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Abstract: In this paper, a weighted l1-norm is proposed in a l1-norm-based singular value decompo-
sition (L1-SVD) algorithm, which can suppress spurious peaks and improve accuracy of direction
of arrival (DOA) estimation for the low signal-to-noise (SNR) scenarios. The weighted matrix is
determined by optimizing the orthogonality of subspace, and the weighted l1-norm is used as the
minimum objective function to increase the signal sparsity. Thereby, the weighted matrix makes
the l1-norm approximate the original l0-norm. Simulated results of orthogonal frequency division
multiplexing (OFDM) signal demonstrate that the proposed algorithm has s narrower main lobe
and lower side lobe with the characteristics of fewer snapshots and low sensitivity of misestimated
signals, which can improve the resolution and accuracy of DOA estimation. Specifically, the pro-
posed method exhibits a better performance than other works for the low SNR scenarios. Outdoor
experimental results of OFDM signals show that the proposed algorithm is superior to other methods
with a narrower main lobe and lower side lobe, which can be used for DOA estimation of UAV and
pseudo base station.

Keywords: direction of arrival (DOA) estimation; sparse representation; low signal to noise; weighted
l1-norm

1. Introduction

In the field of electromagnetic environment detection, direction of arrival (DOA)
estimation is one of the most important techniques. In recent decades, DOA estimation has
critical applications in radar systems, sonar systems, wireless communication systems, and
radio astronomy systems [1–3]. In order to obtain higher accuracy of DOA estimation, a
large number of algorithms have been proposed, such as the multiple signal classification
(MUSIC) algorithm [4], rotation invariant subspace (ESPRIT) algorithm [5], maximum
likelihood estimation [6], etc. However, multiple array elements and numerous snapshots
are required in these algorithms, which brings great challenges to their application.

In recent years, the compressed sensing theory has been proposed for DOA esti-
mation [7,8]. Since the array model can be transformed into a sparse representation,
researchers pay more attention to DOA estimation based on sparse reconstruction. The
author of [9] proposed the focal underdetermined system solver (FOCUSS) algorithm and
verified the effectiveness of the sparse representation, but they only discussed the situation
of a single snapshot, and the DOA estimation accuracy is poor under low SNR. Therefore,
the FOCUSS algorithm based on multiple measurement vectors model evolved [10]. The
literature [11] has studied the relationship between the narrowband array model and
the compressed sensing model and proved the rationality of the array signal processing
based on the compressed sensing theory. The solution of sparse reconstruction is the
most ideal with the l0-norm as the minimized objective function, which is a problem of
non-deterministic polynomial hard (NP-hard). Therefore, researchers use the lp (0 < p ≤ 1)
norm to approximate [12]. Many algorithms such as FOCUSS use the lp (0 < p < 1) norm
as the objective function, which is optimized by an iterative approximation method. The
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computation would become complicated with the increase in snapshots [9,10,13,14] by
using the iterative method, which would be troubled by local extrema during optimization.

The l1-norm is able to satisfy the sparsity constraint and eliminate the possibility of
local convergence of the objective function, which is beneficial for the solution. Therefore,
the l1-norm-based singular value decomposition (L1-SVD) algorithm [12] proposed by
Malioutov et al. is a classical DOA estimation method. The authors of [15] present a
covariance matrix sparse representation method for DOA estimation. These methods are
effective in high signal-to-noise (SNR) scenarios. However, most of these algorithms use
l1-norm instead of l0-norm to obtain an approximate result. When the value of the SNR
becomes low, the sparsity of the solution would become worse, and more spurious peaks
will appear in the spatial spectrum.

To address this problem, the literature [16] uses iterative weighted l1-norm constraint
minimization to increase the recoverable sparsity threshold and improve the recovery
accuracy in the noise case. The orthogonality weighting of the noise subspace and the
signal subspace is proposed, which enhances the robustness of the L1-SVD algorithm
and improves the resolution of DOA estimation [17,18]. The literature [19] proposes a
weighted norm penalty function from the capon spectrum. These methods can improve
accuracy of DOA estimation at low SNR to some extent. However, when SNR becomes
lower, especially when the SNR is lower than −12 dB, these methods will become worse.

