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Abstract: The performance of sensorless control in a permanent magnet synchronous machine
(PMSM) highly depends on the accuracy of rotor position estimation. Owing to its strong robustness,
phase-locked loop (PLL) is widely used in rotor position estimation. However, due to the influence
of harmonics existing in back electromotive force (EMF), estimation error occurs by using PLL. In
this paper, a hybrid filtering stage-based PLL is proposed to improve the rotor position estimation.
Adaptive notch filters and moving average filters are integrated together to eliminate harmonic
EMF. To make the method effective under varying speed conditions, adaptive parameters design
guidelines are provided, considering dynamic performance under a wide operating range. The
proposed method can accurately detect rotor position even under harmonic EMF disturbances. It
can also adjust the frequency adaptively based on the rotating speed of the rotor, which means the
estimation performance is not deteriorated under rotating speed changing conditions. The simulation
results verify the effectiveness of the proposed method.

Keywords: sensorless control; PMSM; phase-locked loop; rotor position estimation

1. Introduction

Due to the advantages of efficiency and high power density, permanent magnet
synchronous motors (PMSM) have been widely used in electric vehicles, petroleum, and
other industrial fields [1–3]. The control of PMSM relies on the rotor position measured
by mechanical sensor of the motor. However, mechanical position sensors not only have
the problems of installation difficulties and low reliability, but there is also a need to
consider cost and installation space in practical applications. Therefore, sensorless control
technology has become a hot spot in the research field [4,5].

Existing sensorless control technology can be classified into two categories: high-
frequency signal injection method [6,7] and back-EMF estimation method [8,9]. The high-
frequency signal injection method uses the salient pole effect of permanent magnet motor,
which analyzes the position of the rotor by observing the current response under high-
frequency voltage pulses. However, this method is only effective in low-speed operating
conditions. The method of obtaining motor speed and position information by establishing
the back-EMF is currently the most widely used method, which includes disturbance
observing method, model reference adaptive method, and synovial observer method.
Among them, the sliding mode observer method (SMO) based on back-EMF has the
advantages of being less affected by changes in motor parameters and strong robustness,
so it has been widely studied and applied [10,11].

Theoretically, SMO can only estimate the rotor position through discontinuous control
and infinite frequency switching. However, due to the limitations of switching frequency
and sampling frequency in reality, SMO unavoidably brings chattering problems to the con-
trol system. In order to improve the estimation accuracy of SMO, scholars have conducted a
lot of research work. In [12], a sensorless vector control method based on SMO is proposed,
which can track the rotor position and speed more accurately. It has better adaptive ability
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and robustness to speed and load changes. However, the traditional SMO used in this
method still has the problem of chattering, in which observation accuracy is easily affected
by the change of the motor speed. In [13], they theoretically analyzed the nonlinear voltage
error caused by the capacitance of the switching device. The authors also point out that
the current fluctuations during turn-on and turn-off will seriously affect the voltage error
and cause fluctuation. The proposed method in the paper compensates the voltage errors
by estimating the ripple currents. In [14], a phase estimation error compensation method
based on current loop output error is proposed. The basic principle lies in the closed-loop
adjustment of the compensation angle. Through the compensation of the error angle, the
influence of the error on the DC voltage is reduced. This method avoids the secondary
interference of voltage on position estimation, which ensures that the direct-axis voltage
equation is always in an ideal balanced state, then realizes compensation of estimation
errors. However, the above papers have ignored the harmonics in the electromotive force,
which also may reduce the detection accuracy, especially for the low-order harmonics
generated in unbalanced motor structure or unbalanced three-phase power supply [15].
If the influence of low-order harmonics is ignored, as the running time increases, the
accumulation of this error will cause a larger deviation in the estimated rotor position.

