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Abstract: This paper proposes a new haptic shared control concept between the human driver and
the automation for lane keeping in semi-autonomous vehicles. Based on the principle of human-
machine interaction during lane keeping, the level of cooperativeness for completion of driving
task is introduced. Using the proposed human-machine cooperative status along with the driver
workload, the required level of haptic authority is determined according to the driver’s performance
characteristics. Then, a time-varying assistance factor is developed to modulate the assistance
torque, which is designed from an integrated driver-in-the-loop vehicle model taking into account
the yaw-slip dynamics, the steering dynamics, and the human driver dynamics. To deal with the
time-varying nature of both the assistance factor and the vehicle speed involved in the driver-in-
the-loop vehicle model, a new `∞ linear parameter varying control technique is proposed. The
predefined specifications of the driver-vehicle system are guaranteed using Lyapunov stability theory.
The proposed haptic shared control method is validated under various driving tests conducted
with high-fidelity simulations. Extensive performance evaluations are performed to highlight the
effectiveness of the new method in terms of driver-automation conflict management.

Keywords: human-machine shared control; polytopic LPV control; lane keeping assistance

1. Introduction

Rapid advancements in autonomous vehicle technology have led to the design of
several features, such as automated lane keeping [1,2], blind spot monitoring, highway
merge, and automated cruise control, among others [3–7]. With the advent of autonomous
vehicle technology various areas, such as urban mobility and smart roads [8], collaborative
driving and shared driving [9], etc., have been explored. However, dealing with dynamic
environments, complex traffic scenarios, weather conditions, connectivity challenges along
with legal and ethical issues related to practical implementation of on-road autonomous
vehicles still persist. Faced with such challenges, a great deal of research effort on semi-
autonomous vehicles, i.e., vehicles with a conditional automation of SAE Level-3, has been
performed [10]. The presence of a driver-assistance system (DAS) in semi-autonomous
vehicles requires developing control laws that allow the automation to effectively assist the
human driver in completing a specified driving task, such as lane keeping, obstacle avoid-
ance, highway merge, etc. However, under unpredictable behaviors and characteristics of
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the human driver in an open driving environment, the design of effective controllers for
DASs of semi-autonomous vehicles is known as a challenging problem [11–13]. To deal
with this challenge, various control schemes have been proposed under the purview of
shared control [14–16], i.e., the human driver and the automation cooperates to control
the vehicle [17–19].

Within the DAS control context, the human-machine interaction (HMI) issue nat-
urally occurs when the human driver and the automation jointly performs a driving
task [14]. The HMI behavior depends on various characteristics of the human driver. Inte-
grated control for HMI management is achieved by either keeping the driver-in-the-loop
(DiL) [13] and by direct steer-by-wire control with driver out of the loop using force control
steering [20]. To analyze the influence of such assistance architectures on the human driver,
many studies have been conducted with validations on vehicle simulators [13]. Accord-
ingly, the effects of assistive actions on the trust, skill, workload and experience of human
drivers have been documented [21–23] with analysis of the driver-automation interaction.
Note that, in many driving situations, the HMI issue in semi-autonomous vehicles can
lead to a conflict between the human driver and the automation, i.e., both the driving
agents provide opposing actions to complete the same driving task. These situations arise
especially during some extreme maneuvers, such as obstacle avoidance [24], navigating a
sharp curve [25], and highway lane change [26], among others. Shared control architectures,
considering the HMI management directly in the control design process, have emerged
as a promising solution to deal with the driver-automation conflict issue appeared in the
driving control process of semi-autonomous vehicles [13,18]. The allocation of the control
authority between the automation and the human driver has been proposed in several
works, see for instance [14,15,24,27–29]. Further research has highlighted that integrating
the human characteristics, such as driving skill, style, and workload, in the control loop
significantly improves the HMI management and the driving performance [13,23,30].

The authors of Reference [31] have proposed an approach for HMI management based
on the level of haptic authority in function of the driver workload and performance [32].
Based on this HMI study, various driver-automation shared control schemes have been
developed for shared lane keeping, obstacle avoidance among others [25,33–35]. In these
works, the conflict issue between the human driver and the automation, which appears
in scenarios when their driving objectives are different, can be directly taken into account
in the control design. To mitigate the negative impact caused by the driver-automation
conflict, the authors of Reference [21,27] have proposed shared control architectures using
the analysis of the intention and the initiative of each driving agent. Based on the coop-
erative status detection, the smooth transition of the driver-automation control authority
between the human driver and the automation was achieved. The authors of Reference [36]
have proposed to adapt the control parameters with respect to the individual driver for im-
proving the driving performance of semi-autonomous vehicles. In Reference [28], a haptic
control architecture was developed for a smooth transition of the control authority with
an adaptation to the driver cognitive workload. It is important to note that the previous
works [21,27,28,36] did not consider DiL architectures or include the HMI management in
the control loop design.

Motivated by the above control issues, we propose a novel DiL shared driving control
architecture for semi-autonomous vehicles. The proposed shared controller is designed in
a polytopic linear parameter-varying (LPV) framework [37,38] using a DiL vehicle model.
For the development of this latter, the vehicle yaw-slip dynamics are integrated with
the lane tracking error dynamics, the steering column dynamics and a dynamic driver
model [13]. For HMI management, the cooperative status between the driver and the
automation is detected and then used, together with the driver workload, to generate
suitably the level of haptic authority required for a given driving situation. Incorporating
the information of the level of haptic authority in the control loop, the closed-loop stability
with a guarantee on `∞-gain performance has been established. The LPV control technique
allows handling not only the vehicle speed variations but also the time-varying parameter
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representing the driver’s need for assistance. To sum up, the contributions of this paper
can be summarized as follows.

• Using a new concept of level of human-machine cooperativeness, a shared driving
control scheme is proposed to manage effectively the conflict issue between the human
driver and the automation.

• For the shared control design, we propose a new Lyapunov-based LPV control method
with a reduced conservatism to handle the dynamic control authority factor and the
time-varying vehicle speed. Moreover, with a guaranteed `∞-gain performance,
the proposed shared controller can improve the lane keeping, the vehicle stability,
and the human-machine conflict management.