In this paper, the weighted matrix is determined by optimizing the orthogonality of
subspace, and the optimized weighted l1-norm is used as the objective function to minimize
the signal sparsity, thereby improving the accuracy of DOA estimation and suppressing
spurious peaks at low SNR.

The remainder of this paper is as follows: Section 2 introduces system model and
the proposed method. The results are presented in Section 3, and a discussion is given in
Section 4. Finally, Section 5 concludes this work.

2. System Model and the Proposed Method
2.1. Sparse Representation of Narrowband Array Signal

Assume that P far-field narrowband signals impinge on a uniform array with M
elements (P < M). The distance of the adjacent antenna elements is equal to half of the
wavelength. Then, the data model of the received signal at a time t can be determined
by [4]:

x(t) =
P

∑
p=1

a
(
θp
)
sp(t) + n(t)(t = 1, 2, . . . T) (1)

where a
(
θp
)
=

[
1, e

−i2πd sin θp
λ , . . . , e

−i2π(M−1)d sin θP
λ

]T
is the M × 1 steering vector, d is the

distance between two adjacent antenna elements, λ is signal wavelength, θp is the incident
angle, and T is the number of snapshots. Formula (1) can be represented as vector form:

X(t) = A(θ)S(t) + N(t) (2)

where A(θ) =
[

a(θ1), a(θ2), . . . , a(θP)
]

is the M × P steering matrix, S(t) =[
s1(t), s2(t), . . . , sP(t)

]T is the P × T sparse signal matrix. The additive white Gaus-
sian noise is N(t) =

[
N1(t), N2(t), . . . , NM(t)

]
with zero mean and σn

2 variance.
For the convenience of description, Formula (2) can be simplified as follows:

X = AS + N (3)

If X can recover S, then the DOA estimation of the source can be determined according
to the position of the non-zero line in S. Formula (3) can be considered as a l0-norm
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problem, but the optimization of the l0-norm is a NP-hard problem. We use l1-norm instead
of l0-norm to attain the approximate, and l1-norm is usually approximated [12] as follows:

min‖X−AS‖2
F + h‖Sl2‖l1 (4)

where Sl2 is a column vector consisting of the l2-norm of each row in S, namely Sl2 =[
sl2

1 , sl2
2 , . . . , sl2

P

]
. h is the regularization parameter affected by noise, which is

usually a small constant. ‖X−AS‖F is the result of straightening matrix X − AS by
column and calculating l2-norm, that is:

‖X−AS‖2
F = ‖vec(X−AS)‖2

l2 (5)

When the amount of snapshot T is large, it will lead to excessive calculation. Therefore,
the L1-SVD algorithm performs SVD on the received data to obtain the M × P dimension
reduction matrix Xsv. The SVD of X is:

X = UΛVH (6)

Then, the sparse model after dimensionality reduction is derived as:

Xsv = XVDP = ASVDP + NVDP
= ASsv + Nsv

(7)

Ssv = SVDP, Nsv = NVDP, DP =
[

IP o
]H , IP is the P × P dimensional identity

matrix and 0 is the P × (T-P) dimensional zero matrix. In order to reduce the calculation

and achieve better sparsity, Formula (7) can be preprocessed. Xsvw = R−
1
2

x Xsv, Aw = R−
1
2

x A.
Rx is the covariance matrix of the original signal vector X. At this time, Formula (7) can be
transformed into

min‖Xsvw −AwSsv‖2
F + h‖Sl2‖l1 (8)

Using second-order cone programming (SOCP) to solve Formula (8), we obtain
the results:

minp + hq
s.t.‖Xsvw −AwSsv‖2

F ≤ p
‖Sl2‖l1 ≤ q

(9)

2.2. Weighted l1-norm Method

Since the l0-norm is replaced by l1-norm in the L1-SVD algorithm, it would be difficult
to guarantee the sparsity, especially when the value of the SNR is low. The constraint under
l1-norm is the solution with the smallest modulus value. Here, the sparse signal S has a
large modulus corresponding to a large coefficient, and a small coefficient corresponds to a
small modulus. Therefore, the sparse signal S can be weighted to improve the sparsity of
the solution.