Phase-locked loop (PLL) has become the most widely used phase detection method
due to its accurate phase tracking capability and robustness [16,17]. Because of its excellent
performance, it is also used in sensorless control. In [18], a fractional-order PLL (FO-
PLL) technology is proposed to estimate rotor speed and position. FO-PLL provides
additional degrees of freedom by selecting fractional coefficients and improves the dynamic
performance; however, this method is only effective in the initial stage of motor control
and under transient conditions. In [19,20], an improved PLL with low-cost switching Hall
effect is proposed to estimate the speed and position of the rotor. Through the strategy,
the rotor’s motion position error is kept within a small range. Although this method is
claimed as a sensorless control strategy, it adopts a Hall-effect sensor, and still needs to
consider the installation and the space occupied by the sensor. In [21], an angle and speed
observer are designed. The observer uses the rotor flux vector to obtain the rotor position.
After receiving the information from the observer, the rotor position is estimated through a
PLL. In [22], an improved PLL named Q-PLL scheme based on quadrature components
was proposed. It solves the speed reversal problem in the control of sensorless permanent
magnet synchronous motors. However, this paper lacks research on the performance of
Q-PLL under varying speed conditions. In [23], a two-phase phase loop structure called
TP-PLL is proposed to solve the influence of harmonics in the back-EMF. The TP-PLL is
used to integrate the EMF of the stator flux linkage. According to the measured current
and the rotor flux, the equations are solved to obtain the angular position and amplitude of
the stator flux. This algorithm can alleviate the DC offset problem on the pure integrator
and suppress the influence of harmonic components on the position accuracy; however,
the selection of its parameters lacks the support of frequency characteristics. In [24], by
establishing a nonlinear equivalent model of SMO, a feed-forward PLL is introduced to
analyze and compensate the position estimation deviation.

Aiming at the abovementioned problem of sliding mode control methods, this paper
proposes a PLL based on a hybrid filter stage for PMSM rotor position estimation. Under
the premise of satisfying the stability, a frequency-adaptive hybrid filtering stage-based
PLL is proposed. The adaptive law of parameters in the proposed PLL is also presented.
The proposed rotor position estimation method can remain stable even when the rotating
speed changes. The parameter design and structure of the proposed PLL are demonstrated
in detail. The experimental results show that the method has satisfactory disturbance
rejection performance under harmonic interference. It can also predict the rotating speed
and rotor position accurately, even under speed-changing conditions.
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2. Rotor Position Estimation Based on PLL

The traditional PMSM sensorless control structure is shown in Figure 1. The estimated
back-EMF is obtained by SMO. Then, it is fed to the proposed PLL with a hybrid filtering
stage. The proposed hybrid filtering stage with adaptive parameters is responsible for
rejecting harmonics in back-EMF. Hence, without the influence of harmonic EMF, the rotor
position and rotating speed are estimated by the proposed PLL.

Figure 1. The structure of PMSM sensorless control.

The voltage formula in αβ-frame can be expressed as[
uα

uβ

]
= rs

[
iα
iβ

]
+ Ls p

[
iα

iβ

]
+

[
eα

eβ

]
(1)

where uα、uβ、iα、iβ、eα、eβ are stator voltage, stator current, and back-EMF in the αβ-
coordinate system, respectively. rs and Ls are the equivalent resistance and inductance in
stator. The back-EMF term in Equation (1) contains rotor position information, which can
be used to estimate the position of rotor. To extract rotating information of the rotor, the
PLL is attached after SMO, as shown in Figure 1.

In Figure 2, Ke is the gain of sliding mode, and sgn(·) is sign function. The core idea is
to adjust the error between the estimated current value and the actual value. Its output
is smoothed by a low-pass filter (LPF). The estimated values of the back-EMF are fed
to the orthogonal PLL to obtain the estimated rotor position θ̂r and the rotating angular
frequency ω̂r. The characteristic of sgn(·) gives SMO strong robustness. However, it brings
the problem of high-frequency harmonic pollution. Therefore, LPF must be introduced to
cooperate with the orthogonal PLL.

Figure 2. The schematic of back-EMF observer based on SMO.

