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Abstract: Among many available biometrics identification methods, finger-vein recognition has an
advantage that is difficult to counterfeit, as finger veins are located under the skin, and high user
convenience as a non-invasive image capturing device is used for recognition. However, blurring
can occur when acquiring finger-vein images, and such blur can be mainly categorized into three
types. First, skin scattering blur due to light scattering in the skin layer; second, optical blur occurs
due to lens focus mismatching; and third, motion blur exists due to finger movements. Blurred
images generated in these kinds of blur can significantly reduce finger-vein recognition performance.
Therefore, restoration of blurred finger-vein images is necessary. Most of the previous studies have
addressed the restoration method of skin scattering blurred images and some of the studies have
addressed the restoration method of optically blurred images. However, there has been no research
on restoration methods of motion blurred finger-vein images that can occur in actual environments.
To address this problem, this study proposes a new method for improving the finger-vein recognition
performance by restoring motion blurred finger-vein images using a modified deblur generative
adversarial network (modified DeblurGAN). Based on an experiment conducted using two open
databases, the Shandong University homologous multi-modal traits (SDUMLA-HMT) finger-vein
database and Hong Kong Polytechnic University finger-image database version 1, the proposed
method demonstrates outstanding performance that is better than those obtained using state-of-the-
art methods.

Keywords: Finger-vein recognition; motion blur image restoration; modified DeblurGAN; CNN

1. Introduction

There are several types of measurable human biometrics, including those of voice,
face, iris, fingerprint, palm print, and finger-vein recognition. Among these, finger-vein
recognition has the following advantages, (1) finger-vein patterns are hidden under the
skin. Therefore, they are generally invisible, making them difficult to forge or steal. (2) Non-
invasive image capture ensures both convenience and cleanliness and is more suitable
for a user. (3) As most people have ten fingers, if an unexpected accident occurs with
one finger, the other finger can be used for authentication [1]. However, due to various
factors such as light scattering in the skin layer caused by near-infrared (NIR) light, focus
mismatch of a camera lens, differences in finger thickness, differences in depth between the
surface of the skin and vein, and finger movements, blurring may occur when capturing
finger-vein images. Blurred images generated in these kinds of blur can significantly reduce
finger-vein recognition performance. Therefore, image restoration through a deblurring
method is necessary. Extensive research has been conducted for restoring skin scattering
blur that occurs frequently [2–9], and several studies have been conducted on optical blur
caused by the difference in the distance from a camera lens to the finger vein and finger
thickness [10,11]. Motion blur can occur frequently, due to finger movement. However, no
study has been conducted for motion blurred finger-vein image restoration.
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Although, during finger-vein image capture, a finger is fixed to the image capturing
device to some extent; however, Parkinson’s disease, physiologic tremors, dystonia, and
excessive stress may cause hand tremors. Due to these reasons, motion blur can occur.
Furthermore, with the recent expansion of non-contact devices due to COVID-19, motion
blur occurs more in the input image, and the resulting motion blurred image causes
severe performance degradation during finger-vein recognition. To solve this problem, the
restoration of a motion blurred finger-vein image is essential.

Conventional image restoration methods can be categorized into blind and non-blind
deblurring [12]. Early non-blind deblurring methods perform deblurring, assuming that
blur kernels are known. Blur kernel is deduced from knowledge of the image formation
process (e.g., amount of motion or defocus blur and camera sensor optics), calculated
from the test image, or measured through point spread function (PSF) [13]. Using these
methods, the original sharp image can be obtained through deconvolution by estimating
the blur kernel. However, when a non-blind restoration method is applied, the recogni-
tion performance can be reduced if images are acquired from various devices and show
difference blurring characteristics in the spatial domain. Moreover, there are limitations
to applying non-blinded methods to each case because various types of distortions occur
when capturing an image in actual environments. Also, most blur kernels are unknown in
actual environments, and it is time-consuming to estimate blur kernels.

Contrary to the non-blind deblurring method, the blind deblurring methods proceed
with deblurring, assuming that blur kernels are unknown [12,14,15]. A generative adver-
sarial network (GAN) that combines the blind deblurring method and the training-based
method has also been studied to solve the problems arising from non-blinded deblur-
ring [12,14]. GAN is a network that generates an image by finding an optimal filter using
weights trained from the training data. Therefore, using GAN has the advantage of being
robust even if images have various distortions. Also, there is no need to estimate the blur
kernel directly, and restoration can be performed through training. Considering these
reasons, we propose a method of performing motion blurred finger-vein image restoration
using the newly proposed modified DeblurGAN and a method of performing restored
finger-vein image recognition using deep CNN. The main contributions of our paper are
as follows:

• This is the first study on motion blur finger-vein image restoration that can occur in
actual environments.

• For restoration of motion blur finger-vein image, we propose a modified DeblurGAN.
The proposed modified DeblurGAN has differences in comparison with the original
DeblurGAN, (1) dropout layer removal, (2) number of trainable parameters reduction
by modifying the number of the residual block structure, (3) and uses feature-based
perceptual loss in the first residual block.

• Training is conducted by separating the modified DeblurGAN and the deep CNN,
therefore, reducing training complexity while improving convergence.

• The modified DeblurGAN, a deep CNN, and a non-uniform motion blurred im-
age database are published in [16] to allow other researchers to perform fair perfor-
mance evaluations.

This paper is organized as follows: Section 2 provides an overview of the previous
studies, and the proposed method is explained in Section 3. In Section 4, comparative
experiments and experimental results with analysis are described. Finally, in Section 5, the
conclusions of this paper are explained.

2. Related Works

Previous studies on blurred finger-vein image restoration have been conducted on the
restoration of skin scattering or optical blur, and studies related to motion blur restoration
have not been conducted. Therefore, previous studies were analyzed in terms of finger-vein
recognition without blur restoration, with skin scattering blur restoration, and with optical
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blur restoration. Such methods can be further categorized into handcrafted feature-based
and deep-feature-based finger-vein recognition for analysis.

2.1. Finger-Vein Recognition without Blur Restoration

For the handcrafted feature-based finger-vein recognition without blur restoration
method, Lee et al. [17] proposed a method for finger-vein recognition by aligning the
image using minutia points extracted from the finger-vein region, extracting finger-vein
features using a local binary pattern (LBP), and calculating the Hamming distance using
the extracted features. Peng et al. [18] applied Gabor filters having eight orientations to
the original finger-vein image and extracted the finger-vein pattern by the fusion of the
image with the vein pattern highlighted. They proposed a scale-invariant feature transform
(SIFT) feature matching method based on the extracted finger-vein patterns. The method
proposed in the study of [18] has the advantage that recognition performance is improved
when an optimal filter is accurately modeled. However, this method can cause performance
degradation when the filter is applied to finger-vein images having multiple characteristics,
and since this experiment was conducted in a constraint environment, it is not robust to
image variants, such as illumination or misalignment. Moreover, they did not consider the
blur that could occur when capturing a finger-vein image.

Deep feature-based methods have been studied to overcome the drawbacks of these
handcrafted feature-based methods. Although a deep-learning-based method was not used,
Wu et al. [19] performed dimension reduction and feature extraction of a finger-vein image
using a principal component analysis (PCA) and a linear discriminant analysis (LDA). They
proposed a finger-vein pattern identification method based on a support vector machine
(SVM), which used the PCA- and LDA-extracted features. Hong et al. [20] and Kim et al. [21]
proposed finger-vein verification methods to distinguish genuine (authentic) matching (match-
ing images of the same class), and imposter matching (matching images of different classes)
using the difference image of enrolled and input images as input to a CNN. Qin et al. [22]
created vein-pattern maps, calculated the finger-vein feature probability for each pixel, and
labeled veins and backgrounds. Subsequently, training was conducted by dividing the orig-
inal image into an N×N size, and the probability that the final input image was the vein
pattern was calculated. Song et al. [23] and Noh et al. [24,25] proposed a shift-matching
finger-vein recognition method using a composite image. Qin et al. [26] proposed a finger-
vein verification method that combined a CNN and long short-term memory (LSTM). They
assigned labels through handcrafted finger-vein image segmentation techniques and extracted
finger-vein features using stacked convolutional neural networks and long short-term mem-
ory (SCNN-LSTM). Genuine and imposter matching were verified using feature matching
between supervised feature encoding and enrollment databases using extracted features.
These studies on deep feature-based finger-vein recognition have a limitation that an intensive
training process is required, and there is a disadvantage that they did not consider blur that
can occur when capturing finger-vein images.