The proposed human-machine shared control method has been validated with a
dynamic test track under various road conditions and parametric uncertainties. Extensive
evaluations and performance analysis are carried out to demonstrate the effectiveness of
the new shared control method in terms of lane tracking, driving comfort, vehicle stability,
and also human-machine conflict minimization.

Notation. The set of nonnegative integers is denoted by Z+. For N ∈ Z+, we denote
IN = {1, . . . , N} ⊂ Z+. For a matrix X, X> denotes its transpose, X � 0 means that X is
positive definite, HeX = X + X>, and λmin(X), λmax(X) denote, respectively, the minimal
and maximal eigenvalues of a symmetric matrix X. diag(X1, X2) denotes a block-diagonal
matrix composed of X1, X2. For a vector v ∈ Rn, we denote its 2-norm as ‖v‖ =

√
v>v.

For a function f : R→ Rn, its `∞-norm is defined as ‖ f ‖∞ = supt∈R ‖ f (t)‖, and B∞ is the
set of bounded functions f . I is the identity matrix of appropriate dimension. The symbol
? stands for the terms deduced by symmetry. The time dependency of the variables is
omitted when convenient.

2. Driver-in-the-Loop Vehicle Modeling

This section presents an integrated DiL vehicle model used for the design of driver-
automation shared control. The vehicle and driver parameters are given in Table 1.

Table 1. Vehicle and driver model parameters.

Symbol Description Value

m total mass of the vehicle 2025 kg
l f distance from CoG to front axle 1.3 m
lr distance from CoG to rear axle 1.6 m
ls look-ahead distance 5 m
ηt tire length contact 0.052 m
Iz vehicle yaw moment of inertia 2800 kgm2

Is steering moment of inertia 0.05 kgm2

Rs steering gear ratio 17.3
Bs steering system damping 2.5 N/rad
C f front cornering stiffness 42,500 N/rad
Cr rear cornering stiffness 57,000 N/rad
Tp driver preview time 1.2 s
ti compensatory lead time 0.31 s
tl compensatory lag time 1.35 s
tn lag time 0.14 s
Ka driver anticipatory parameter 5.15
Kc driver compensatory parameter 1.96
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2.1. Road-Vehicle Dynamics

Under the assumptions of low slip angles and negligible influence of the longitudinal
friction forces [3], the front slip angle α f and the rear slip angle αr of the vehicle can be,
respectively, expressed by [13]

α f = δ− β−
l f ψ̇

vx
, αr =

lrψ̇

vx
− β,

where vx is the longitudinal speed, β is the lateral side-slip angle, ψ̇ is the yaw rate, and δ
is the wheel steering angle. Subsequently, the vehicle slip-yaw dynamics based on the
well-established bicycle model can be given as follows [3]:

β̇ = a11β + a12ψ̇ + a15δ

ψ̈ = a21β + a22ψ̇ + a25δ
, (1)

with

a11 = −
C f + Cr

mvx
, a12 =

lrCr − l f C f

mv2
x

− 1,

a21 =
lrCr − l f C f

Iz
, a22 =

l2
r Cr + l2

f C f

Izvx
,

a15 =
C f

mvx
, a25 =

l f C f

IzRs
.

For lane tracking control purposes, the vehicle position error yL and the heading
error ψL at a look-ahead distance ls while traversing a road with a curvature ρc can be
modeled as [25]

ẏL = βvx + lsψ̇ + ψLvx, ψ̇L = ψ̇− ρcvx. (2)

To account for the haptic driver-automation interaction, the following steering column
dynamics is also considered [13]:

δ̈d = a61β + a62ψ̇ + a65δd −
Bu

Is
δ̇d +

1
Is
(Ta + Td), (3)

with a61 =
C f ηt

R2
s Is

, a62 =
C f l f ηt

R2
s vx Is

, and a65 = −C f ηt

R2
s Is

. For system (3), Ta is the assistance torque,
Td is the human driver torque, and δd is driver steering angle, i.e., δd = δRs.

2.2. Driver Dynamics

For normal driving conditions where the vehicle is negotiating a curve or a straight
road section, the two-point visual cues based driver models are generally used to represent
the compensatory and anticipatory behaviors. Specifically, these driving behaviors can be,
respectively, modeled by the near visual angle θn and the far visual angle θ f as follows [13]:

θn =
yL

vxTp
+ ψL, θ f = θ1β + θ2ψ̇ + θ3δd, (4)

with θ1 = τ2
a a21, θ2 = τa + τ2

a a22, and θ3 = τ2
a a25. The driver anticipation time is defined

as τa =
L f
vx

, where L f is the far point look-ahead distance. Considering the visual angles
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θn and θ f defined in (4) as driver-input for two-level driver models, the following driver
model has been proposed and validated in Reference [13]:

ẋd = − 1
ti

xd +
Kc(tl − ti)

ti
θn

Ṫd =
1

tnti
xd −

1
tn

Td −
Kctl
titn

θn +
Ka

tn
θ f

, (5)

where xd is an internal driver state. There also exist other driver models, such as the
two-point driver model [25], sensorimotor model [39], cybernetic driver model [40], and
far point error model [41], among others which have also been developed. The considered
driver model (5) has been used for validation of shared control works [13] and found to
represent the human behaviors accurately.