Then, we can construct the weight according to the idea of multiple signal classification
(MUSIC) algorithm, which can be obtained by orthogonal noise subspace and signal
steering vector, namely

bH(θi)En = 0, i = 1, 2, . . . , N (10)

where b(θi) is the array steering vector, ()H is the conjugate transposition, En is the noise
subspace, and N is the number of angles in space [0◦,180◦] divided at equal intervals.
Due to the existence of noise, the process of signal, etc., the actual value of Equation (10)
is not equal to 0, but a very small number. In other words, the projection of the signal
array steering vector in the noise subspace is small, while the projection of the noise array
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steering vector is larger in the noise subspace. Therefore, a peak can be obtained in the
signal direction by squaring the amplitude of the projected result and taking the reciprocal.

When the SNR is low, the orthogonality of signal subspace and noise subspace will
become worse, the peak value of spectrum estimation will decrease, and the weight
estimation will be inaccurate, which will lead to poor sparsity. This paper proposes that
the weight is the array steering vector projected into the noise subspace divided by the
value projected into the signal subspace. The formula is:

wi =
‖EH

n b(θi)‖2

‖EH
s b(θi)‖2

(11)

The weighted matrix is expressed as:

W = diag{wi} (12)

Figure 1 illustrates the projection of the signal array steering vector and noise array
steering vector. The projection Ns of the noise array steering vector is relatively small in
the signal subspace Es, while the projection Nn is relatively large in the noise subspace En.
On the contrary, the projection Ss of the signal array steering vector is large in the signal
subspace Es, while the projection Sn is small in the noise subspace En. When the algorithm
is weighted by the literature [17], its peak ratio is Nn/Sn, while the proposed algorithm’s
peak ratio is NsNn/SsSn (Ns/Ss < 1). Therefore, the weighted value decreases as the peak
ratio decreases, and a small coefficient corresponds to a small modulus, which improves
the sparsity of the solution. According to Formulas (8) and (12), we can obtain:

min‖Xsvw −AwSsv‖2
F + h‖WSl2‖l1 (13)
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Convert to SOCP and solve

minp + hq
s.t.‖Xsvw −AwSsv‖2

F ≤ p
‖WSl2‖l1 ≤ q

(14)

According to Formula (14), DOA can be estimated. The detailed steps of the algorithm
are as follows:

(1) Decompose the data matrix to reduce dimension by the singular value, and preprocess
Xsv and A to obtain Xsvw and Aw;

(2) Calculate the weight W according to Formula (12);
(3) Estimate the spectrum by using Formula (14).

3. Results

In this section, we study DOA estimation by using simulations and outdoor experi-
ments of OFDM signals to verify the advantages of the proposed algorithm. A performance
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comparison of the proposed algorithm with other works, including the algorithms L1-SVD,
W-L1-SVD [18], and C-L1-SVD [19], is presented and studied. We use a grid in the range of
0◦ to 180◦ with 1◦ spacing in this paper.

3.1. Simulation Results and Analysis

Three simulated examples are set out for the comparison. The simulation conditions
are set as: (1) The simulated signal is based on orthogonal frequency division multiplexing
(OFDM). As shown in Table 1, the parameters of the simulated OFDM are specified with
a carrier frequency of 2038 MHz, a bandwidth of 20 MHz, 10 symbols, 256 subcarriers,
192 effective subcarriers, subcarrier spacing is 80 KHz, and the time of useful symbol length
is 12.5 us. (2) The regularized parameter is h = 2.7. (3) Eight uniform arrays are used, in
which the adjacent element distance is 0.06 m. (4) The number of snapshots is set as 3072.

Table 1. Simulation parameters of OFDM signal.