2.2. Finger-Vein Recognition with Skin Scattering Blur Restoration

Lee et al. [2] proposed a method for restoring skin scattering blur by measuring a PSF
of a skin scattering blur and using a constrained least squares (CLS) filter. Yang et al. [3,4]
performed scattering-removal by calculating light-scattering components of a biological
optical model (BOM). Yang et al. [5] performed scattering effects removal from finger-
vein images by considering an anisotropic diffusion, and gamma correction (ADAGC),
weighted biological optical model (WBOM), Gabor wavelet, non-scattered transmission
map (NSTM), and inter-scale multiplication operation. Shi et al. [6] used haze-removal
techniques based on Koschmieder’s law to remove scattering effects in finger-vein images.
Yang et al. [7] used multilayered PSF and BOM to restore blurred images. Furthermore,
Yang et al. [8] proposed a scattering-effect removal method using a BOM-based algorithm
that measured the scattering component with the transmission map. You et al. [9] designed
a bilayer diffusion model to simulate light scattering and measured the parameters of a



Sensors 2021, 21, 4635 4 of 33

bilayer diffusion model through blur-Steins unbiased risk estimate (blur-SURE). Image
restoration methods were also proposed based on these parameters with the multi-Wiener
linear expansion thresholds (SURE-LET). However, these studies have the disadvantages
that scattering blur parameters must be accurately estimated, and parameters must be
re-estimated when the domain between the image used for estimation and the test image
is different.

2.3. Finger-Vein Recognition with Optical Blur Restoration

Lee et al. [10] proposed a blurred finger-vein image restoration method that considers
both optical and scattering blur using PSF and CLS filters. They restored blurred finger-
vein images by considering both optical blur components and scattering blur components
and improved recognition performance. However, this method requires that parameters
should be accurately predicted when measuring two PSFs to improve performance, causing
extensive processing time. Choi et al. [11] proposed a finger-vein recognition method by
restoring the optical blur included in the original finger-vein image based on modified
conditional GAN. This method has the advantage that it can be applied to images acquired
from various environments but has the disadvantage that it does not consider more complex
motion blur that can occur during image acquisition.

As such, most of the previous studies did not focus on motion blur that can occur
from the movement of fingers in finger-vein recognition and did not consider the image
restoration associated with the motion blur. Therefore, we propose a new method of restor-
ing a motion blurred finger-vein image using the modified DeblurGAN and recognizing
the restored image using a deep CNN.

Point spread functions (PSFs) for skin scattering and optically blurred images are
completely different from that for motion blurred images [2–11,27,28]. Therefore, the
methods developed for skin scattering or optically blurred images cannot be used directly
to solve the motion blurring issue. In the case of the handcrafted feature-based method of
Table 1, the PSFs for skin scattering or optically blurred images should be replaced by the
PSF for motion blurred images with optimal parameters of PSF. In case of deep feature-
based method of Table 1, the CNN and GAN models for skin scattering or optically blurred
images should be retrained with motion blurred images in addition to the modification of
layers or filters of CNN and GAN models.

Table 1. Comparisons of the previous and proposed finger-vein image restoration methods.

Category Methods Advantages Disadvantages

Without
considering

blur restoration

Handcrafted
feature-based

LBP-based feature extraction + Hamming
distance [17]

Recognition performance is
improved when an optimal filter
is accurately modeled

- Performance degradation when the
modeled optimal filter is applied to
images having different
characteristics

- Not robust to image variants, such
as illumination or misalignment,
because the research was conducted
in a constrained environment

- A blur that may occur when
capturing finger-vein images is not
considered

Gabor filter + SIFT feature matching [18]

Deep
feature-based

PCA + LDA + SVM [19]
- No need to directly model

an optimal filter
- Robust to image variation

as various image features
are trained

- Requires intensive training process
- Not consider a blur that may occur

during image capturing

Difference image + CNN [20,21]
Vein-pattern maps + CNN [22]

Composite image + shift matching +
CNN [23–25]

SCNN-LSTM [26]

Skin scattering
blur restoration

Handcrafted
feature-based

PSF + CLS filter [2]

Performance is significantly
improved if scattering blur
parameters are accurately
estimated

- Scattering blur parameters must be
accurately estimated

- Parameters must be re-estimated
when the domain between the image
used for estimation and the test
image is different

BOM [3,4]
WBOM + ADAGC + NSTM + Gabor

wavelets [5]
Haze removal techniques [6]
Multilayered PSF + BOM [7]

Optical model-based scattering removal
[8]

Bilayer diffusion model + blur-SURE +
multi-Wiener SURE-LET [9]
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Table 1. Cont.

Category Methods Advantages Disadvantages

Optical-blur
restoration

Handcrafted
feature-based

PSF for optical blur + PSF for scattering
blur + CLS filter [10]

Image restoration considering
both optical and skin scattering
blur

- Performance can be improved only
when the parameters of two PSFs are
accurately predicted from the
perspective of skin structure and
camera optics

- Processing time is long because
optical blur restoration and skin
scattering blur restoration are
processed simultaneously

Deep
feature-based Conditional GAN + CNN [11] Applicable to images captured

from various environments Did not consider the motion blur

Motion blur
restoration

Deep
feature-based

Modified DeblurGAN-based method +
CNN (Proposed method)

Recognition performance
improved after restoration
considering a motion blur that
may occur when capturing
finger-vein images

Networks for restoration and recognition
require large data and take a long time to
train.

Table 1 presents a comparison of the advantages and disadvantages of the proposed
method and the previous studies.

3. Proposed Method
3.1. Overview of the Proposed Method

Figure 1 shows the overall flowchart of the proposed method. After acquiring finger
images (step (1)), the finger region of interest (ROI) is detected using preprocessing method
(step (2)). Then, the motion blurred finger-vein image is restored using the proposed
modified DeblurGAN (step (3)). One difference image is then generated from the restored
enrolled and recognized images (step (4)). Lastly, based on the output score obtained by
inputting the difference image in the deep CNN, finger-vein recognition is performed to
distinguish genuine (authentic) or imposter matching (step (5)).

Sensors 2021, 21, x FOR PEER REVIEW 6 of 34 
 

 

3. Proposed Method 
3.1. Overview of the Proposed Method 

Figure 1 shows the overall flowchart of the proposed method. After acquiring finger 
images (step (1)), the finger region of interest (ROI) is detected using preprocessing 
method (step (2)). Then, the motion blurred finger-vein image is restored using the pro-
posed modified DeblurGAN (step (3)). One difference image is then generated from the 
restored enrolled and recognized images (step (4)). Lastly, based on the output score ob-
tained by inputting the difference image in the deep CNN, finger-vein recognition is per-
formed to distinguish genuine (authentic) or imposter matching (step (5)). 

 
Figure 1. Flowchart of the proposed method. 

3.2. Preprocessing the Finger-Vein Image 
The first part of preprocessing removes unnecessary background regions and finds 

the finger-vein ROI. The captured image is then binarized to obtain the image shown in 
Figure 2b. However, even if binarization is performed, the background is not completely 
removed, so an edge map is created using a Sobel filter. A difference image is then gener-
ated using the created edge map and the binarized image. By applying the area threshold 
method [29] to the generated difference image, an image with the background removed 
as shown in Figure 2c is obtained. Then, in order to correct misalignment caused by in-
plane rotation of the finger image, which degrades recognition performance, second-order 
moments of the binarized mask R (Figure 2c), are calculated using Equation (1). 

