieval using the simulations, and the humidity retrieval accuracy of DNN
is improved by 8.2% at most. It is obvious that both neural networks obtain higher retrieval
accuracy compared to that of the NN-based retrieval using the simulations. The reason for
this is that the neural networks are trained to establish a statistical relationship between the
simulated brightness temperature and the atmospheric temperature and humidity profiles,
which is relatively simple compared to the statistical relationship between the corrected
brightness temperature or the observed brightness temperature and the atmospheric tem-
perature and humidity profiles in the NN-based retrieval using the simulations, because
there is no observation bias. However, when the corrected brightness temperature is input
to SNN for retrieval in the NN-based retrieval using the simulations, the retrieval fails as
shown in Figure 11, which is due to the poor generalization ability of SNN itself. Therefore,
for the NN-based retrieval using the simulations, SNN fails in the retrieval, while DNN
outperforms due to its stronger generalization ability.
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4.3. Algorithm Stability Test

The stability test of the algorithm is required when the neural network is applied to
retrieve the atmospheric parameters using passive microwave measurements. The weights
and biases are set randomly at the start of the training of the neural network. The per-
formance of a well-constructed neural network for atmospheric parameter retrieval is
not affected by the different weights and biases used at the start of training. Therefore,
the stability testing experiments of DNN and SNN in the three retrieval schemes are carried
out, simultaneously. Taking the 1DVAR retrieval and the NN-based retrieval using the
observations as examples, one must retrain the DNN and SNN models with randomly
initialized weights and biased for three separate times, respectively. Then they are applied
to the same MWHTS observations as those of the 1DVAR retrieval and the NN-based
retrieval using the observations. The differences in the RMSE of bias correction between
the three bias corrections and the bias correction in Section 4.1 are shown in Figure 13.
The differences in the retrieval accuracies between the three retrievals and the retrieval in
Section 4.2.2 are shown in Figure 14.
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For the bias-correction results of SNN and DNN for MWHTS observation bias, it can
be seen from Figure 13 that when different weights and biases are used at the start of
training of SNN and DNN, the differences of the RMSEs of bias corrections of SNN-
based bias-correction model between three bias corrections and the bias correction in
Section 4.1 stay within 0.2 K for all 15 channels, while those of DNN-based bias-correction
model remain within 0.05 K in all 15 channels. Although the bias-correction difference of
0.2 K due to SNN can be negligible to the atmospheric temperature and humidity results,
DNN shows more stability when applied to the MWHTS-observation-bias correction
compared to SNN. For the retrieval results of SNN and DNN using MWHTS observations,
it can be seen from Figure 14 that three separate trainings used different weights and
biases at the start of the training of SNN and DNN lead to comparable differences in the
retrieval results of the temperature profiles, which are both kept within 0.2 K. While the
difference in the humidity profiles retrieval is smaller for DNN. In summary, SNN and
DNN have good and comparable stability when applied to retrieve temperature profiles
using MWHTS observations, and SNN and DNN also have good stability when applied to
retrieve humidity profiles using MWHTS observations, but DNN performs more stable.
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In conclusion, both SNN and DNN can be successfully applied to the 1DVAR retrieval
and the NN-based retrieval using the observations, and DNN shows better performance
than SNN in both MWHTS-observation-bias correction and the retrieval of temperature
and humidity profiles using MWHTS observations. However, in the NN-based retrieval
using the observations, the application of SNN fails, while DNN achieves a successful
retrieval based on MWHTS simulations due to its stronger generalization ability. For the
three retrieval schemes, although the 1DVAR retrieval and the NN-based retrieval using
the observations obtain comparable retrieval accuracies of atmospheric temperature and
humidity profiles, they have their advantages and disadvantages. Although the 1DVAR
algorithm does not require a large amount of historical data for learning the sample
features, the parameters of the physical retrieval system need to be set before retrieving
to ensure a high retrieval accuracy, which is computationally intensive and expensive.
In the NN-based retrieval using the observations, although the retrieval operation is
simple, it is necessary to establish representative sample data for the training of NNs to
ensure high retrieval accuracy when applied to new observed brightness temperature.
For the NN-based retrieval using the simulations, although the retrieval accuracy is slightly
poorer compared with the former two retrieval schemes, it has the advantage that the
data-matching errors between satellite observations and atmospheric parameters can be
disregarded because the atmospheric parameters can be directly used to generate simulated
brightness temperatures, which can satisfy the demand of the neural network for a large
number of data samples, and it is easy to establish a representative sample dataset.