Taking into account the harmonic components of stator voltages and currents, which
may be caused by unbalanced rotor structure or unbalanced power supply, the oscillation
errors are transferred into the PLL and appear in the estimation of rotor position and rotat-
ing frequency. By using the symmetrical component method, the components contained in
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the EMF are divided into positive sequence (PS) and negative sequence (NS). Applying
Clark transformation, the EMF in αβ-frame is eα

eβ

e0

 =
[
Tαβ

] E+
1,4,7,... sin(nωrt + θr,n) +E−1,2,5,8,... sin(nωrt + θr,n) E0
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(
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3
)

+E−1,2,5,8... sin
(
nωrt + θr,n +

2π
3
)
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1,4,7,... sin

(
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3
)

+E−1,2,5,8,... sin
(
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3
)

E0
3,6,9,... sin(nωrt + θr,n)

 (2)

After applying Clark transformation Tαβ, Equation (2) can be expressed as follows:

[
eα

eβ

]
=

[
E+

α,1,7,13,...(t)
E+

β,1,7,13,...(t)

]
+

[
E−α,1,5,11,...(t)
E−β,1,5,11,...(t)

]
(3)

By observing Equation (3), it is found that there is no third harmonic pollution in
the αβ-coordinate system; only +1st, −1st, −5th, +7th, −11th, +13th . . . order sequence
components exist. After Park transformation, the harmonics in αβ-coordinate system are
converted into the even harmonics in dq-coordinate system, as shown in Table 1. The sign
in the table indicates the rotating direction of EMF. Positive is the clockwise direction and
vice versa.

Table 1. EMF sequence components.

Harmonic Order αβ Frame (Rad/s) Harmonic Order dq Frame (Rad/s)

. . . . . . . . . . . .

+1 ωr 0 0

−1 −ωr −2 −2 ωr

−5 −5 ωr −6 −6 ωr

+7 7 ωr +6 6 ωr

−11 −11 ωr −12 −12 ωr

+13 13 ωr 12 12 ωr

. . . . . . . . . . . .

3. The Proposed PLL

To achieve a satisfactory performance for rotor estimation, adaptive notch filters are
employed in quasi-type-1 PLL (QT1-PLL) for better performance in the proposed method.
QT1-PLL is derived from stationary reference frame PLL (SRF-PLL) and moving average
filter-based PLL (MAF-PLL). These three PLLs are depicted in Figure 3.

Figure 3. Cont.
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Figure 3. The structure of three PLLs.

êαβ represents estimated EMF. ed and eq are the components in dq-frame. ωr represents
the nominal angular rotating speed. ∆ω is the deviation of rotating speed. ω̂ and θ̂r are
the estimated value of rotating speed and rotor position. According to [25], the open loop
transfer functions can be written as

GolSRF(s) = (kp +
ki
s
)

1
s

(4)

MAF(s) =
1− e−Tωs

Tωs
≈ 1

Tω
2 s + 1

(5)

GolMAF(s) = MAF(s)(kp +
ki
s
)

1
s
≈ 1

Tω
2 s + 1

(kp +
ki
s
)

1
s

(6)

GolQT1(s) =
(

MAF(s)
1−MAF(s)

)
(kp +

ki
s
) ≈ 2

Tωs
(kp +

ki
s
) (7)

kp and ki are the parameters in PI controller. The Bode diagram of three PLLs under
fixed rotating speed is depicted in Figure 4. From the approximation in Equations (6) and (7),
it is noticed that the pole points in the QT1-PLL and SRF-PLL are less than that in the
MAF-PLL, which means the bandwidth of these two PLLs are smaller than that in the
MAF-PLL. At the same time, the QT1-PLL can also provide a satisfactory filtering capability,
as the MAF-PLL does. It can totally remove the dominant harmonic components. However,
the time delay existing in MAF, which lasts for 0.01 s, reduces the response speed during
transient behavior.
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Figure 4. The Bode plot of three PLLs under fixed rotating speed.

Motivated by the advantage of the QT1-PLL, a hybrid filtering stage-based PLL is
proposed in this section. The schematic of the proposed method is illustrated in Figure 5.
Adaptive notch filters (ANFs) and MAFs are utilized as a hybrid filtering stage which
is arranged after Park transformation for harmonic elimination at dq-frame. ANFs are
adopted to remove the −2ωr component. MAFs are used for removing the rest of the
harmonics. Without the task of removing −2ωr, the window length (Tω) is reduced
to π/(3ω̂r).

Figure 5. Block diagram of the proposed PLL.