  
(a) (b) 

  
(c) (d) 

Figure 2. Example of background removal and in-plane rotation compensation: (a) original image; 
(b) binarized image; (c) background removed image; (d) in-plane rotation compensation. 

Note that 𝑓(𝑥, 𝑦) and (𝑚 , 𝑚 ) represent image pixel values and central coordi-
nates, respectively. Based on these values, the rotation angle , in Equation (2) is calcu-
lated to compensate for the in-plane rotation [30]. The compensated image, shown in Fig-
ure 2d, is obtained from this process. 

Figure 1. Flowchart of the proposed method.

3.2. Preprocessing the Finger-Vein Image

The first part of preprocessing removes unnecessary background regions and finds
the finger-vein ROI. The captured image is then binarized to obtain the image shown
in Figure 2b. However, even if binarization is performed, the background is not completely
removed, so an edge map is created using a Sobel filter. A difference image is then
generated using the created edge map and the binarized image. By applying the area
threshold method [29] to the generated difference image, an image with the background
removed as shown in Figure 2c is obtained. Then, in order to correct misalignment caused



Sensors 2021, 21, 4635 6 of 33

by in-plane rotation of the finger image, which degrades recognition performance, second-
order moments of the binarized mask R (Figure 2c), are calculated using Equation (1).
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Note that f (x, y) and (mx, my) represent image pixel values and central coordinates,
respectively. Based on these values, the rotation angle θ, in Equation (2) is calculated to
compensate for the in-plane rotation [30]. The compensated image, shown in Figure 2d, is
obtained from this process.

a11=
∑(x,y)∈R(y−my)

2· f (x,y)
∑(x,y)∈R I(x, y)

a12=
∑(x,y)∈M(x−mx)(y−my)· f (x,y)

∑(x,y)∈R I(x, y)

a22=
∑(x,y)∈R(x−mx)

2· f (x,y)
∑(x,y)∈R I(x, y)

(1)

θ =


tan−1

{
a11−a22+

√
(a11−a22)

2+4a2
12

−2a12

}
i f a11 > a22

tan−1

{
−2a12

a22−a11+
√
(a22−a11)

2+4a2
12

}
i f a11 ≤ a22

(2)

As shown in Figure 3a, the left and right ends of the finger are the regions of the
thick area or region with a fingernail where NIR lighting is not well-transmitted. Thus,
these regions are inappropriate for recognition because vein patterns are not likely to be
captured accurately. Therefore, the image, shown in Figure 3c, is obtained by removing
the left and right sides by a predetermined size to which in-plane rotation compensation
is applied. By performing erosion operation, component labeling process, and dilation
operation [27], the unnecessary region for finger-vein recognition such as the upper right
corner of Figure 3c, is removed. As a result of this process, an image as shown in Figure 3d
is created. Since the vein pattern is not acquired by bright illumination, the black area
of the finger area is not required for recognition. An ROI mask is obtained by using a
4 × 20 mask to fill the black area with the average pixel values around it (Figure 3e). In
details, as shown in the red-dashed circles of the lower boundary of finger in Figure 3a,
there exists bright pixels inside of finger caused by excessive illumination, which causes
the error of binarization of lower boundary as shown in Figure 3b–d. Therefore, we applied
4 × 20 mask to the binarized image of Figure 3d. At each convolution position of mask, the
average pixel value within 4 × 20 area (except for the black pixels of Figure 3d) is assigned
to the binarized image of Figure 3d. That is, if the majority pixels within 4 × 20 area is
white (255), white pixel is assigned. Then, the inaccurate black pixels of the red-dashed
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circles of Figure 3d are replaced by the white pixels of finger region as shown in the lower
boundary of Figure 3e.
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The mask size (4 × 20) generalizes on the images of different resolutions. To confirm
this, we used two open databases of the Shandong University homologous multi-modal
traits (SDUMLA-HMT) finger-vein database [31] and the Hong Kong Polytechnic Univer-
sity finger-image database version 1 [29] in our research.

3.3. Modified DeblurGAN-Based Finger-Vein Image Restoration

The principal objective of enhancement is to process the image so that the result is
more suitable than the original image for a specific application [27]. Therefore, although
image enhancement is mostly a subjective process, while image restoration is a generally
objective process. Because image restoration is an attempt to reconstruct a degraded image
using prior knowledge of degradation, the restoration method must focus on applying
degradation modeling to restore the original image and the inverse process. The blur
model based on the above process can be expressed as follows [28]:

g(x, y) = h(x, y) ∗ f (x, y) + η(x, y) (3)

Here, g(x, y) is a degraded (blurred) image, h(x, y) is a spatial representation of a
degradation function (H), ∗ is a convolution operation, f (x, y) is an input image, and
η(x, y) is an additive noise. If the above conditions are given, the goal of restoration is to
obtain f̂ (x, y), which is the estimation of an original image. The more accurately h(x, y)
and η(x, y) are estimated, f̂ (x, y) and f (x, y) become closer [28]. However, from g(x, y),
which is the image obtained from various environments, it is extremely difficult to estimate
h(x, y) and η(x, y) accurately. Furthermore, when images having different characteristics
than those used for estimation are input, the estimated h(x, y) and η(x, y) may sometimes
not be applicable. Considering these facts, this study proposes a training-based restoration
model, the modified DeblurGAN, and we aim to ensure the restored finger-vein image Fres,
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becomes similar to the original finger-vein image Fori, through training without separately
estimating h(x, y) and η(x, y) when a motion blurred finger-vein image Gblur, is given.

A deblurring task can be generally divided into blind and non-blind deblurring. For
the non-blind deblurring method, deblurring is performed assuming that the blur kernel
(h(x, y)) is known, whereas, for the blind deblurring method, deblurring is performed
assuming that the blur kernel is not known [12]. In a general environment, a blind kernel
is not known, and it is time-consuming to directly estimate it. In this study, we assume
that the blur kernel is unknown, similar to the general environment. Also, it proposes
a restoration method applicable for motion blurred finger-vein images obtained from
various environments, so this study can be considered a blind deblurring task. Because
the original DeblurGAN exhibits good performance in a blind motion-deblurring task [12],
we determined that it would be effective in this study as well. Therefore, we propose a
modified DeblurGAN. The generator of the modified DeblurGAN used in this study is
shown in Figure 4 and Table 2, and the discriminator is shown in Figure 5 and Table 3. A
more detailed explanation is provided in the next subsection.
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Table 2. Descriptions of generator in modified DeblurGAN.

Layer Number
of Filters

Size of Feature
Map

(Height ×Width ×
Channel)

Size of Kernel
(Height ×Width ×

Channel)

Number of Strides
(Height ×Width)

Number of
Paddings

(Height ×Width)

Image input layer 256 × 256 × 3

Encoder

1st convolutional layer
Batch normalization
ReLU

64 256 × 256 × 64 7 × 7 × 3 1 × 1 3 × 3

2nd convolutional layer
Batch normalization
ReLU

128 128 × 128 × 128 3 × 3 × 64 2 × 2 1 × 1

3rd convolutional layer
Batch normalization
ReLU

256 64 × 64 × 256 3 × 3 × 128 2 × 2 1 × 1

Residual Blocks × 6
[3 × 3 conv,
Batch normalization]

256 64 × 64 × 256 3 × 3 × 256 1 × 1 1 × 1

Decoder

1st transposed layer
Batch normalization
ReLU

128 128 × 128 × 128 3 × 3 × 256 2 × 2

2nd transposed layer
Batch normalization
ReLU

64 256 × 256 × 64 3 × 3 × 128 2 × 2

4th convolutional layer
Batch normalization
ReLU

3 256 × 256 × 3 7 × 7 × 64 1 × 1 3 × 3

Output
(input + 4th convolutional
layer)

256 × 256 × 3
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Table 3. Descriptions of the discriminator in modified DeblurGAN (* means the output image or target image of Figure 5).