Carrier
Frequency Bandwidth Number of the

Subcarriers
Number of Effective

Subcarriers
Subcarrier

Spacing
Time of Useful
Symbol Length

Number of
Symbols

2038 MHz 20 MHz 256 192 78.125 KHz 12.8 us 10

3.1.1. Simulation 1

Simulation 1 presents a performance comparison of the four algorithms at different
levels of SNR. The direction of the incident wave is 117◦. Figure 2a displays the normalized
spectra of the four algorithms when SNR = −12 dB; as is shown, the DOA estimations of
the proposed algorithm, L1-SVD, C-L1-SVD and W-L1-SVD are: 117◦, 118◦, 117◦, and 117◦,
respectively. The L1-SVD algorithm shows the widest main lobe with a side lobe value
of −2 dB, while the value is −16 dB for W-L1-SVD algorithm, but many spurious peaks
exist. As for the C-L1-SVD algorithm, it is better than the former two algorithms with a
side lobe value of −80 dB. In all these four algorithms, the proposed method shows the
best performance with the lowest side lobes and sharpest main lobe. Figure 2b indicates
the normalized spectra of four algorithms when SNR = 0 dB. The DOA estimations of
the four algorithms are all 117◦. In this case, although the spurious peaks of L1-SVD and
W-L1-SVD decrease, the proposed method shows the best spectrum response with the
lowest spurious peaks.
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Comparing Figure 2a with Figure 2b, we can see that the spectra in L1-SVD, C-L1-SVD
and W-L1-SVD have wide main lobes and high side lobes at a low SNR. When the SNR
increases, the side lobes of the three algorithms will decrease, and their main lobes become
sharper. As for the proposed algorithm, the main lobe is the sharpest and its side lobes are
the lowest, which shows the most outstanding performance.

3.1.2. Simulation 2

A comparison of root mean square error (RMSE) for the four algorithms is studied
and presented in this case. The direction of the incident wave is 117◦, and the SNR changes
from −16 to 0 dB with a 2 dB step-size. For demonstration, 100 times Monte Carlo are
operated for each SNR, and then the RMSE of DOA estimation be calculated as

RMSE =

√√√√ 1
NcP

Nc

∑
nc=1

P

∑
p=1

( ∧
θp(nc)− θp

)2
, (15)

where Nc is the number of Monte Carlo simulations, θp is the real angle of signal, and
∧
θp(nc) is the DOA estimation of the nc times Monte Carlo of the signal source.

In Figure 3, the simulated results demonstrate that RMSE decreases with the increased
SNR. The proposed algorithm has better DOA estimation accuracy, which presents the
lowest RMSE. When SNR is greater than −12 dB, the DOA estimation accuracy of the
proposed algorithm is slightly higher than that of other three methods. When SNR is less
than −12 dB, the DOA estimation accuracy of the other three algorithms drops sharply,
while the estimation accuracy shows a minor decrease for the proposed algorithm.
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3.1.3. Simulation 3

Simulation 3 compares the resolution of the four algorithms at different SNRs. The
simulation conditions are set as follows: (1) The two OFDM signals have the same power,
carrier frequency and bandwidth. (2) The directions of the two incident waves are 80◦ and
100◦, respectively.

Figure 4 provides the normalized spectra of the four algorithms with two different
SNRs, −12 dB for Figure 4a and 0 dB for Figure 4b. Table 2 shows the DOA estimates of
the four algorithms in Figure 4. All these four algorithms are able to distinguish the two
DOAs in Table 2. It can also be observed that the side lobes decrease and their main lobes
become sharper as the SNR increases. Additionally, the other three methods have higher
side lobe with many spurious peaks, especially at low SNR, and the proposed algorithm
has the sharpest main lobe and lowest side lobe.
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Table 2. DOA estimates in Figure 4.