The mathematical equation of ANF after Laplace transformation is

ANF(s) =
s2 + (2ω̂r)

2

s2 + 2ω̂rξs + (2ω̂r)
2 (8)

The damping factor ξ is 0.7. According to Equation (5), the hybrid filtering stage is

H(s) = ANF(s)MAF(s) =
s2 + (2ω̂r)

2

s2 + 2ω̂rξs + (2ω̂r)
2

1− e−Tws

Tws
(9)

Hence, the frequency characteristic can be calculated by Equation (9). The correspond-
ing Bode plot of Equation (9) is shown in Figure 6. Since the proposed method is working
under varying speed conditions, the filtering stage is designed to be frequency-adaptive
with rotating speed of the rotor. The frequency-adaptive MAF is implemented by set-
ting window length (Tω) to be π/(3ω̂r), which is adaptive with ω̂r. The adaptive ANF is
achieved by using a frequency-adaptive structure depicted in Figure 7.
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Figure 6. Bode diagram of H(s).

Figure 7. The frequency-adaptive implementation of ANF.

According to the block diagram of the proposed PLL, the small-signal model can be
obtained, as shown in Figure 8. By applying some block diagram algebraic, the small-signal
model can be changed to the schematic, as shown in Figure 9, which is a typical closed-loop
system. Then, the open-loop transfer function of the proposed method can be written as

Gol(s) =
θ̂+r,1(s)

θ+r,1(s)− θ̂+r,1(s)
= (

H(s)
1− H(s)

)(
s + k

s
) (10)
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Figure 8. Small-signal model of the proposed PLL.

Figure 9. The simplified model of the proposed PLL.

The transfer function of position estimation error can be expressed as

Ge(s) =
θe(s)

θ+r,1(s)
=

θ+r,1(s)− θ̂+r,1(s)

θ+r,1(s)
=

1
1 + Gol(s)

(11)

where position estimated error is θe. Hence, the response of θe when a step change suddenly
occurs in rotor position can be expressed as

Θ∆θ
e (s) =

∆θ

s
Ge(s) (12)

The response of θe when a step change suddenly occurs in rotating speed can be
expressed as

Θ∆ω
e (s) =

∆ω

s2 Ge(s) (13)

To achieve a satisfactory dynamic performance when rotor position and rotating speed
suddenly change, inverse Laplace transformation are applied to both Equations (12) and (13).
Then, the variations of 2% settling time as a function of k under different rotating speeds
(500, 1000, and 2800 rpm) can be depicted in Figures 10–12. From the observation of
Figures 10–12, it is impossible to obtain the best performance under both conditions. A
trade-off of k should be made for a good performance under both conditions. When the
rotating speed is 500 rpm, the best choices of k for both conditions are k = 48 and k = 54,
respectively. Hence, k should be selected between 48 and 54. In this paper, k is set to be
50. In addition, when the rotating speed changes, the value of k should follow. When the
rotating speed is 1000 rpm, similarly, k is determined as 130, according to Figure 11. When
the speed climbs to 2800 rpm, k is selected to be 290.
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Figure 10. A 2% settling time of the proposed PLL as a function of k for both phase jump (solid line)
and frequency step change (dashed line) when rotating speed is 500 rpm.

Figure 11. A 2% settling time of the proposed PLL as a function of k for both phase jump (solid line)
and frequency step change (dashed line) when rotating speed is 1000 rpm.
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Figure 12. A 2% settling time of the proposed PLL as a function of k for both phase jump (solid line)
and frequency step change (dashed line) when rotating speed is 2800 rpm.

To achieve a good performance under both conditions, an optimal value of k is better
to be chosen around the bottom of both curves in these figures. It can be observed that the
optimal k under different rotating speeds is different. The relationship between rotating
speed and optimal value of k is depicted in Figure 13. According to this relationship, the
parameter k in the proposed PLL is adaptive with the rotating speed from 20 to 290 under
300 rpm to 2800 rpm.

Figure 13. Optimal value of k as a function of rotating speed.

To verify the stability of the proposed PLL, Nyquist plots are examined with different
k corresponding to different rotating speeds, as shown in Figure 14. All curves do not
encircle the (−1, j0) point, which means the system is stable with different k.
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Figure 14. Nyquist curves of Gol(s) with k = 50, 130, 290.