Layer Number of
Filters

Size of Feature
Map

(Height ×Width
× Channel)

Size of Kernel
(Height ×Width
× Channel)

Number of
Strides

(Height ×Width)

Number of
Paddings

(Height ×Width)

* Image input layer 256 × 256 × 3
1st convolutional layer
Leaky ReLU 64 129 × 129 × 64 4 × 4 × 3 2 × 2 2 × 2

2nd convolutional
layer
Batch normalization
Leaky ReLU

128 65 × 65 × 128 4 × 4 × 64 2 × 2 2 × 2

3rd convolutional
layer
Batch normalization
Leaky ReLU

256 33 × 33 × 256 4 × 4 × 128 2 × 2 2 × 2

4th convolutional layer
Batch normalization
Leaky ReLU

512 34 × 34 × 512 4 × 4 × 256 1 × 1 2 × 2

5th convolutional
layer 1 35 × 35 × 1 4 × 4 × 512 1 × 1 2 × 2

3.3.1. Generator

A GAN generally comprises generator and discriminator models in which the adver-
sarial training between the two gradually improves the performance of both. The generator
of the original DeblurGAN has one convolution block, two strided convolution blocks
with strides of 1/2, nine residual blocks (ResBlocks) [32], and two transposed convolution
blocks [12]. Each ResBlock consists of a convolution layer, an instance normalization
layer, and a rectified linear unit (ReLU) for activation [33]. Compared with the original
DeblurGAN, the following two aspects were modified for this study.

First, a dropout [34] is removed. In the original DeblurGAN, a dropout ratio of 0.5 is
applied to each residual block of the generator, and the same ratio is applied for inference.
Generally, a dropout is effective as a regularization method for avoiding overfitting, but
it can cause the modification of a vein pattern in the restored output image, due to the
randomness of a dropout when applied to a restoration task. The modified vein pattern
then has different features from the original finger-vein image, which results in degraded
performance. Rather than creating a variety of outputs in which the vein pattern is de-
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formed, the generated pattern information needs a deterministic output that is similar to
the original as possible, therefore, dropout.

Second, the number of parameters is reduced by modifying the residual blocks. Large
parameters can increase the inference time when applied to an actual environment, and
increased inference time can cause the inefficiency of the system. The original DeblurGAN
used the GoPro [35] and Kohler datasets [36] and applied nine residual blocks to the
generator. In this study, the existing nine residual blocks were reduced to six to shorten
the inference time by reducing the number of parameters. Also, by modifying the residual
blocks as shown in Figure 6, feature information is maintained in the layer prior to the
next convolution layer, and the number of parameters is reduced. The width and height
of feature map are reduced by passing through convolution layer, which usually causes
the reduction of important feature information [32]. Therefore, by comparing Figure 6a,b,
the second 3 × 3, 256 Conv layer is removed in our modified residual block, which can
maintain feature information in the layer prior to the next convolution layer. In addition,
the number of parameters is reduced by removing the second 3 × 3, 256 Conv layer in
the modified residual block. Consequently, the number of parameters of the generator is
reduced from 6.0 to 4.2 million.
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3.3.2. Discriminator

The structure of the discriminator is shown in Figure 5 and Table 3. The discrimi-
nator of the modified DeblurGAN proposed in this study has the same structure as the
discriminator of the original DeblurGAN, which used the Wasserstein WGAN gradient
penalty (GP) [37]. For a GAN, the Nash equilibrium in a non-convex system must be found
using continuous and high-dimensional parameters for smooth training, however, the
existing GAN [38] cannot solve this problem, therefore, it fails to converge [39]. In the case
of DeblurGAN, WGAN-GP is used as a critic function using Wasserstein distance and the
gradient penalty methods proposed in [37]. Thus, a structure that is robust to generator
structure selection and at the same time enables stable training is proposed. In this study,
these advantages of the discriminator of the original DeblurGAN are adopted.

3.3.3. Loss

In the case of the original DeblurGAN, a perceptual loss is applied to perceptually hard
to distinguish between the generated image and the real sharp image and to restore finer
texture detail [12]. A perceptual loss refers to the difference in feature maps between the
generated and target images, which can produce better results than the loss that generates
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blurry results by calculating the pixel-wise average difference such as L1 or L2 loss. The
perceptual loss function used in this study, based on the previous study [12], can be defined
as follows:

LX =
1

W∅H∅

W∅

∑
x=1

H∅

∑
y=1

(
∅
(

Fori
)

x,y
−∅

(
GθG

(
Fblur

))
x,y

)2
(4)

where ∅ is the feature maps extracted from the ImageNet pretrained network. For the
original DeblurGAN, the feature maps extracted from the third convolution layer before the
third max-pooling layer in the visual geometry group (VGG)-19 [40] are used for perceptual
loss. W∅ and H∅ are the width and height of feature maps, respectively. In a classification
network, such as that of a VGG, abstracted features extracted from a higher layer preserve
the overall spatial structure, whereas low-level features, such as color, corner, edge, and
texture, cannot be preserved [41,42]. In terms of finger-vein images, it is important to
restore the high-level features of restored output image similar to those of the original
image, however, restoring low-level features is important as well, because vein patterns
and texture are slightly different for each class, and performance can be varied due to
differences in low-level features during recognition. Because of these reasons, unlike the
original DeblurGAN that applied perceptual loss by extracting feature maps from the
middle layer of the ImageNet pretrained VGG-19, in this study, feature sets are extracted
from the generated image and target image in the first residual block (conv2_x) using the
ImageNet pretrained ResNet-34 [32] model, respectively, and the difference between the
two feature sets is applied as a perceptual loss. In a typical neural network, vanishing
gradient and explosion occur as the layer gets deeper, eventually resulting in performance
degradation. In ResNet, however, this problem is solved by applying a residual learning
method. The residual block applying the residual learning method is trained so that
identity mapping F(x) + x that is mapping between output F(x) of the weight layer and
output x of the layer just before the weight layer, and plain layer output H(x) are the same
(H(x) = F(x) + x). From the characteristics of the residual block that identity mapping
the output information of the previous layer to the next layer, we inferred that low-level
features such as color, corner, edge, and texture of the finger-vein can be preserved during
restoration training. For this reason, a perceptual loss is applied from the conv2_x layer of
ResNet-34 instead of the original VGG-19.

3.3.4. Summarized Differences between Original DeblurGAN and Proposed
Modified DeblurGAN

The differences between the original DeblurGAN and the proposed modified Deblur-
GAN are as follows.

• A dropout is applied to the generator of the original DeblurGAN, whereas a dropout
is not applied to the generator of the modified DeblurGAN because the vein patterns
of the restored image can be modified. The dropout layer usually helps avoiding
overfitting. However, the dropout layer can also bring about the excessive sparsity of
activation and features with coarser features compared to the case without the dropout
layer [34,43], which can cause the consequent modification of a vein pattern in the
restored output image. Therefore, we do not use the dropout layer in the generator of
proposed modified DeblurGAN.

• In the original DeblurGAN, nine residual blocks (convolutional layer—normalization
layer—activation layer—convolutional layer—normalization layer) were used for the
generator. In the modified DeblurGAN, to reduce the inference time, the number of
parameters was reduced by reducing the structure of the residual block (convolutional
layer-normalization layer) and reducing the total number of residual blocks to six.