2.3. Integrated Driver-in-the-Loop Vehicle Model

Integrating the vehicle model (1), the lane positioning dynamics (2), the steering
dynamics (3) and the driver model (5), a DiL vehicle model can be obtained as

ẋ = A(vx)x + Bvuv + E(vx)w, (6)

where x =
[

β ψ̇ ψL yL δd δ̇d xd Td

]>
is the state vector, uv = Ta is the control

input, and w = ρc is the disturbance vector. As in practice, we assume that the disturbance
w is unknown but bounded in amplitude, i.e., w ∈ B∞. The state-space matrices of the
system (6) are given by

A(vx) =



a11 a12 0 0 a15
Rs

0 0 0
a21 a22 0 0 a25

Rs
0 0 0

0 1 0 0 0 0 0 0
vx ls vx 0 0 0 0 0
0 0 0 0 0 1 0 0

a61 a62 0 0 a65
−Bu

Is
0 1

Is

0 0 a73 a74 0 0 −1
tn

0
a81 a82 a83 a84

Kaθ3
tn

0 1
titn

−1
tn


,

Bv =
[
0 0 0 0 0 1

Is
0 0

]>
,

E(vx) =
[
0 0 −vx 0 0 0 0 0

]>
,

with

a73 =
Kc(tl − ti)(vxTp − lp)

tivxTp
, a74 =

Kc(tl − ti)

tivxTp
,

a81 =
Kaθ1

tn
, a82 = −Kaθ2

tn
,

a83 = −
Kctl(vxTp − lp)

titnvxTp
, a84 = − Kctl

titnvxTp
.

Note that the incorporation of the driver characteristics, including the preview time
Tp and the anticipation time τa allows taking into account the driving style in the driver-
automation shared control design.

3. Cooperative Framework for Haptic Driver-Automation Interaction

To achieve a better management in terms of human-machine interaction, we propose
an cooperativeness indicator to effectively allocate the control authority between the human
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driver and the automation. To this end, the following index of cooperativeness is defined
in a time-window τ as

CI(τ) =
∫ τ

0
Td(t)Ta(t)dt, (7)

where CI(τ) is the computed cooperative index. Note from (7) that, when both the driver
and the automation have the same driving objective, i.e., perform a similar control action
to complete a driving task, then their corresponding torques are generated in the same
direction. For example, while driving along a minimal curvature path both the shared
controller and the human driver would have the same objective of providing a steering
torque to safely negotiate the curve while maintaining the vehicle on the lane. Hence,
the cooperative index CI(τ) increases, i.e., a fully cooperative status.

However, when the objective of both driving agents are different, the torques gener-
ated by the human driver and the automation are in an opposite direction. These cases
generally arise when a sudden maneuver is executed, for instance obstacle avoidance [24],
navigating a sharp curve [25], or highway lane change [26]. In these scenarios, the value of
CI(τ) decreases, i.e., a non-cooperative status. These driving scenarios should be avoided
or reduced to improve the haptic shared driving control performance.

In case of non-cooperative status, the level of haptic authority should be reduced to a
minimum level, i.e., the human driver will have a dominant control authority compared to
the automation. Note that there also exist situations where the driver and the automation
have the same objectives, even the value of CI(τ) is decreasing due to various factors,
e.g., sensor drift, noises, and transition between cooperative and non-cooperative status.
To avoid false detection of non-cooperative status, the following threshold-based approach
is used to categorize the status during shared control process.

• Fully cooperative: The driver and the automation have same driving objectives, i.e.,
CI(τ) > λc.

• Non-cooperative: The human driver and the automation have opposite objectives,
which results in a human-machine conflict issue, such as during emergency maneuvers
executed by the driver. In such a situation, the cooperative index is also negative,
i.e., CI(τ) < λc. The experimental threshold λc is determined based on shared control
evaluations.

The driver need for assistance during a driving task depends on his/her performance
characteristics. It has been shown that the required level of haptic authority and the driver
performance are inversely related [25,31]. Following this HMI study, we introduce the
driver activity variable η(τ) taking into account the information of the cooperative index
CI(τ) and the measured driver torque Td as

η(τ) = 1− e−
(

σ1CI(τ)σ2 T
σ3
dn

)
, (8)

where Tdn ∈ [0, 1] is the normalized driver torque and the cooperative index CI(τ) ∈ [0, 1]
is also normalized. The parameters σ1, σ2, and σ3, respectively, represent the degree of
involvement of the cooperative index CI(τ) and the normalized driver torque Tdn in
the driver activity variable η(τ). Remark that from (8) with an increase in the level of
cooperativeness CI(τ) or the driver torque Tdn, the driver activity variable η(τ) increases
accordingly to lower the assistance requirement, and vice-versa. A graphical representation
of this relationship is depicted in Figure 1.



Sensors 2021, 21, 4647 7 of 20

Driver Activity

D
ri

ve
r 

P
er

fo
rm

an
ce

N
ee

d
 f

or
 A

ss
is

ta
n

ce

Full 

Cooperative   

Semi

Cooperative

Un

Cooperative

Figure 1. Representation of the driver activity, the driver performance, and the required level of
haptic authority [31].

To analytically replicate this relationship, a dynamic mapping can be defined to
compute the assistance factor Γ(η) as

Γ(η) =
1

1 + | η(τ)−p3
p1
|2p2

+ Γmin. (9)

The time-varying parameter Γ(η) relates the driver performance with the level of
haptic authority on the basis of the driver performance for task completion. The parameters
p1 = 0.355, p2 = −2 and p3 = 0.5 are chosen to replicate the U-shaped relationship [31]
shown in Figure 1. A minimum assistance level of Γmin = 0.2 is used to consider the
influence of sensor noise, drift, etc. Using the developed mapping in (9), the assistance
torque Ta is then modulated as

Ta = Γ(η)u, (10)

where the feedback control u is to be designed. From (6) and (10), the DiL vehicle model
can be rewritten as

ẋ = A(vx)x + B(η)u + E(vx)w, (11)

with B(η) =
[
0 0 0 0 0 Γ(η)

Is
0 0

]>
. The controlled output z of system (11) is

defined to represent both the lane keeping performance and the driving comfort as

z =
[

ay θn θ f δ̇
]>

. (12)

For the lane keeping performance, the visual angles θn and θ f given in (4), respectively,
represents the driver’s compensatory and anticipatory behaviors. The driving comfort is
represented by the lateral acceleration ay ' vxψ̇. The steering rate δ̇ is introduced in (12) to
guarantee a desired steering comfort and to improve the vehicle damping response, since
all the entries of vector z can be expressed by those of x in (11) as

z =


0 vx 0 0 0 0 0 0
0 0 1 1

vxTp
0 0 0 0

θ1 θ2 0 0 θ3 0 0 0
0 0 0 0 0 1

Rs
0 0

x. (13)

Note that the time-varying parameters vx and Γ(η) are directly involved in the dynam-
ics of system (11) and the performance vector (13). To achieve an effective human-machine
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shared control scheme, we propose hereafter an LPV control design guaranteeing some
predefined closed-loop specifications.