SNR (dB) L1-SVD W-L1-SVD C-L1-SVD The Proposed

−12 (79◦, 100◦) (78◦, 100◦) (78◦, 100◦) (79◦, 100◦)
0 (80◦, 100◦) (79◦, 101◦) (79◦, 101◦) (80◦, 101◦)

The computer we run the Matlab program on is ThundeRobot Master N6, with a RAM
of 16 GHz a main frequency of 3.2 GHz, and its CPU is i7-8700. Table 3 illustrates that, when
SNR = −12 dB and the two incident angles are 80◦ and 100◦, the accuracy and average
calculation time over 100 times Monte Carlo of the four algorithms are compared. Shown
in detail as Table 3, Since the L1-SVD and C-L1-SVD algorithms have many spurious peaks
and low resolution at low SNR, they often result in DOA estimation errors. Therefore,
the RMSE is significantly higher than W-L1-SVD and the proposed algorithms for two
DOA estimations. It can be seen that since the four algorithms are all calculated by using
SOCP, this would take up lots of calculation time, although the solution of the weighted
value is different, resulting in similar running time for the four algorithms. Additionally,
the proposed algorithm has lots of merits such as the smallest RMSE value, the highest
accuracy and the best resolution. According to the results shown in Figure 4 and Table 3,
although the operation time of the proposed algorithm is almost the same as the other three
algorithms, its main lobe is the sharpest and the side lobe is the lowest, which exhibits a
better resolution at low SNR.

Table 3. The accuracy and average calculation time of the four algorithms over 100 times Monte Carlo.

Algorithm RMSE (deg) Average Calculation Time (s)

W-L1-SVD 3.57 2.993
L1-SVD 22.9 2.992

The proposed 0.98 2.997
C-L1-SVD 26.03 2.972

3.1.4. Simulation 4

The RMSE of the DOA estimates versus number of snapshots is presented in simu-
lation 4. The direction of the incident wave is 117◦, SNR = −12 dB, and the number of
snapshots varies from 50 to 3050 with a step-size of 300. For demonstration, 100 times
Monte Carlo are ran for each snapshot.

Figure 5 indicates the RMSE of the DOA estimates versus number of snapshots with
−12 dB SNR. When the SNR is the same, the RMSE of the DOA estimates decreases with
the increase in the number of snapshots. The proposed algorithm is better than other
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algorithms in the RMSE of DOA estimation at low SNR, especially when the number
of snapshots is small. The RMSE value of DOA estimation tends to be stable when the
number of snapshots is beyond 350, while the numbers of the other three methods are: 1250
(C-L1-SVD), 2750 (L1-SVD), and 3050 (W-L1-SVD). Since the peak ratio of the weighted
value of the proposed algorithm is greater than the other three algorithms, the l1-norm is
closer to the l0-norm, and the main lobe of the spectrum is sharper and spurious peaks are
suppressed. Therefore, the proposed algorithm can achieve a higher accuracy with fewer
snapshots, which is conducive to saving calculation time.
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Figure 5. RMSE of the DOA estimates versus number of snapshots with −12 dB SNR.

3.1.5. Simulation 5

As we known, the DOA estimation of the array signal requires prior knowledge of the
number of signals, otherwise the estimation errors of the number of signals sometimes may
lead to an error of the DOA estimation. Simulation 5 studies the relationship between the
estimation of the number of signals and the DOA estimation at low SNR. The simulation
conditions are set as follows: (1) The two OFDM signals have the same power, carrier
frequency and bandwidth. (2) The directions of the two incident waves are 80◦ and 100◦,
respectively. (3) The number of snapshots is 3072. (4) SNR = −12 dB. (5) The number of
signals is assumed to be p = 1, p = 2, and p = 4.

Figure 6 provides a comparison of the sensitivity of the four algorithms to the number
of assumed signals. Figure 6a–d illustrates the normalized spectra of L1-SVD, W-L1-SVD,
C-L1-SVD, and the proposed algorithms at p = 1, p = 2, and p = 4, respectively. Table 3 lists
the estimated angles of these four algorithms. It can be seen from Table 4 and Figure 6 that
when the number of signal estimation is accurate, the peak value of the spectrum is sharper
and the side lobe is lower, leading to more accurate DOA estimation and better resolution.
When the number of signals is underestimated, the number of weighted signal subspaces
decreases, leading to an increase in the number and amplitude of side lobes. When the
number of signals is overestimated, due to the noise subspace being added to the weights,
the performance of the four algorithms becomes worse, especially for the W-L1-SVD
algorithm. In comparison, the proposed algorithm is less sensitive to the misestimation of
the number of signals. The peak ratio of the weighted value of the proposed algorithm is
greater than that of the other three algorithms, which increases the sparsity of the solution,
showing the merits of being more resistant to noise interference, and low sensitivity of
misestimated signals.
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Figure 6. Sensitivity of the 4 algorithms to the assumed number of signals: (a) L1-SVD; (b)W-L1-SVD; (c) C-L1-SVD; (d) the
proposed algorithm.