• In the original DeblurGAN, high-level feature maps extracted from the third convolu-
tion layer prior to the third max-pooling layer of the ImageNet-pretrained VGG-19
were applied to a perceptual loss. However, it is equally important to restore the
information of low-level features, such as color, corner, edge, and texture, during
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finger-vein restoration. Hence, a perceptual loss was applied to the first residual block
(conv2_x) using the ImageNet-pretrained ResNet-34 in the modified DeblurGAN.

3.4. Finger-Vein Recognition by Deep CNN

In this study, the difference image between registered (enrolled) and recognized im-
ages was used as an input for CNN-based finger-vein recognition. An image differencing
method determines the changes in images where the differences are determined by cal-
culating the pixel differences, and a new image is then created based on the calculation
results [44]. Thus, an image differencing method reacts sensitively to the changes in images.
For the finger-vein datasets used in this study, if the same class images are used, the pixel
difference between the two images is small. So, in general, a pixel value with a low differ-
ence image, that is, an image with many black areas is an output. Whereas in the case of
other classes, since the pixel difference between the two images is large, the difference im-
age has generally a high pixel value, that is, an image with many bright areas is output. An
image differencing method has the advantage of expressing the characteristics of genuine
and imposter matching with one output image. Here, genuine matching refers to matching
when the input image and the enrolled image are the same class, and imposter matching
refers to matching when the input image and the enrolled image are the different class.
The finger-vein datasets used in this study have a high similarity of vein patterns between
intra-class, but a low similarity between inter-class. Therefore, the finger-vein recognition
performance can be verified in the difference image. The examples of finger-vein difference
images generated from the dataset used in this study are shown in Figure 7c,f.
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Figure 7. Difference images of registered and input images. (a) Registered image, (b) input image of
same class as registered image, (c) difference image of (a,b), (d) registered image, (e) input image of
different class as registered image, and (f) difference image of (d,e).

The generated difference image is then used as an input to deep CNN. DenseNet-161 [45]
is used to recognition of finger-vein images. DenseNet adopts dense connectivity in which the
feature maps of a previous layer are concatenated in the current layer.

xl = Hl([x0, x1, . . . , xl−1]) (5)
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Equation (5) represents dense connectivity, where [x0, x1, . . . , xl−1] means the feature
map concatenation from layers 0 to l − 1. A dense block performs feature map concate-
nation of the previous and the current layer and transfers the concatenated feature maps
to the following layer. Hl is a composite function and is composed of batch normaliza-
tion [46], ReLU [33], and a convolution layer. Generally, as the network becomes deeper,
the number of channels of feature maps caused by dense connectivity increases, resulting
in an increased number of network parameters. To mitigate the increasing parameters,
a bottleneck layer is added to the dense block of DenseNet. As a result, utilizing the
bottleneck structure reduces computational costs. However, the output of a dense block
concatenates all layers within the block. As the layer gets deeper or the number of layers in
the dense block increases, the size and depths of the feature map increase enormously. To
solve this problem, a transition layer was added between the dense blocks to reduce the
size and depths of the feature maps. The transition layer cuts the number of feature map
depths by half through 1 × 1 convolutional computation and reduces width and height
by half using 2 × 2 average pooling. In addition, by specifying a growth rate, DenseNet
controls the number of output feature map channels. Dense block outputs the feature map
at the size of the designated growth rate. In this research, the growth rate is set to 48.

In this study, for finger-vein recognition, the DenseNet-161 pretrained with the Ima-
geNet database [47] is fine-tuned with the finger-vein training data. Difference images are
used for the training and testing process, and these images are created using the output
restored images by the proposed modified DeblurGAN. The number of output classes of
DenseNet-161 is set to 2, genuine matching and imposter matching. The criterion for this is
based on the output score obtained from the last layer of the DenseNet. With respect to
the threshold of the equal error rate (EER) of genuine and imposter matching distributions
of the CNN output score obtained from the training data, it is determined as genuine
matching if the CNN output score of the testing data is below the threshold. And imposter
matching is determined if the output score is greater than the threshold. The EER is the
rate of error at the point where the false rejection rate (FRR) which is the error rate of
falsely rejecting genuine matching as an imposter matching and the false acceptance rate
(FAR) which is the error rate of falsely accepting imposter matching as genuine matching
are equal.

4. Experimental Results
4.1. Two Open Databases for Experiments

In this study, experiments were conducted using two types of open finger-vein
databases, SDUMLA-HMT finger-vein database [31] and session 1 images from the Hong
Kong Polytechnic University finger-image database version 1 [29]. In SDUMLA-HMT
finger-vein database, 6 images from the ring, middle, and index finger from both hands
were obtained respectively, from 106 individuals, a total of 3816 images were obtained
(2 hands × 3 fingers × 6 images from 106 individuals). In session 1 from the Hong Kong
Polytechnic University finger-image database version 1, 6 images from the middle and
index finger images were obtained respectively, from 156 individuals, a total of 1872 images
were obtained (2 fingers × 6 images from 156 individuals). In this study, the finger-vein
database of the SDUMLA-HMT is referred to as SDU-DB, and the session 1 finger-image
database version 1 of the Hong Kong Polytechnic University is referred to as PolyU-DB.
Figure 8 shows examples from the same finger for PolyU-DB and SDU-DB. The image
resolution of SDUMLA-HMT is 320 × 240 pixels, and that of the Hong Kong Polytechnic
University finger-image database is 513 × 256 pixels.

SDU-DB consists of 636 classes, whereas PolyU-DB consists of 312 classes. All experi-
ments adopted two-fold cross-validation. Through the two-fold cross-validation method,
data of the same class were not used for training and testing (open-world setting). The
average accuracy measured through two-fold cross-validation was adopted as the final
recognition accuracy.
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4.2. Motion Blur Datasets for Finger-Vein Image Restoration

In the case of PolyU-DB and SDU-DB, which are open databases used in this study,
motion blurred finger-vein datasets were not constructed. Therefore, to proceed with this
study, a motion blurred finger-vein database was constructed by applying motion blurring
kernels to the two open databases. When constructing the database, non-uniform (random)
motion blurring kernels were applied instead of uniform motion blurring kernels to closely
resemble the actual environment. For the random motion blurring kernels, the method
proposed by Kupyn et al. [12] was used. Figures 9 and 10 show original and generated
motion blurred images of SDU-DB and PolyU-DB.
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Figure 10. Examples of original images and motion blurred images of PolyU-DB. (a) Original images;
(b) motion blurred images.
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4.3. Data Augmentation and Experimental Setup

The datasets used in this study do not contain enough images to train a deep CNN,
which would result in overfitting. To solve this problem, a data augmentation method
was applied to increase the number of training data. For this method, 5 pixel shifting was
applied for each image based on 8 directions in a combination of the top, bottom, left,
and right. Therefore, each image was increased to 9 times including the original image.
Table 4 presents the descriptions of original and augmented data from PolyU-DB and SDU-
DB datasets. From the data augmentation, 54 images were generated that increased 9 times
from 6 images per class. When training DenseNet-161 for finger-vein recognition, only
1 image among 54 augmented images was selected as an enrolled image, and the other
images were used as input images. A difference image was generated using the enrolled
image and input image to determine genuine and imposter matching. In the case of SDU-
DB, the number of imposter matching was 317 times that of genuine matching, and it was
155 times that of genuine matching for the PolyU-DB. When training this data as it is, a bias
on the majority class occurs due to data imbalance. In order to solve this problem, when
genuine matching data is augmented with the same number as imposter matching data,
training time is increased due to a large number of data, and an overfitting problem for
genuine matching data can occur. Therefore, in this study, we applied a random selection
method for the imposter matching data. Augmentation and random selection methods
were applied to both SDU-DB and PolyU-DB in the same manner, but only to the training
data. The original images that were not augmented were used as the testing data.

Table 4. Descriptions of experimental databases by data augmentation.