5. Conclusions

In this paper, the application of DNN in the retrieval of atmospheric temperature
and humidity profiles from FY-3D/MWHTS was investigated, mainly involving the ap-
plication of DNN in MWHTS-observation-bias correction and in retrieving atmospheric
temperature and humidity profiles using MWHTS observed brightness temperature or
MWHTS simulated brightness temperature. In order to verify the performance of DNN
applied in retrieving, a study on the application of SNN in the same situation was also
carried out. It is found that, in the three retrieval schemes of atmospheric temperature and
humidity profiles that use MWHTS measurements, DNN shows superior performance
and better stability than SNN in both MWHTS-observation-bias correction and retrieval of
atmospheric temperature and humidity profiles. Therefore, the results indicate that DNN
and other deep learning algorithms have great potential in the applications of microwave
remote sensing.
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It is noted that the retrieval experiments of temperature and humidity profiles in
this study were conducted under all-weather conditions and do not classify the MWHTS
observations for different atmospheric states, such as clear sky, cloudy, and rainy. In practi-
cal applications, higher retrieval accuracy can be obtained if the brightness temperature
classification according to different atmospheric states is realized based on the brightness
temperature characteristics, and then the atmospheric temperature and humidity profile
is retrieved under different atmospheric states. However, it is difficult to classify satellite
observed brightness temperature under different atmospheric states based on the char-
acteristics of satellite observations at present. The study of data classification of satellite
microwave observation under different atmospheric states by deep learning algorithms to
further improve the retrieval accuracy of atmospheric temperature and humidity profiles
using satellite passive microwave observations is the focus of future work.

Author Contributions: Conceptualization, Q.H. and Z.W.; methodology, Q.H. and J.L.; validation,
Q.H., Z.W. and J.L.; writing—original draft preparation, Q.H.; writing—review and editing, Z.W.
and J.L.; funding acquisition, Q.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China un-
der Grant No. 41901297, the Science and Technology Key Project of Henan Province under Grant
No. 202102310017, the Key Research Projects for the Universities of Henan Province under Grant
No. 20A170013, and the China Postdoctoral Science Foundation NO.2021M693201.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank NSMC for providing the MWHTS and MWTS-II
observations, as well as ECMWF for providing the ERA-Interim reanalysis data.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript;
or in the decision to publish the results.

References
1. Polyakov, A.; Timofeyev, Y.M.; Virolainen, Y. Comparison of different techniques in atmospheric temperature-humidity sensing

from space. Int. J. Remote Sens. 2014, 35, 5899–5912. [CrossRef]
2. Cadeddu, M.P.; Liljegren, J.C.; Turner, D.D. The atmospheric radiation measurement (ARM) program network of microwave

radiometers: Instrumentation, data and retrievals. Atmos. Meas. Tech. 2013, 6, 2359–2372. [CrossRef]
3. Turner, D.D.; Löhnert, U. Ground-based temperature and humidity profiling: Combining active and passive remote sensors.

Atmos. Meas. Tech. 2021, 14, 3033–3084. [CrossRef]
4. Ebell, K.; Orlandi, E.; Hünerbein, A.; Löhnert, U.; Crewell, S. Combining ground-based with satellite-based measurements in the

atmospheric state retrieval: Assessment of the information content. J. Geophys. Res. Atmos. 2013, 118, 6940–6956. [CrossRef]
5. Aumann, H.; Chahine, M.; Gautier, C.; Goldberg, M.; Kalnay, E.; McMillin, L.; Revercomb, H.; Rosenkranz, P.; Smith, W.;

Staelin, D.; et al. AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems.
IEEE Trans. Geosci. Remote Sens. 2003, 41, 253–264. [CrossRef]

6. Karbou, F.; Aires, F.; Prigent, C.; Eymard, L. Potential of Advanced Microwave Sounding Unit-A (AMSU-A) and AMSU-B
measurements for atmospheric temperature and humidity profiling over land. J. Geophys. Res. Atmos. 2005, 110, D7. [CrossRef]

7. Chan, W.S.; Lee, J.C.W. Vertical profile retrievals with warm-rain microphysics using the ground-based microwave radiometer
operated by Hong Kong Observatory. Atmos. Res. 2015, 161, 125–133. [CrossRef]

8. Tan, H.; Mao, J.; Chen, H.; Chan, H.; Chan, P.W.; Wu, D.; Li, F.; Deng, T. A study of a retrieval method for temperature and
humidity profiles from microwave radiometer observations based on principle component analysis and stepwise regression.
J. Atmos. Ocean Technol. 2011, 28, 378–389. [CrossRef]

9. Cimini, D.; Campos, E.; Ware, R.; Albers, S.; Giuliani, G.; Oreamuno, J.; Joe, P.; Koch, S.E.; Cober, S.; Westwater, E. Thermodynamic
atmospheric profiling during the 2010 Winter Olympics using ground-based microwave radiometry. IEEE Trans. Geosci. Remote
Sens. 2011, 49, 4959–4969. [CrossRef]