Table 4. DOA estimates in Figure 6.

Algorithm p = 1 p = 2 p = 4

L1-SVD (81◦, 101◦) (80◦, 101◦) (80◦, 100◦)
W-L1-SVD (81◦, 100◦) (79◦, 101◦) (79◦, 101◦)
C-L1-SVD (81◦, 103◦) (79◦, 101◦) (80◦, 100◦)

The proposed (81◦, 101◦) (80◦, 101◦) (79◦, 100◦)

3.2. Experiment Results and Analysis

In this section, we validate the proposed algorithm with an experiment operated
in an outdoor scenario. Figure 7 is a photo taken during measurement at the northwest
corner of Shahe campus of Beihang University. It depicts the experimental arrangement, in
which an antenna array, a transmitter and a receiver are applied. The transmitter is placed
100 cm above the ground on the left, and the receiver is placed 150 cm above the ground
on the right.

A Rohde & Schwarz SMW200A vector signal generator was used as the transmitter,
which can transmit an OFDM signal with a carrier frequency of 2.38 GHz, a bandwidth
of 20 MHz, and output power of 35 dBm. Gaussian white noise with an SNR = 0 dB
and SNR = 15 dB was added to the emission signal. Figure 8 displays the eight-antenna
uniform linear array, Figure 8a is the schematic diagram, and Figure 8b is an eight-antenna
uniform array made by us. A uniform linear array composed of eight fiberglass antennas,
which are spaced 6 cm apart, was used to receive the incident signals. The receiver is a
4 × 4 multi-input multi-output software-defined radio platform, Weishirui Y590. In this
experiment, an eight-channel synchronous receiver is constructed by two Y590s, whose
IQ sampling rate is set as 32 MHz for signal acquisition. For experimental validation, two
experiments are set out from different angles. The parameters of OFDM are the same as
the simulation. An OFDM signal is incident to the antenna array from 117.2◦ and 90◦
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directions, and the distances between the transmitter and the receiver are 21.9 and 19.5 m,
which conform to the far-field conditions.

 

 
Figure 7 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 8 （a） 
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Figure 7. Photo taken during the measurement campaigns of the outdoor scenario pointing out the
positions of the transmitter and the antenna array-based receiver.
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Figure 8. Eight-antenna uniform linear array: (a) schematic diagram; (b) physical picture.

In total, 10,000 snapshots were used for data processing. Figure 9 presents the DOA
estimation results of the four algorithms when the incident angle is 117.2◦; Figure 9a,b
shows the SNRs of emission signal are 0 and 15 dB. When the SNR = 0 dB, the DOA
estimations of the proposed algorithm, L1-SVD, C-L1-SVD and W-L1-SVD are 118◦, 116◦,
118◦, and 117◦, respectively. When the SNR = 15 dB, the DOA estimations of the four
algorithms are 118◦, 115◦, 117◦, and 118◦, respectively. Figure 10 shows the DOA estimation
results of the four algorithms when the incident angle is 90◦. Figure 10a illustrates the DOA
estimations of algorithms are 91◦, 93◦, 92◦, and 92◦ when the SNR of emission signal is 0 dB.
Figure 10b shows that the DOA estimations of algorithms are 91◦, 90◦, 91◦, and 91◦ when
the SNR of emission signal is 15 dB. The DOA estimation error of the experimental results
is a litter different from that of the simulations, which is caused by multi-path propagation
and measurement error.