SDU-DB PolyU-DB

Original images

# of images 3816 1872
# of people 106 156
# of hands 2 1

# of fingers 3
(index, middle, and ring fingers)

2
(index and middle fingers)

# of classes
(# of images

per class)

636
(6)

312
(6)

Training for 1st or
2nd fold cross

validation

Training of modified
DeblurGAN

# of images
(original + augmented data)

17,172
(6 images × 9 times
× 318 classes)

8424
(6 images × 9 times
× 156 classes)

Training of CNN for
finger-vein
recognition

# of images for
genuine matching

16,854
((6 images × 9 times − 1)

× 318 classes)

8268
((6 images × 9 times − 1)

× 156 classes)
# of images for

imposter matching
16,854

(Random selection)
8268

(Random selection)

The training and testing were performed on a desktop computer equipped with
NVIDIA GeForce GTX 1070 graphics processing unit (GPU) [48] and Intel® Core™ i7-9700F
CPU with 16 GB RAM.

4.4. Training of Modified DeblurGAN Model for Motion Blur Restoration

For the training parameter of modified DeblurGAN, the max epoch was set to 100,
the mini-batch size was set to 4, and the learning rate was set to 0.0005. Adaptive moment
estimation (Adam) optimization [49] was used for the generator and discriminator to train
the modified DeblurGAN. Figures 11a,b and 12a,b show the graphs of training loss of
the proposed modified DeblurGAN according to the epoch for SDU-DB and PolyU-DB,
respectively. The loss values converged as the training progresses, confirming that the
proposed modified DeblurGAN was trained sufficiently, as shown in the figures. The
trained model with excessive larger number of epochs usually causes the model overfitting.
Therefore, we used 10% of training data as validation set which was not used as training.
With the trained model of each epoch, the accuracies of validation set was measured, and



Sensors 2021, 21, 4635 16 of 33

the model which showed the best validation accuracy was selected for measuring testing
accuracy with testing data. We included the validation performances with validation set in
Figures 11c and 12c, which confirms that our model was not overfitted with training data.
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4.5. Training of DenseNet-161 for Finger-Vein Recognition

A stochastic gradient descent (SGD) optimization method [50] was used to train the
CNN model for finger-vein recognition. This method involves multiplying a gamma
value by the learning rate for every step size at a mini-batch unit to reduce the learning
rate, thereby rapidly converging training accuracy and loss. As explained in Section 3.4,
DenseNet-161 was used in this study for training and testing. The number of output
classes was set to two (authentic and imposter-matching), the number of max epochs
was set to 30. The mini-batch size was set to 4, the learning rate was set to 0.001, the
step size was set to 16 epochs, the momentum was set to 0.9, and the gamma value was
set to 0.1. All the hyperparameters were determined with training data. In detail, the
optimal hyperparameters (with which the highest accuracies of finger-vein recognition
were obtained with training data) were selected. The search spaces for the number of max
epochs, mini-batch size, and learning rate were 10~50, 1~10, and 0.0001~0.01, respectively.
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The search spaces for the step size, momentum, and gamma value are 5~25 epochs, 0.1~1,
and 0.1~1, respectively.
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Figures 13 and 14 show the training loss and accuracy graphs of DenseNet-161,
which used a difference image restored by the modified DeblurGAN as input. As shown
in the training graphs, training loss converged to nearly zero, whereas accuracy con-
verged to nearly 100, indicating that the CNN model for finger-vein recognition was
sufficiently trained.

4.6. Testing Results of Proposed Method
4.6.1. Ablation Studies

As ablation studies, experiments were conducted according to with or without motion
blur is applied, and the methods can be largely divided into 4 schemes. Scheme 1 means that
DenseNet-161 trained with the original training data without blurring was used to perform
finger-vein recognition with the original testing data to measure the EER. Scheme 2 means
that DenseNet-161 trained with the original training data was used to perform finger-vein
recognition with the motion blurred testing data to measure the EER. Scheme 3 represents
that DenseNet-161 trained with the motion blurred training data was used to perform
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finger-vein recognition with the motion blurred testing data to measure the EER. Lastly,
scheme 4 represents that DenseNet-161 trained with the training data restored with the
modified DeblurGAN proposed in this study was used to perform finger-vein recognition
with testing data restored using the modified DeblurGAN to measure the EER. As shown in
schemes 2 and 3 in Tables 5 and 6, the vein-pattern region and other regions were difficult
to distinguish, due to motion blur, resulting in degradation of recognition performance.
Also, in all cases, compared with schemes 2 and 3, when training was performed with the
training data restored with the modified DeblurGAN, and recognition was performed for
the testing data restored with the modified DeblurGAN, the recognition accuracy was the
highest in scheme 4.
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Table 5. Comparison of finger-vein recognition error (EER) with respect to the applicable of a motion blur with SDU-DB
(unit: %).

Training & Testing with
Original Images

(Scheme 1)

Testing Blurred Images
without Training

(Scheme 2)

Training & Testing with
Blurred Images

(Scheme 3)

Training & Testing with
Restored Images

(Scheme 4)
(Proposed Method)

2.932 14.618 6.420 5.270

Table 6. Comparison of finger-vein recognition error (EER) with respect to the applicable of a motion blur with PolyU-DB
(unit: %).

Training & Testing
with Original Images

(Scheme 1)

Testing Blurred Images
without Training

(Scheme 2)

Training & Testing
with Blurred Images

(Scheme 3)

Training & Testing
with Restored Images

(Scheme 4)
(Proposed Method)

1.534 18.303 5.886 4.536

Figures 15 and 16 show the receiver operating characteristics (ROC) curves for the
recognition performance of schemes 1–4 of SDU-DB and PolyU-DB, respectively. Here,
GAR is calculated as 100—FRR (%). As shown in Figures 15 and 16, in all cases, the
recognition performance after restoration with the modified DeblurGAN proposed in this
study (scheme 4) was higher than schemes 2 and 3.
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In Tables 7 and 8, the recognition performances of the modified DeblurGAN model
were compared according to the changes in the perceptual loss based on the features
extracted from the various CNN models and layers. For a fair performance evaluation,
the same recognition model was used for all cases based on scheme 4 to measure the
recognition accuracy. For VGG-19 (original DeblurGAN), features extracted from the third
convolution layer before the third max-pooling were used. Moreover, features extracted
from the first convolution layer before the third max-pooling were used for VGG-19
(conv3.1). This is a result of reflecting the features extracted from a layer prior to VGG-19
(original DeblurGAN) in the perceptual loss, indicating that VGG-19 (original DeblurGAN)
showed better recognition performance. For ResNeXt-101 (conv2), better recognition
performance was exhibited over VGG-19 (original DeblurGAN) and VGG-19 (conv3.1)
for both experiments. Lastly, for ResNet-34 (conv2_x), the features extracted from the
first residual block (conv2_x) were applied to a perceptual loss (proposed method), thus
exhibiting the best performance in all cases with SDU-DB whereas VGG-19 (conv3.1) shows
the better accuracies than other cases with PolyU-DB.

Table 7. Comparison of finger-vein recognition error (EER) of restored images in SDU-DB according to the perceptual loss
based on the various CNN models and layers (unit: %).

VGG-19 [40]
(Original DeblurGAN)

VGG-19 [40]
(Conv3.1)

ResNeXt-101 [51]
(Conv2)

ResNet-34 [32]
(Conv2_x)

6.049 6.503 5.281 5.270

Table 8. Comparison of finger-vein recognition error (EER) of restored images in PolyU-DB according to the perceptual loss
based on the various CNN models and layers (unit: %).

VGG-19 [40]
(Original DeblurGAN)

VGG-19 [40]
(Conv3.1)

ResNeXt-101 [51]
(Conv2)

ResNet-34 [32]
(Conv2_x)

4.777 4.536 4.764 4.983

4.6.2. Comparisons with the State-of-the-Art Methods

For the next experiment, the similarities between the images restored with the state-
of-the-art methods and the proposed modified DeblurGAN and the original images were
quantitatively evaluated. For a numerical comparison, a signal-to-noise ratio (SNR) [52],
peak SNR (PSNR) [53], and SSIM [54] were measured. SNR and PSNR are evaluation met-
rics based on the MSE between two images. Equations (6)–(8) are mathematical equations
of MSE, SNR, and PSNR, respectively.