4. LPV Control Design with Guarantee on `∞-Gain Performance

This section presents a new LPV control design based on a poly-quadratic Lyapunov
function to reduce the design conservatism. Moreover, an `∞-gain performance is taken
into account in the control design to minimize the disturbance effects. The control result is
then applied to the DiL vehicle system (11).

4.1. Control Problem Formulation

For generality, we consider an LPV system of the following state-space realization:

ẋ = A(θ)x + B(θ)u + E(θ)w (14)

z = C(θ)x,

where x ∈ Rnx is the state vector, u ∈ Rnu is the control input, w ∈ Rnu is the disturbance
vector, z ∈ Rny is the controlled output, and θ ∈ Rp is the measured scheduling variables.

It is assumed that the time-varying parameter θ =
[
θ1 . . . θp

]>
and its rate of variation θ̇

are smooth and, respectively, valued in the following hypercubes:

Ω = {(θ1, . . . , θp)
> : θj ∈ [θ j, θ j], j ∈ Ip},

Υ = {(θ̇1, . . . , θ̇p)
> : θ̇j ∈ [υj, υj], j ∈ Ip},

where θ j ≤ θ j (respectively, υj ≤ υj) are known lower and upper bounds on θj (respectively,
θ̇j), for j ∈ Ip. The state-space matrices of system (14) are continuous on Ω, given by[

A(θ) B(θ)
C(θ) E(θ)

]
=

N

∑
i=1

hi(θ)

[
Ai Bi
Ci Ei

]
, (15)

with N = 2p. The membership functions hi(θ), for i ∈ IN , are continuously differentiable
and belong to the simplex

H =

{
h(θ) ∈ RN :

N

∑
i=1

hi(θ) = 1, hi(θ) ≥ 0, ∀θ ∈ Ω

}
.

Note that, since (θ, θ̇) ∈ Ω× Υ, one can easily compute the lower bound φi1 and the
upper bound φi2 of ḣi(θ) as

ḣi(θ) ∈
[
φi1, φi2

]
, φi1 ≤ φi2, i ∈ IN . (16)

Remark 1. The sector nonlinearity approach [42] can be used to derive an exact polytopic form (15)
for a general LPV system (14). The membership functions capture the parameter nonlinearities,
i.e., they can be a nonlinear function of components of θ(t). Hence, the proposed polytopic LPV
method can deal with a larger class of parametric dependencies than, e.g., linear, affine, or rational.

For control design, we consider an LPV controller as

u = K(θ)x, (17)

where the gain K(θ) ∈ Rnu×nx is to be designed. From (14) and (17), the closed-loop LPV
system is rewritten as

ẋ = (A(θ) + B(θ)K(θ))x + E(θ)w. (18)
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We are now in the position to formulate the control problem related to the polytopic
LPV system (14).

Problem 1. Determine an LPV control law (17) such that the closed-loop system (14) satisfies the
following properties.

(P1) For zero-disturbance system, i.e., w = 0, for ∀t ≥ 0, the zero solution of system (45) is
exponentially stable with a decay rate α > 0.

(P2) The closed-loop system (45) is input-to-state stable with respect to the amplitude-bounded
disturbance w ∈ B∞.

(P3) If w 6= 0, for ∀t ≥ 0, the state x is uniformly bounded for ∀x(0) and ∀w ∈ B∞. Moreover,
we have

lim
t→∞

sup ‖z‖ ≤ γ‖w‖∞, γ > 0, (19)

where the `∞−gain γ is specified in Theorem 1. Moreover, if x(0) = 0, then ‖z‖ ≤ γ‖w‖∞,
for ∀t ≥ 0.

Hereafter, we provide a numerically tractable solution for the above `∞-gain control problem.

4.2. LPV Control Design with `∞-Gain Performance

Using Lyapunov stability theory, the following theorem provides sufficient conditions
to design an LPV controller guaranteeing `∞-gain performance.

Theorem 1. Consider an LPV system (14) with (θ, θ̇) ∈ Ω× Υ, and a positive scalar α. If there
exist symmetric matrices X ∈ Rnx×nx , Q ∈ Rnx×nx , Qi ∈ Rnx×nx , matrices Mi ∈ Rnu×nx ,
for i ∈ IN , and positive scalars ε, ν such that the following optimization problem is feasible:

minimize
ξi=(ν,X,Q,Qi ,Mi), i∈IN

ν

subject to

Qi + Q � 0, i ∈ IN , (20)[
Qi + Q (Qi + Q)C>j

? νI

]
� 0, i, j ∈ IN , (21)

Φkl
ii ≺ 0, Φkl

ij + Φkl
ji ≺ 0, i < j ∈ IN , k ∈ IN−1, l ∈ I2. (22)

The term Φkl
ij in (22) is given by

Φkl
ij = He

Aj(Qi + Q) + Bj Mi − 1
2 Ψ Ej εBj Mi

0 −αI 0
Qi + Q− X 0 −εX


Ψ = φkl(Qk + Q−QN) +

1
N − 1

φNlQ− 2α(Qi + Q).