10. Löhnert, U.; Turner, D.D.; Crewell, S. Ground-based temperature and humidity profiling using spectral infrared and microwave
observations. Part I: Simulated retrieval performance in clear-sky conditions. J. Appl. Meteorol. Clim. 2009, 48, 1017–1032.
[CrossRef]

http://doi.org/10.1080/01431161.2014.945004
http://doi.org/10.5194/amt-6-2359-2013
http://doi.org/10.5194/amt-14-3033-2021
http://doi.org/10.1002/jgrd.50548
http://doi.org/10.1109/TGRS.2002.808356
http://doi.org/10.1029/2004JD005318
http://doi.org/10.1016/j.atmosres.2015.04.007
http://doi.org/10.1175/2010JTECHA1479.1
http://doi.org/10.1109/TGRS.2011.2154337
http://doi.org/10.1175/2008JAMC2060.1


Sensors 2021, 21, 4673 20 of 20

11. Hewison, T.J. 1D-VAR retrieval of temperature and humidity profiles from a ground-based microwave radiometer. IEEE Trans.
Geosci. Remote Sens. 2007, 45, 2163–2168. [CrossRef]

12. Ishimoto, H.; Okamoto, K.; Okamoto, H.; Sato, K. One-dimensional variational (1D-Var) retrieval of middle to upper tropospheric
humidity using AIRS radiance data. J. Geophys. Res. Atmos. 2014, 119, 7633–7645. [CrossRef]

13. Gohil, B.S.; Gairola, R.M.; Mathur, A.K.; Varma, A.K.; Mahesh, C.; Gangwar, R.K.; Pal, P.K. Algorithms for retrieving geophysical
parameters from the MADRAS and SAPHIR sensors of the Megha-Tropiques satellite: Indian scenario. Q. J. R. Meteor. Soc. 2013,
139, 954–963. [CrossRef]

14. Rao, T.N.; Sunilkumar, K.; Jayaraman, A. Validation of humidity profiles obtained from SAPHIR, on-board Megha-Tropiques.
Curr. Sci. India 2013, 104, 1635–1642. [CrossRef]

15. He, Q.; Wang, Z.; He, J.; Zhang, L. A comparison of the retrieval of atmospheric temperature profiles using observations of the
60 GHz and 118.75 GHz absorption lines. J. Trop. Meteor. 2018, 24, 151–162. [CrossRef]

16. Chen, H.; Jin, Y.Q. Data validation of Chinese microwave FY-3A for retrieval of atmospheric temperature and humidity profiles
during Phoenix typhoon. Int. J. Remote Sens. 2011, 32, 8541–8554. [CrossRef]

17. Blackwell, W.J.; Chen, F.W. Neural Networks in Atmospheric Remote Sensing; Artech House: Norwood, MA, USA, 2009.
18. Ahn, M.H.; Kim, M.J.; Chung, C.Y.; Suh, A.S. Operational implementation of the ATOVS processing procedure in KMA and its

validation. Adv. Atmos. Sci. 2003, 20, 398–414. [CrossRef]
19. Weng, F.; Zou, X.; Wang, X.; Yang, S.; Goldberg, M.D. Introduction to Suomi national polar-orbiting partnership advanced

technology microwave sounder for numerical weather prediction and tropical cyclone applications. J. Geophys. Res. 2012, 117,
1–14. [CrossRef]

20. He, Q.; Wang, Z.; He, J. Bias correction for retrieval of atmospheric parameters from the Microwave Humidity and Temperature
Sounder onboard the Fengyun-3C satellite. Atmosphere 2016, 7, 156. [CrossRef]

21. Zhou, Y.; Grasstotti, C. Development of a machine learning-based radiometric bias correction for NOAA’s Microwave integrated
retrieval system (MIRS). Remote Sens. 2020, 12, 3160. [CrossRef]

22. Shi, L. Retrieval of atmospheric temperature profiles from AMSU-A measurements using a neural network approach. J. Atmos.
Ocean. Technol. 2001, 18, 340–347. [CrossRef]

23. Churnside, J.H.; Stermitz, T.A.; Schroeder, J.A. Temperature profiling with neural network inversion of microwave radiometer
data. J. Atmos. Ocean. Technol. 1994, 11, 105–109. [CrossRef]

24. Cimini, D.; Hewison, T.; Martin, L.; Güldner, J.; Gaffard, C.; Marzano, F. Temperature and humidity profile retrievals from
ground-based microwave radiometers during TUC. Meteorol. Z. 2006, 15, 45–56. [CrossRef]

25. Brahma, P.P.; Wu, D.; She, Y. Why deep learning works: A manifold disentanglement perspective. IEEE Trans. Neural Netw. Learn.
Syst. 2016, 27, 1997–2008. [CrossRef] [PubMed]