MSE =
1

hw

h−1

∑
i=0

w−1

∑
j=0

[Io(i, j)− Ir(i, j)]2 (6)

SNR = 10log10

 ∑h−1
i=0 ∑w−1

j=0 [Io(i, j)]2

hw
MSE

 (7)

PSNR = 10log10

(
2552

MSE

)
(8)

where Ir is the restored image obtained from the state-of-the-art or proposed methods,
and Io is the original image. h and w are the height and width of an image, respectively.
Equation (9) is the mathematical equation of SSIM:

SSIM =
(2µoµr + C1)(2σor + C2)

(µo2 + µr2 + C1)(σo2 + σr2 + C2)
(9)



Sensors 2021, 21, 4635 21 of 33

where µr and σr are the mean and standard deviation of the pixel values of the restored
image, respectively. µo and σo are the mean and standard deviation of the pixel values of the
original image, respectively. σor is the covariance of two images, and C1 and C2 are constants
to prevent the denominator of each equation from becoming zero. Using the evaluation
metrics of Equations (6)–(9), the enhancement quality of our proposed method and that
of the state-of-the-art was numerically evaluated as shown in Tables 9 and 10. As shown
in Tables 9 and 10, SRN-DeblurNet shows the higher values for PSNR, SNR, and SSIM
compared to our modified DeblurGAN. That is, the qualities of restored images by SRN-
DeblurNet are more similar to those of original ones than those by our method. However,
the recognition accuracies by our method are higher than those by SRN-DeblurNet as
shown in Tables 11 and 12. That is because the additional noises are included in the
restored image and the features similar to the original features cannot be restored by SRN-
DeblurNet, which causes the degradation of recognition accuracies although the qualities
of restored images are similar to those of original ones.

Table 9. Comparisons of blur restoration by using the state-of-the-art methods and proposed modified
DeblurGAN with PolyU-DB.

Methods PSNR SNR SSIM

Original DeblurGAN [12] 28.98 21.45 0.90
DeblurGANv2 [14] 26.84 19.32 0.87

SRN-DeblurNet [15] 37.22 29.69 0.95
Modified DeblurGAN

(proposed method)
VGG-19 (conv3.1)

26.90 19.37 0.88

Modified DeblurGAN
(proposed method)

ResNet-34
27.70 20.17 0.90

Table 10. Comparisons of blur restoration by using the state-of-the-art methods and proposed
modified DeblurGAN with SDU-DB.

Methods PSNR SNR SSIM

Original DeblurGAN [12] 30.84 20.95 0.81
DeblurGANv2 [14] 29.63 19.73 0.82

SRN-DeblurNet [15] 39.17 29.28 0.90
Modified DeblurGAN

(proposed method)
VGG-19(conv3.1)

28.50 18.60 0.82

Modified DeblurGAN
(proposed method)

ResNet-34
32.64 22.75 0.85

Table 11. Comparisons of finger-vein recognition error (EER) by using the state-of-the-art restoration models and proposed
methods with SDU-DB (unit: %).

Original DeblurGAN [12] DeblurGANv2 [14] SRN-DeblurNet [15] Modified DeblurGAN

6.049 6.077 6.032 5.270

Table 12. Comparisons of finger-vein recognition error (EER) by using the state-of-the-art restoration models and proposed
methods with PolyU-DB (unit: %).

Original DeblurGAN [12] DeblurGANv2 [14] SRN-DeblurNet [15] Modified DeblurGAN

4.777 5.507 7.105 4.536
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Figure 17 shows examples of the finger-vein images restored by state-of-the-art meth-
ods and the modified DeblurGAN. For the next experiment, finger-vein recognition per-
formances were compared using the images restored by the modified DeblurGAN and
those restored by the state-of-the-art restoration methods for SDU-DB and PolyU-DB, as
shown in Tables 11 and 12. For the comparative experiment, the same recognition model
was used for a fair performance evaluation to measure the recognition accuracy using the
scheme 4 method of Tables 5 and 6. As shown in Tables 11 and 12, finger-vein recognition
performance was higher than the existing state-of-the-art restoration methods, when the
restoration was performed using the modified DeblurGAN method.
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Figure 17. Examples of restored images using the state-of-the-art methods and the proposed modified
DeblurGAN: (a) original images, (b) motion blurred images, and the restored images by (c) original
DeblurGAN, (d) DeblurGANv2, (e) SRN-DeblurNet, and (f) proposed modified DeblurGAN.

Figure 18a,c are the result of authentic and imposter matching prior to restoration,
which provide incorrect matching results caused by modified vein patterns and texture
information due to motion blur. Authentic matching was falsely rejected as imposter
matching, whereas imposter matching was falsely accepted as authentic, thus decreased
the recognition performance. Figure 18b,d are the results of correct matching by restoring
the incorrect matching problem in (a) and (c) by the modified DeblurGAN. Authentic
matching was classified as correct acceptance, and imposer matching was classified as
correct rejection.
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imposter matching before restoring motion blur, and (d) correct imposter matching after restoring 
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Figure 19 is an example of incorrect authentic matching and incorrect imposter 
matching despite the restoration method proposed in this study is applied. In the case of 
incorrect authentic matching, the difference in motion blur between the same classes is so 
severe that it is recognized as an imposter even after restoration, resulting in incorrect 
matching. In the case of incorrect imposter matching, the enrolled image and the input 

Figure 18. Correct recognition examples after restoring motion blur. (a) Incorrect genuine matching
before restoring motion blur, (b) correct genuine matching after restoring motion blur, (c) incorrect
imposter matching before restoring motion blur, and (d) correct imposter matching after restor-
ing motion blur. From the left, examples in (a–d) present the registered, input, and difference
images, respectively.

Figure 19 is an example of incorrect authentic matching and incorrect imposter match-
ing despite the restoration method proposed in this study is applied. In the case of incorrect
authentic matching, the difference in motion blur between the same classes is so severe
that it is recognized as an imposter even after restoration, resulting in incorrect matching.
In the case of incorrect imposter matching, the enrolled image and the input image appear
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similarly in dark shades, and the vein pattern is not clearly visible, so it recognized as
authentic even after restoration, resulting in incorrect matching.
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Figure 19. Incorrect recognition examples after restoring motion blur. (a) Incorrect genuine matching
before restoring motion blur, (b) incorrect genuine matching after restoring motion blur, (c) incor-
rect imposter matching before restoring motion blur, and (d) incorrect imposter matching after
restoring motion blur. From the left, examples in (a–d) present the registered, input, and difference
images, respectively.

4.7. Processing Time of Proposed Method

For the next experiment, the inference time of the modified DeblurGAN proposed
in this study and DenseNet-161 for the finger-vein recognition method was measured.
The measurements were taken on the desktop described explained in Section 4.3 and
the Jetson TX2 embedded system [55] shown in Figure 20. The reason for measuring
using the embedded system is that on-board edge computing, which operates as an
embedded system attached to the entrance door, is involved for most access-controlled
type finger-vein recognition systems. Thus, it must be verified that on-board computing
is feasible on the system proposed. Jetson TX2 has an NVIDIA PascalTM-family GPU
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(256 CUDA cores), with 8-GB memory shared between the CPU and GPU, and 59.7-GB/s
of memory bandwidth. It uses less than 7.5 watts of power. As presented in Table 13, in
the case of the method proposed in this study, the recognition speed for one image was
16.2 ms on a desktop computer and 232.3 ms on the Jetson TX2 embedded system. This
corresponds to 61.72 frames/s (1000/16.2) and 4.3 frames/s (1000/232.3), respectively.
The processing time on the Jetson TX2 embedded system was longer than the desktop
computer, due to limited computing resources. However, through the experiment, it was
confirmed that the proposed method is applicable to an embedded system having limited
computing resources.
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Table 13. Comparisons of processing speed by proposed method on desktop computer and embedded system (unit: ms).