(23)

Then, controller (17) with the control gain defined as

K(θ) =
N

∑
i=1

hi(θ)Ki, Ki = MiX−1 (24)

guarantees that the LPV system (18) satisfies the closed-loop properties described in Problem 1.
Moreover, the guaranteed `∞—gain performance is defined as γ =

√
ν.
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Proof. For the control design of the LPV system (18), we consider the parameter-dependent
Lyapunov function

V(x) = x>Q(θ)−1x, (25)

with Q(θ) = ∑N
i=1 hi(θ)(Qi + Q). Condition (20) guarantees that Q(θ) is positive definite

for ∀θ ∈ Θ. Hence, V(x) is a proper Lyapunov function candidate. Moreover, condition (22)
guarantees that X + X> � 0, which implies that matrix X is nonsingular. This, in turn,
guarantees the existence of X−1 and, thus, the validity of the control expression (24). Since
∑N

i=1 ḣi(θ) = 0, for any symmetric matrix Q, it follows that

Q̇(θ) =
N−1

∑
k=1

ḣk(θ)(Qk + Q) + ḣN(θ)(QN + Q)

=
N−1

∑
k=1

ḣk(θ)(Qk + Q−QN) + ḣN(θ)Q. (26)

For any φk1 ≤ ḣk(θ) ≤ φk2 in (16), it follows that

ḣk(θ) = ϑk1(θ)φk1 + ϑk2(θ)φk2, k ∈ IN ,

where

ϑk1(θ) =
φk2 − ḣk(θ)

φk2 − φk1
, ϑk2(θ) =

ḣk(θ)− φk1
φk2 − φk1

.

Note also that ϑkl(θ) ≥ 0, ∑2
l=1 ϑkl(θ) = 1, for ∀k ∈ IN . From (26)–(28), the term Q̇(θ)

can be rewritten as

Q̇(θ) =
N−1

∑
k=1

2

∑
l=1

[
ϑkl(θ)φklQ+

1
N − 1

ϑNl(θ)φNlQ
]

, (27)

with Q = Qk + Q−QN . Using expressions (23) and (27), condition (22) implies that

Ξii(θ) ≺ 0, Ξij(θ) + Ξji(θ) ≺ 0, i, j ∈ IN , i < j, (28)

where

Ξij(θ) = He

AjQi + Bj Mi − 1
2 Π(θ) Ej εBj Mi

0 −αI 0
Qi + Q− X 0 −εX


Π(θ) = Q̇(θ)− 2AjQ− 2α(Qi + Q).

Since hi(θ) ≥ 0, ∀i ∈ IN , it follows from (28) that

N

∑
i=1

hi(θ)
2Ξii(θ) +

N

∑
i=1

N

∑
i<j

hi(θ)hj(θ)
(
Ξij(θ) + Ξji(θ)

)
=

N

∑
i=1

N

∑
j=1

hi(θ)hj(θ)Ξij(θ) ≺ 0. (29)

Inequality (29) can be rewritten in the form

He

Σ1(θ) + αQ(θ) E(θ) εB(θ)M(θ)

0 −αI 0
Q(θ)− X 0 −εX

 ≺ 0, (30)
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with Σ1(θ) = A(θ)Q(θ) + B(θ)M(θ)− 1
2Q̇(θ). Multiplying condition (30) with[

I 0 B(θ)M(θ)X−1

0 I 0

]

on the left and its transpose on the right, it follows that

He

[
Σ2(θ) + B(θ)M(θ)X−1Q(θ) E(θ)

0 −αI

]
≺ 0, (31)

with Σ2(θ) = A(θ)Q(θ) + αQ(θ)− 1
2Q̇(θ). Pre- and postmultiplying (31) with[

x>Q(θ)−1 w>
]

and its transpose, we obtain the following condition after some manipulations:

V̇(x) ≤ −2α
(
V(x)− ‖w‖2

)
, (32)

where V̇(x) is the time-derivative of the Lyapunov function defined in (25) along the
solution of the closed-loop system (18). Since w ∈ B`, it follows from (32) that

V̇(x) ≤ −2α
(
V(x)− ‖w‖2

∞

)
. (33)

Multiplying both sides of condition (33) by e2αt, then integrating over [t0, t], it follows that

e2αtV(x(t)) ≤ e2αt0V(x(t0)) + 2α‖w‖2
∞

∫ t

t0

e2ατdτ

= e2αt0V(x(t0)) + ‖w‖2
∞

(
e2αt − e2αt0

)
. (34)

It follows from (34) that

V(x(t)) ≤ e−2α(t−t0)V(x(t0)) + ‖w‖2
∞

(
1− e−2α(t−t0)

)
≤ e−2α(t−t0)V(x(t0)) + ‖w‖2

∞. (35)

From the definition of the Lyapunov function (25), we have

$1‖x‖2 ≤ V(x) ≤ $2‖x‖2, (36)

with $1 = min
θ∈Ω

λmin(Q(θ)−1) and $2 = max
θ∈Ω

λmax(Q(θ)−1). Then, it follows from (35)

and (36) that

$1‖x(t)‖2 ≤ $2e−2α(t−t0)‖x(t0)‖2 + ‖w‖2
∞,

which, in turn, implies that

‖x‖ ≤
√

$2

$1
e−α(t−t0)‖x(t0)‖+

1
√

$1
‖w‖∞. (37)

Inequality (37) guarantees that the closed-loop LPV system (18) is globally bounded
for any initial condition x(0) and any w ∈ B∞. Moreover, if w(t) = 0, for ∀t ∈ R+, then
system (18) is exponentially stable with a decay rate α. Then, the properties (P1) and (P2)
are proved.
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Multiplying condition (21) by hi(θ)hj(θ) ≥ 0 and summing up for all i, j ∈ IN , we
obtain the following condition: [

Q(θ) Q(θ)C(θ)>

? νI

]
� 0. (38)

Pre- and postmultiplying (38) with diag(Q(θ)−1, I) yields[
Q(θ)−1 C(θ)>

? νI

]
� 0. (39)

By Schur complement lemma [43], we show that condition (39) is equivalent to

Q(θ)−1 − ν−1C(θ)>C(θ) � 0. (40)

Pre- and postmultiplying (40) with x> and its transpose while considering the perfor-
mance output (14), we obtain

‖z‖2 ≤ νV(x). (41)

It follows from (35) and (41) that

‖z(t)‖ ≤
√

νV(x(t0))e−α(t−t0) +
√

ν‖w‖∞. (42)

For any initial condition x(t0) and any w ∈ B∞, it follows from (42) that

lim
t→∞

sup ‖z(t)‖ ≤ γ‖w‖∞, (43)

where the `∞-gain in (19) is defined as γ =
√

ν. Condition (43) proves the property (P3),
which concludes the proof.