The noise pollution is an important factor which may influence the estimation perfor-
mance. To examine the capability of noise immunity of the proposed method, a simulation
is carried out when the currents of stators αβ-frame are polluted by white noise. The
simulation results are shown in Figure 15. It can be seen that there are no oscillation errors
in estimated rotating speed. Owing to the filtering capability for high-frequency noise,
the proposed method is immune to white noise which may occur in the procedure of
sampling behavior.

Figure 15. Simulation results when the stator currents are polluted by white noise.

Moreover, besides its use in rotor position estimation, the proposed PLL can also be
used in other power converter-based devices for grid-connected applications. According
to Figure 5, it can be seen that the proposed PLL can estimate the frequency and phase
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of input signal as long as the input signal is a sinusoidal periodical vector. It only needs
to feed the vector of grid voltages at αβ-frame to extract the phase and frequency of the
power system.

4. Experimental Results

In order to prove the effectiveness of the proposed method, experimental studies were
carried out on a 550 W sensorless PMSM control system. The number of pole pairs of
the PMSM used in the experiment was 2. The resistance of the stator was 0.63 Ω. The
inductance of the direct axis and the orthogonal axis were 119 mH and 29 mH, respectively.
The encoder was installed at the end of the load. The PMSM was driven by an inverter-
based motor driver controlled by a DSP. The switching frequency of inverter was 10 kHz.
The sensors sampled data at the beginning of each switching period. The waveform of
estimated position and EMFs were monitored in the Labview software environment on
a host computer. The parameters are summarized in Table 2. The experimental setup is
shown in Figure 16.

Table 2. The parameters of the PMSM.

Rated power 550 W Stator resistance 0.63 Ω

Rated current 2.6 A d-axis inductance 119 mH

Rated speed 4000 rpm q-axis inductance 29 mH

Rated torque 5 N·m Pole pairs 2

Rated frequency 50 Hz Inertia 0.011 kg·m2

Figure 16. Experimental setup of control system.

The proposed PLL was implemented in discrete domain on a DSP board, while it
was designed in continuous domain. A discrete time realization is required for practical
applications. By using backward Euler method, the discrete approximation of integral
operation is as follows:

1
s
⇔ TS

1− z−1 (14)

The discretization effect of the proposed PLL was examined by a simulation. The
sampling frequency used in the discretization was 10 kHz. Figure 17 illustrates the dis-
cretization effect when phase jump and frequency step change occur to back-EMF at the
input of the PLL. As shown in Figure 17, the transient behaviors in the continuous domain
and discrete domain are almost the same.
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Figure 17. Discretization effect of the proposed PLL when disturbances occur to back-EMF.

To simulate the actual situation of the motor and speed change, the initial speed of the
motor was set to 800 rpm. The experimental study included the proposed PLL, QT1-PLL,
and MAF-PLL. To be fair, the MAF was used in the QT1-PLL, and the MAF-PLL is adaptive
with rotating period. According to the design guidelines in [25], the only parameter k in
the QT1-PLL was fixed, at 92. The parameters in the MAF-PLL were designed according to
the guidelines in [26]. Both the MAF-PLL and QT1-PLL were not only used in sensorless
control, but also used in grid synchronization for power converters.

The estimation performance was studied under speed changing conditions. The
rotating speed of PMSM was 800 rpm at the first stage. After that, the rotating speed of
PMSM was reduced to 50 rpm to examine the performance under low-speed condition.
Then, the rotating direction was reversed to test the performance under such a condition.
The curve of rotating speed measured by the encoder is depicted in Figure 18.

Figure 18. The rotating speed measured by the encoder.

Figure 19 illustrates the stator current iα. The waveform contains amounts of har-
monics and noise. The presence of harmonics may pollute the waveform and degrade the
performance of estimation.
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Figure 19. Stator current iα under experiment.