Modified DeblurGAN
for Restoration

DenseNet-161
for Finger-Vein Recognition Total

Desktop computer 3.4 12.8 16.2
Jetson TX2 6.1 226.2 232.3

4.8. Analysis of Feature Map
4.8.1. Class Activation Map of Restored Image

Figure 21 shows the result of visualizing each class activation map [56] based on the
original images and those restored by the proposed modified DeblurGAN in each layer
of DenseNet-161. The location from which the class activation map is output is the 1st
convolutional layer, the 1st transition layer, the 2nd transition layer, the 3rd transition
layer, and the last dense block layer from top to bottom. Figure 21a,b show examples
of authentic (genuine) and imposter matching. The left and middle images in (a) and
(b) are the original and restored images, respectively. Important features are represented
in red, whereas insignificant features are represented in blue in the class activation map.
Therefore, if the red and blue regions of the two images appear to be similar, it generally
indicates that the two images have similar characteristics. As shown in Figure 21a, in
authentic matching, class activation occurs in a similar location of the original image and
restored image. Accordingly, it was confirmed that the motion blurred finger-vein image
was effectively restored and correct acceptance is possible. As shown in Figure 21b, with
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imposter matching, class activation occurs in different locations in the original and restored
image, implying that correct rejection is possible.
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Figure 21. Comparisons of the class activation maps between the original and restored images.
(a,b) are examples of authentic and imposter images, respectively. Images on the left of (a,b) are
the original images, whereas those on the middle are the restored image by proposed modified
DeblurGAN. In addition, the images on the right of (a,b) are the subtracted ones of the middle image
from the left one. For both (a,b), the images from top to bottom are the class activation maps output
from the 1st convolutional layer, the 1st transition layer, the 2nd transition layer, the 3rd transition
layer, and the last dense block.
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In addition, we included the subtracted CAM outputs of restored image from original
(motion blurred) one in the right images of Figure 21a,b. The reasons of such differences
in the subtracted CAM outputs are that the positions of important finger-vein features
extracted are different in original and restored images. Nevertheless, the case of authentic
matching (same class) shows the smaller differences as shown in the right image of the
last row of Figure 21a compared to that of imposter matching (different classes) in the
right image of the last row of Figure 21b. In addition, the reasons of such differences in
the subtracted CAM outputs are that the important features of finger-vein can be newly
extracted from the restored image (red color in the middle images of Figure 21a,b). However,
they cannot be extracted from vein areas in original (motion blurred) image (red color in
the left images of Figure 21a,b) due to the indistinctive vein patterns caused by motion
blurring, but they are extracted from the other skin areas except for vein regions.

4.8.2. Feature Maps of Difference Image

Second, similar to Figure 21, the feature maps of DenseNet-161 were analyzed accord-
ing to the layer depth in which the difference image between the restored enrolled and
restored recognized image as input. The input of DenseNet-161 is the finger-vein image re-
stored by the modified DeblurGAN. As the feature map dimension is too large, the feature
maps presented in Figure 22 are each channel’s output. Figure 22 presents the examples of
the feature maps extracted from genuine and imposter matching images in several layers
of DenseNet-161. Examples in Figure 22a–e are the feature maps extracted from the 1st
convolutional layer, the 1st transition layer, the 2nd transition layer, the 3rd transition layer,
and the last dense block, respectively. In addition, Figure 22f is the 3-dimensional feature
map images created by averaging the feature map values of Figure 22e. The top and bottom
images in Figure 22 show authentic and imposter matching, respectively.
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As shown in Figure 22, abstract features were extracted as the layer became deeper.
For example, low-level features, such as lines and corners of the original image, were
maintained in Figure 22a, whereas, in Figure 22e, only the abstracted features remained,
and shape information mostly disappeared. As shown in Figure 22a–e, the feature maps of
authentic and imposter matching do not seem to have a significant difference. However,
as shown in Figure 22f, although the changes in the 3-dimensional feature map values
drawn by calculating the average of feature map values for the authentic matching results
from a step before the classification layer were mostly flat, the results of imposter matching
showed that the changes in the feature-map values were greater than those of authentic
matching. Therefore, the difference in the CNN feature maps of authentic and imposter
matching by the proposed method was confirmed.

5. Conclusions

In this study, a motion blurred finger-vein image was restored to solve the problem of
deterioration of finger-vein recognition performance due to motion blur, and a recognition
method using deep CNN was studied to evaluate the performance of the restored image.
A modified DeblurGAN was proposed by modifying the original DeblurGAN, which was
a restoration model. Using two open databases, the recognition error rate was lower when
recognition was performed using the restoration method proposed in this study than when
images were not restored. Furthermore, based on the comparative experiments using
various state-of-the-art restoration models, the proposed method was more effective in
restoring an image from motion blur and had more improved recognition performance.
Also, based on the analysis of class activation maps and feature maps, it was confirmed that
the proposed modified DeblurGAN sufficiently maintained the effective characteristics
for classifying authentic and imposter matching. However, as mentioned in Figure 19, it
was confirmed that incorrect matching cases occurred despite the proposed restoration
method. Therefore, in future studies, a method of increasing restoration and recognition
performance by overcoming the extreme difference in motion blur in intra-class and
reducing the degree of similarity between inter-classes will be studied. In our research,
we used the previous methods [27,29,30] for the ROI detection of finger region, and just
focused on the restoration of motion-blur by our proposed modified DeblurGAN and
finger-vein recognition by our CNN with the selected ROI. That is because the performance
analysis is difficult if both the ROI detection and feature extraction of finger-vein are
affected by motion blurring. Therefore, we assume that the ROI without motion blurring
is correctly detected by the previous methods [27,29,30], and we only consider that the
detected ROI is motion blurred. We would research the motion blurring effect on the
boundary detection of ROI in future work.
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If the enrolled and recognized images are captured from different camera settings, the
performance of finger-vein recognition based on image difference can be affected. However,
the enrolled and recognized images are captured from the same capturing device including
same camera setting in usual cases of actual finger-vein recognition system. In addition,
in this case, the recognition based on image difference showed the better accuracies than
those based on original image with the extracted feature vector [20]. Therefore, we use this
scheme of image difference for recognition because we mainly focused on the restoration
of motion blurring by proposed modified DeblurGAN. We would research the recognition
method with the enrolled and recognized images captured from different camera settings
in future work.

People usually put their finger on the device with some guiding bar in the actual
finger-vein acquisition device (with fixed finger direction) [29,31]. Therefore, there exist
only the limited variations of the horizontal and vertical translation and in-plane rotation
in the captured finger-vein image. Our data augmentation method aims at covering
these individual variations, and it can reduce the recognition error (false rejection case).
However, horizontal and vertical mirroring does not happen in the case of a finger-vein
image acquisition of the actual capturing device. Therefore, the mirroring generates the
images of different classes, which increases the complexity of training data and difficulties
of model training. As shown in [57,58], singular value decomposition (SVD) can generate
the images of various styles, which can also produce the images of different classes, and
it can also increase the complexity of training data and difficulties of model training.
Therefore, we use our simple data augmentation method. In future work, we would
research the various data augmentation method including SVD and mirroring.

Also, the application of the proposed motion blur restoration method to other biomet-
ric modalities, such as iris, face, and palm-vein recognition, will be examined. Moreover,
a lighter model that can shorten the processing time will be studied. In future work,
we would also research the method with the cases of two open databases combined. In
addition, as a future work, we would introduce different types of blurring to the images
and develop a generic solution.
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