Remark 2. For LPV control design, using the parameter-dependent Lyapunov function (25) allows
to exploit the information of both θ and θ̇, represented by the bounds φkl , for k ∈ IN , l ∈ I2,
to reduce the design conservatism. Indeed, if Q = 0, Q1 = · · · = QN = P, then we directly recover
from (25) the classical quadratic Lyapunov function V(x) = x>Px. Moreover, if (22) is feasible
for arbitrarily large values of |φkl |, then the only possible solution is such that Q1 ≈ · · · ≈ QN
and Q ≈ 0 to minimize the effect of the term φkl(Qk + Q− QN) +

1
N−1 φNlQ in (23). Hence,

the proposed results include those derived from quadratic or poly-quadratic Lyapunov functions
V(x) = x> ∑N

i=1 hi(θ)Pix. Similar remarks on the design conservatism when using parameter-
dependent Lyapunov functions can be found in Reference [44].

Remark 3. The control design in Theorem 1 is reformulated as an optimization problem under
LMI-based constraints (20)–(22), which can be solved with standard solvers [43].

4.3. Application to Human-Automation Shared Driving Control

For LPV control design, we first represent the DiL vehicle model (11) in a polytopic
LPV form. There are four time-varying parameters involved in the dynamics of system (11):
vx, 1

vx
, 1

v2
x

and Γ(η). Note that the number of vertices of a polytopic LPV model increases
exponentially according to the number of time-varying parameters. Indeed, if these
four parameters are independently considered as scheduling parameters, then we obtain a
polytopic LPV model with 24 = 16 vertices. To reduce the numerical complexity and also
the design conservatism, the relationship between vx, 1

vx
and 1

v2
x
, with vx ∈ [vmin, vmax],
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should be exploited. To this end, we introduce the new time-varying parameter ζ and then
using Taylor approximation to represent vx, 1

vx
and 1

v2
x

as follows [5]:

1
vx

=
1
v0

+
1
v1

ζ, vx ' v0

(
1− v0

v1
ζ

)
,

1
v2

x
' 1

v2
0

(
1 + 2

v0

v1
ζ

)
,

(44)

with
v0 =

2vminvmax

vmax + vmin
, v1 =

−2vminvmax

vmax − vmin
.

Remark that ζ = −1 if vx = vmin = 5 [m/s] and ζ = 1 if vx = vmax = 25 [m/s].
Substituting expressions in (44) into system (11), we obtain a DiL vehicle model with the

scheduling vector as θ =
[
ζ Γ(η)

]>
∈ R2. Then, the corresponding polytopic LPV has

only 22 = 4 vertices, defined as

ẋ =
4

∑
i=1

hi(θ)(Aix + Biu + Eiw)

z =
4

∑
i=1

hi(θ)Cix

, (45)

where the local matrices (Ai, Bi, Ci, Ei), and the membership functions hi(θ), for i ∈ I4,
can be directly obtained from the sector nonlinearity approach [42], which are omitted
here for brevity. To limit the kinematic acceleration, the following bounds of the vehicle
acceleration are considered [44,45]:

amin ≤ ax = v̇x ≤ amax, amax = −amin = 4 [m/s2]. (46)

Then, it follows from (44) and (46) that

amin

a0
≤ ζ̇ ≤ amax

a0
, a0 = −

v2
0

v1
. (47)

Moreover, from the analytical expression of the assistance factor Γ(η) in (9), we can
derive the following bounds:

γ0 min ≤ Γ̇(η) ≤ γ0 max, (48)

with γ0 max = −γ0 min = 6. As discussed in Remark 2, the bounds (47)–(48) allows using a
parameter-dependent Lyapunov function for LPV control design to reduce the conservatism
of the control results.

5. Validations and Performance Analysis

This section presents comprehensive evaluations and performance analysis of the
proposed shared lane keeping assistance controller. The validations have been performed
on a multi-degrees of freedom nonlinear vehicle simulator with nonlinear Brush tire friction
forces [46] developed and implemented in MATLAB-SIMULINK platform.

5.1. Validation Setup and Performance Criteria

The performance of the proposed human-machine shared controller has been evalu-
ated for lane keeping under different road friction conditions and parametric uncertain-
ties. The simulated dynamic test track is with various varying curvatures as depicted in
Figure 2a. To simulate the behaviors of the human driver, the two-point driver model in
Reference [25] has been employed in the simulations. The driver torque Tv

d issued from
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this model, i.e., the virtual driver toque used to represent a human driver, can be given as a
linear combination of the driver’s anticipatory and compensatory actions for a specified
look-ahead distance. By varying the anticipatory and compensatory gains, i.e., Kv

a and Kv
c ,

respectively, the characteristics of various drivers can be replicated. Note that the response
of the two-point driver model [25] is not exactly similar to the driver model (5) used for the
shared control design. For illustrations, we present the comparison of torques generated by
both the driver models with the same anticipatory and compensatory gains in Figure 2b.
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Figure 2. (a) Test-track with varying curvatures. (b) Driver model comparison: two-point driver
model used to replicate the human driver and dynamic driver model used for shared control design.
(c) Lateral acceleration along the dynamic test.