Figure 20 shows the rotor position by using the encoder. Figure 21 shows the com-
parison of the proposed PLL, QT1-PLL, and MAF-PLL when the PMSM is at deceleration
process. It can be seen that the estimation of the proposed PLL is closer to the actual value
than other PLLs’. It confirms that the transient response of the proposed PLL is faster. The
QT1-PLL can also provide a good transient speed. However, the window length of the
MAFs used in the QT1-PLL makes its converge time larger than the proposed PLL. The
response time of the MAF-PLL is very slow, which results in a large estimation error in
transient behavior.

Figure 20. Actual rotor position.

Figure 21. Estimated position when the speed is being reduced to low speed.

Figure 22 illustrates the comparison between estimated speed of the proposed PLL
and actual rotating speed. It can be seen that during almost every stage of the case study,
the proposed PLL can accurately estimate the rotating speed of the PMSM. Figure 23
depicts the estimated error during the entire experimental study. The peak errors happen
in the acceleration and deceleration procedure, which can hardly exceed 10 rpm. The
errors during low-speed conditions are less than 1. The key reason for such a satisfactory



Sensors 2021, 21, 4667 15 of 18

performance is the well-designed adaptive control parameter. The control parameter k and
ANF with frequency-adaptive structure make the proposed PLL adaptive with rotating
speed, which can provide optimal parameters for the entire operating conditions.

Figure 22. The comparison between estimated rotating speed by the proposed PLL and the actual
speed.

Figure 23. Estimated error in rotating speed by using the proposed PLL.

Figure 24 illustrates the comparison between estimated speed of the MAF-PLL and
actual rotating speed. It can be seen that the estimated error around acceleration and
deceleration procedure are larger than that in the proposed PLL. Figure 25 depicts the
estimated error during the entire experimental study. The peak errors happen in the
acceleration and deceleration procedure, which are much bigger than those in the proposed
PLL, which are larger than 40 rpm. Although MAFs used in the MAF-PLL are also
adaptive, the parameters in its PI controller are not adaptive with rotating speed. Large
overshoots occur when reference speed changes. A PI controller with fixed parameters is
not suitable for such conditions. Even so, the MAF-PLL can also attenuate harmonic and
noise effectively.

Figure 24. The comparison between estimated rotating speed by the MAF-PLL and the actual speed.
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Figure 25. Estimated error in rotating speed by using the MAF-PLL.

Figure 26 illustrates the comparison between estimated speed of the QT1-PLL and
actual rotating speed. It can be seen that the QT1-PLL can track actual rotating speed
rapidly without any overshoot. However, oscillation errors in estimation exist during
almost every stage of the case. Figure 27 depicts estimated error of the QT1-PLL. It can be
seen that oscillation errors are much larger than those in the other PLLs, which are more
than 15 rpm. Although the transient speed of the QT1-PLL is as good as the proposed
PLL, without using adaptive control parameter, the disturbance attenuation capability is
degraded under changing speed conditions.

Figure 26. The comparison between estimated rotating speed by the QT1-PLL and the actual speed.

Figure 27. Estimated error in rotating speed by using the QT1-PLL.

In sum, owing to the usage of frequency-adaptive parameter changing strategy, the
proposed PLL can provide an accurate estimation performance and disturbance rejection
capability. Although the harmonic filtering capability of the MAF-PLL is also satisfactory,
the overshoots existing in acceleration and deceleration illustrate that its dynamic perfor-
mance is deteriorated when speed changes. The disturbance rejection capability is highly
degraded when the control parameters are fixed during changing speed conditions. All the
mentioned points above reveal that the proposed PLL with frequency-adaptive parameters
is suitable for rotor position estimation.

5. Conclusions

This paper proposes a PLL based on a hybrid filter stage for PMSM rotor position
estimation. Frequency-adaptive notch filters and MAFs are adopted in the inner loop of the
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PLL, which can totally eliminate harmonic sequences. To ensure the stability and achieve
satisfied dynamic performance under varying rotating speeds, the control parameter of
the proposed PLL is set to be adaptive with rotating speed. To validate the effectiveness of
the proposed method, comparative simulations were carried out. The results show that
the proposed method can reduce the impact from harmonic EMF. The proposed method
can provide a satisfactory position estimation performance under wide speed changing
conditions without deterioration by harmonic EMF.
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