26. Yan, X.; Liang, C.; Jiang, Y.; Luo, N.; Zang, Z.; Li, Z. A deep learning approach to improve the retrieval of temperature and
humidity profiles from a ground-based microwave radiometer. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8427–8437. [CrossRef]

27. Guo, Y.; Lu, N.M.; Qi, C.L.; Gu, S.Y.; Xu, J.M. Calibration and validation of microwave humidity and temperature sounder
onboard FY-3C satellite. Chin. J. Geophys. Chin. 2015, 58, 20–31. [CrossRef]

28. Lawrence, H.; Bormann, N.; Lu, Q.; Geer, A.; English, S. An Evaluation of FY-3C MWHTS-2 at ECMWF; EUMETSAT/ECMWF
Fellowship Programme; Research Report 37; ECMWF: Reading, UK, 2015.

29. Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.;
et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011,
137, 553–597. [CrossRef]

30. Berrisford, P.; Dee, D.; Poli, P.; Brugge, R.; Fielding, K.; Fuentes, M.; Kallberg, P.; Kobayashi, S. The ERA-Interim Archive Version 2.0;
ERA Report Series 1; ECMWF: Reading, UK, 2011.

31. Saunders, R.; Hocking, J.; Rundle, D.; Rayer, P.; Matricardi, M.; Geer, A.; Lupu, C.; Brunel, P.; Vidot, J. RTTOV-11 Science and
Validation Report; NWP-SAF Report; Met Office: Exeter, UK, 2013; pp. 1–62.

32. Hinton, G.E.; Osindero, S.; The, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2016, 18, 1527–1554. [CrossRef]
33. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
34. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
35. Lee, Y.; Han, D.; Ahn, M.H.; Im, J.; Lee, S.J. Retrieval of total precipitable water from Himawari-8 AHI data: A comparison of

random forest, extreme gradient boosting, and deep neural network. Remote Sens. 2019, 11, 1741. [CrossRef]
36. Liu, Q.; Weng, F. One-dimensional variational retrieval algorithm of temperature, water vapor, and cloud water profiles from

advanced microwave sounding unit (AMSU). IEEE Trans. Geosci. Remote Sens. 2005, 43, 1087–1095. [CrossRef]
37. English, S.J. Estimation of temperature and humidity profile information from microwave radiances over different surface types.

J. Appl. Meteorol. 1999, 38, 1526–1541. [CrossRef]
38. Boukabara, S.A.; Garrett, K.; Chen, W.; Iturbide-Sanchez, F.; Grassotti, C.; Kongoli, C.; Chen, R.; Liu, Q.; Yan, B.; Weng, F.; et al.

MiRS: An all-weather 1DVAR satellite data assimilation and retrieval system. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3249–3272.
[CrossRef]

http://doi.org/10.1109/TGRS.2007.898091
http://doi.org/10.1002/2014JD021706
http://doi.org/10.1002/qj.2041
http://doi.org/10.18520/cs%2Fv104%2FI12%2F1635-1642
http://doi.org/10.16555/j.1006-8775.2018.02.004
http://doi.org/10.1080/01431161.2010.542201
http://doi.org/10.1007/BF02690798
http://doi.org/10.1029/2012JD018144
http://doi.org/10.3390/atmos7120156
http://doi.org/10.3390/rs12193160
http://doi.org/10.1175/1520-0426(2001)018&lt;0340:ROATPF&gt;2.0.CO;2
http://doi.org/10.1175/1520-0426(1994)011&lt;0105:TPWNNI&gt;2.0.CO;2
http://doi.org/10.1127/0941-2948/2006/0099
http://doi.org/10.1109/TNNLS.2015.2496947
http://www.ncbi.nlm.nih.gov/pubmed/26672049
http://doi.org/10.1109/TGRS.2020.2987896
http://doi.org/10.6038/cjg20150103
http://doi.org/10.1002/qj.828
http://doi.org/10.1162/neco.2006.18.7.1527
http://doi.org/10.1038/nature14539
http://doi.org/10.3390/rs11151741
http://doi.org/10.1109/TGRS.2004.843211
http://doi.org/10.1175/1520-0450(1999)0382.0.CO;2
http://doi.org/10.1109/TGRS.2011.2158438

	Introduction 
	Data and Model 
	MWHTS Characteristics 
	Data and Model 
	Data Preprocessing 

	Algorithm and Experiment Design 
	Deep Neural Network 
	The 1DVAR Algorithm 
	Design of Retrieval Experiment 

	Experimental Results 
	Bias-Correction Results 
	Results of Retrieval Experiment 
	The Retrieval Results of the 1DVAR Retrieval 
	The Retrieval Results of the NN-Based Retrieval Using the Observations 
	The Retrieval Results of the NN-Based Retrieval Using the Simulations 

	Algorithm Stability Test 

	Conclusions 
	References