To evaluate the lane keeping performance of the proposed shared controller, we
compute the maximum and root-mean-square (RMS) values of the tracking errors yL
and ψL. For the driving comfort, the indicator on the steering rate is used. Concerning
the vehicle stability analysis, the maximum and RMS values of the vehicle yaw rate are
computed. For the driver-automation shared control performance, similar to Reference [26],
the following indicators are defined for a time interval of τ:

SC =

∫ τ
0 yL(t)dt

Tdpow

, SW =
1
τ

∫ τ

0
Ta(t)Td(t)δ̇d(t)dt, (49)

where the steering power of the human driver is given by Tdpow = 1
τ

∫ τ
0 Td(t)2dt. Note that

SC represents the steering comfort satisfaction levels of the driver while SW represents the
steering workload. For a high value of SC, the effort generated by the human driver results
in a good steer-ability and, thus, a high driving satisfaction. The steering workload SW is
representative of the effort generated by both agents simultaneously for completing the
driving task. Typically, higher values of negative SW indicate a poor assistance provided to
the human driver [13]. Moreover, the following performance indicators are also considered:

PRatio =
Tdpow

Tapow

, Conflict = TaTd, (50)

where PRatio represents the efforts generated by both agents, Tapow = Tapow = 1
τ

∫ τ
0 Ta(t)2dt

is the power of the assistance system, and the torque product Conflict indicates the human-
machine conflict. Note that, when the values of PRatio > 1, the assistance provided by
the automation is less than that of the driver, and inversely for PRatio < 1. Moreover,
the driver-automation conflict is present when Conflict < 0.
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5.2. Shared Control Performance Evaluation

For illustrations, the performance analysis of the shared driving control performed on
the road curvature shown in Figure 2a with a surface friction coefficient of 1 is presented.
The controlled lateral acceleration of the vehicle during this maneuver is depicted in
Figure 2c, which indicates the safe handling limits. Under such operating conditions,
the controlled states of the vehicle are shown in Figure 3.
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Figure 3. Controlled vehicle states. (a) Sideslip angle β. (b) Yaw rate ψ̇. (c) Lateral deviation yL.
(d) Heading angle ψL. (e) Steering angle δd. (f) Steering rate δ̇d.

We can see that the controlled states are constrained within a safe vehicle operating
condition. The lane keeping performance is also guaranteed by the low magnitude of
the tracking errors yL and ψL. The maximum and RMS values of these errors are, re-
spectively, given by |yL|max = 0.522 [m], |ψL|max = 0.063 [rad], and |yL|RMS = 0.338 [m],
|ψL|RMS = 0.024 [rad]. These results confirm that the controlled vehicle is maintained
around the lane center. Similarly, the maximum and RMS values of the steering rate are,
respectively, obtained as |δ̇d|max = 1.686 [rad/s] and |δ̇d|RMS = 0.407 [rad/s], which shows
a good driver comfort level while completing the driving task. The vehicle stability is also
guaranteed with small computed indexes for the yaw rate are |ψ|max = 0.2597 [rad/s] and
|ψ|RMS = 0.1641 [rad/s]. Observe that even during sharp curves of radius 25 [m], the max-
imum values of the yaw rate and the steer-rate do not increase beyond their respective
maximal levels ψ̇max = 0.55 [rad/s] and δ̇ fmax = 0.15 [rad/s], which also indicates a good
control performance.

The above lane tracking, driver comfort, and vehicle stability performance is obtained
with the driver and assistance torques presented in Figure 4.

The magnitude of the internal driver state xd shows that the steering wheel correction
performed by the driver based on his/her perception of the road conditions is low, thus
ensuring enhanced driver comfort. Similarly, the illustrations of the assistance and driver
torques presented in Figure 4b show that the assistance torque generally has higher magni-
tude than the driver torque. The monitored driver activities and the corresponding sharing
of authority allocation factor are presented in Figure 5a,b, respectively. The product of
the assistance and driver torques, considered as an indicator of the conflict between two
driving agents, is also shown in Figure 5c.
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Figure 4. (a) Internal driver state xd for the driver model. (b) Driver and assistance torques generated
for completing the driving task.
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Figure 5. (a) Cooperative index and normalized driver torque. (b) Driver performance and provided
level of haptic authority. (c) Conflict between the human driver and the automation represented by
Conflict = TaTd.

We can see that, when the conflict is present, i.e., Conflict < 0, only a low level of hap-
tic authority is provided to the human driver, and he/she completely takes over the vehicle
control. In other scenarios, the assistance torque is modulated by the driver physical work-
load. This reduces the driver-automation conflict, as shown in Figure 5c. To evaluate the
quality of the shared control, the computed values of the metrics presented in (49) and (50)
are obtained as PRatio = 0.0386, SC = 0.0848 [N−2m−1], and SW = −1.395 [N2m2rad/s]
over the whole driving maneuver. Further, the minimum value of the conflict was
obtained as Conflictmin = −2.9392 [N2m2], which is greater than the design threshold
λc = −3 [N2m2]. These results highlight a good quality of shared control and conflict
minimization between both driving agents.

5.3. Control Robustness w.r.t. Modeling Uncertainty

There exists a modeling mismatch between the DiL vehicle model (6) used for shared
control and the DiL vehicle model used for simulations. To evaluate the control robustness
with respect to the modeling uncertainty, the performance metrics on lane tracking, vehicle
stability, driver comfort, and sharing of authority corresponding to varying road friction
conditions and to the presence of uncertainty in m, Iz, Is, are computed for the test track
depicted in Figure 2a and presented in Table 2. To consider the road friction conditions
in the validation tests, the front and rear tire-road forces are, respectively, modeled as



Sensors 2021, 21, 4647 17 of 20

Fy f = µC f α f and Fyr = µCrαr, where µ is the road friction. Similarly, to account for varying
driver behaviors, the results for various performance metrics considering uncertainty in
the driver parameters Ka and Kc for the human driver, i.e., two-point driver model, are
presented in Table 3. Note also that these parametric uncertainties are only considered for
the test scenarios and not taken into account in the control design.

For comparisons with the proposed shared controller (CITDN), the results obtained
with the following control schemes are also presented:

• Auto: Autonomous controller with no driver, i.e., Td = 0.
• Auto-FA: Autonomous controller with driver present and full assist always provided.
• HMI-FA: Shared DiL controller with full assist always provided, i.e., Γ(η) = 1.

Table 2. Control robustness w.r.t. vehicle parametric uncertainties on m, Iz, and Is.

Road Vehicle Controller |yL|max |ψL|max |δ̇d|max| |ψ̇|max PRatio SC SW CImin
Uncertainties [m] [rad] [rad/s] [rad/s] [–] [N−2m−1] [N2m2rad/s] [N2m2]

µ = 1

5%

Auto 0.545 0.075 2.024 0.286 – – – –

Auto-FA 0.499 0.071 1.971 0.278 0.041 0.071 −2.356 −9.335

HMI-FA 0.536 0.065 1.593 0.263 0.039 0.087 −1.549 −3.371

CITDN 0.510 0.063 1.555 0.259 0.039 0.083 −1.378 −3.351

25%

Auto 0.540 0.074 2.029 0.283 – – – –

Auto-FA 0.487 0.069 2.015 0.272 0.042 0.074 −2.201 −8.252

HMI-FA 0.517 0.064 1.865 0.256 0.039 0.089 −2.123 −2.891

CITDN 0.509 0.063 1.585 0.257 0.037 0.087 −1.324 −2.944

µ = 0.5

5%

Auto 0.6287 0.0792 2.3133 0.3018 – – – –

Auto-FA 0.578 0.076 2.625 0.297 0.056 0.054 −3.247 −23.558

HMI-FA 0.668 0.072 2.265 0.282 0.055 0.066 −2.335 −15.474

CITDN 0.633 0.066 2.123 0.278 0.053 0.066 −2.198 −14.575

25%

Auto 0.6247 0.0785 2.3901 0.3002 – – – –

Auto-FA 0.553 0.073 2.813 0.287 0.054 0.059 −3.061 −23.041

HMI-FA 0.612 0.066 2.220 0.273 0.049 0.077 −2.612 −8.214

CITDN 0.629 0.067 2.169 0.276 0.049 0.071 −2.095 −13.032

Across different road conditions and uncertainties, the RMS values of different metrics
exhibit negligible variance for all considered controllers. However, the maximum values
of these metrics, which help in the performance analysis for extreme conditions, exhibit
a significant difference for all controllers, as shown in Table 2. Similar conclusions about
the performance of all controllers can be drawn from the presented results in Table 3
concerning the driver behaviors. For the high friction road condition, i.e., µ = 1, even
with 25% variations in the parameters Ka and Kc the lane keeping metrics and the HMI
metrics indicate a good performance across all considered controllers. Especially, with a
decreasing road friction condition, the instantaneous human-machine conflict represented
by the minimum value of the cooperative index decreases sharply for all the control
architectures. Such performance across the presented driver uncertainties, thus, accounts
for the variations of driver behaviors which can be mapped based on the gains Ka and Kc as
previously discussed. From the presented results, it can be deduced that for the considered
uncertainty scenarios, the proposed CITDN controller outperforms the other controllers.
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Considering a dry road condition, i.e., µ = 1, with low parametric uncertainties,
the Auto-FA controller offers the best lane tracking performance. However, this controller
poorly fares in achieving high driver comfort, vehicle stability, and quality of shared
control. In contrast, the proposed CITDN controller outperforms other controllers in all
aspects. However, the instantaneous conflict minimization by the CITDN controller is also
affected for slippery road conditions with parametric uncertainties. Thus, with a decrease
in the value of road friction coefficient, the value of CImin crosses the predefined threshold
λc = −3.

Table 3. Control robustness w.r.t. driver uncertainties on Ka and Kc.

Road Driver Controller |yL|max |ψL|max |δ̇d|max| |ψ̇|max PRatio SC SW CImin
Uncertainties [m] [rad] [rad/s] [rad/s] [–] [N−2m−1] [N2m2rad/s] [N2m2]

µ = 1

5%

Auto-FA 0.503 0.074 2.049 0.278 0.041 0.071 −2.357 −10.143

HMI-FA 0.539 0.065 1.592 0.263 0.039 0.086 −1.458 −3.492

CITDN 0.514 0.063 1.545 0.259 0.039 0.083 −1.379 −3.336

25%

Auto-FA 0.503 0.071 2.056 0.278 0.041 0.071 −2.364 −10.505

HMI-FA 0.538 0.065 1.593 0.263 0.039 0.086 −1.459 −3.662

CITDN 0.511 0.063 1.551 0.259 0.039 0.083 −1.381 −3.501

µ = 0.5

5%

Auto-FA 0.583 0.076 2.589 0.296 0.056 0.053 −3.522 −23.388

HMI-FA 0.673 0.075 2.307 0.283 0.056 0.067 −2.324 −16.577

CITDN 0.633 0.066 2.108 0.0278 0.053 0.066 −2.197 −14.545

25%

Auto-FA 0.583 0.076 2.581 0.295 0.056 0.053 −3.523 −22.195

HMI-FA 0.673 0.075 2.311 0.283 0.056 0.066 −2.321 −17.376

CITDN 0.633 0.066 2.115 0.278 0.054 0.066 −2.195 −15.133

6. Conclusions and Future Works

A new linear parameter varying design for shared driving control with adaptation
to level of cooperativeness and driver workload has been proposed for semi-autonomous
vehicles. To take into account the driver characteristics in the control design, a dynamic
driver model is considered to construct a driver-in-the-loop vehicle model. The haptic
shared control strategy is proposed based on a new index of cooperativeness and the
driver need for assistance with respect to his/her driving activity. Using polytopic linear
parameter varying control technique, together with Lyapunov stability arguments, the pro-
posed shared controller is able to deal with the time-varying vehicle speed and a dynamic
modulation factor used to manage the driver-automation conflict issue. The new shared
controller provides a good performance with small lane tracking errors, enhanced driver
comfort, and good sharing of control authority over a dynamic test track with various
parametric uncertainties. Extensive comparisons with other shared control architectures
and fully autonomous controllers show that the proposed shared control scheme leads to
the best performance across all considered evaluation metrics. For future works, the vali-
dation of the proposed shared control architecture on a driving simulator and testing for
extreme maneuvers, such as obstacle avoidance and highway merge, will be explored. For
real-time validations, dealing with the estimation of vehicle variables for feedback control
design, e.g., using LPV observers, and the control robustness with respect to modeling
uncertainties will be of crucial importance, which requires further investigations.
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