It can be seen from Figures 9 and 10 that the proposed algorithm is able to accurately
estimate the DOA. The DOA estimation performance (main lobe and side lobe) can be
compared as follows: the proposed algorithm > C-L1-SVD > W-L1-SVD> L1-SVD. In
the proposed algorithm, the main lobe is much sharper with lower side lobes compared
with other algorithms. The experimental results demonstrate that the proposed algorithm
determines the weighting matrix by optimizing the orthogonality of the subspace, thereby
increasing the sparsity of the signal, resulting in a sharp main lobe and low side lobe of
the spectrum, which can be used for DOA estimation of the UAV and pseudo base station.
Therefore, the experiments verify the merits of the proposed algorithm.
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Figure 9. Normalized spectra during the measurement of outdoor scenario when the incident angle is 117.2◦: (a) the SNR of
emission signal is 0 dB; (b) the SNR of emission signal is 15 dB.
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Figure 10. Normalized spectra during the measurement of outdoor scenario when the incident angle is 90◦: (a) the SNR of
emission signal is 0 dB; (b) the SNR of emission signal is 15 dB.

4. Discussion

This paper proposes a DOA estimation method based on weighted l1-norm sparse
representation. Compared with the traditional array signal processing method, the sparse
representation DOA estimation algorithm requires fewer snapshots and fewer array ele-
ments. OFDM is often used in communication systems, such as WiFi, long term evolution
(LTE), 5th generation mobile communication technology (5G) and unmanned aerial vehicle
(UAV) video signals [20–25]; therefore, the DOA estimation of OFDM signal is discussed in
this paper.

In the simulation, we compared the DOA estimation accuracy and resolution of the
proposed algorithm with the other three algorithms at different SNRs. From simulations 1,
2, and 3, it can be concluded that the proposed algorithm can suppress the spurious peaks,
with a sharp main lobe, which can improve the resolution and accuracy of DOA estimation.
Simulation 4 shows that the proposed algorithm requires fewer snapshots at low SNR,
which is beneficial to reduce calculation time. Simulation 5 shows that the proposed
algorithm has low sensitivity of misestimated signals and good robustness. In the outdoor
experiment, we designed an eight-antenna uniform linear array as the sensor and compared
the DOA estimation accuracy at different SNRs of emission signal and different distances
between the receiver and the transmitter. The advantages of the proposed algorithm are
verified in the real-world scenarios.
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The simulation results indicate that the proposed algorithm has a higher estimation
accuracy and a better resolution with the lowest side lobes and the sharpest main lobes.
Additionally, the proposed algorithm requires fewer snapshots and lower sensitivity of
misestimated signals, especially at a low SNR. The experimental results show that the
proposed algorithm is superior to other methods, with a narrower main lobe and lower
side lobe. Considering that the long-distance DOA estimation is a challenge due to the
low emission power of UAV video signal and other communication signals, the proposed
algorithm has an engineering guiding significance for anti-UAV technology and the long-
distance positioning of the pseudo base station.

5. Conclusions

In this paper, we present a sparse reconstruction of the DOA estimation algorithm
based on weighted l1-norm. The weighted l1-norm is used as the minimum objective
function to increase the signal sparsity, which is able to improve the accuracy of DOA
estimation and suppress spurious peaks for the low SNR scenarios. Additionally, the
OFDM signal of communication is taken as the simulated object. The simulated and
experimental results show that the proposed algorithm has a sharper main lobe and lower
side lobe, which can improve the resolution and estimate DOA accurately. Due to the above
characteristics, the proposed algorithm also has an important guiding role in engineering,
such as anti-UAV technology and pseudo base station positioning.

Author Contributions: Conceptualization, M.Z., S.X., X.Z. and M.Y.; methodology, M.Y.; software,
M.Z.; validation, M.Z. and S.X.; formal analysis, S.X.; investigation, X.Z.; resources, M.Z. and S.X.;
data curation, M.Z., X.Z. and M.Y.; writing—original draft preparation, M.Z.; writing—review and
editing, M.Z., S.X., X.Z. and M.Y.; visualization, X.Z.; supervision, M.Y.; project administration, S.X.
and M.Y.; funding acquisition, S.X. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant
No 61631002 and Grant No 61427803).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yuhong, Y.; Terry, N.G.; Zhe, C.; Chong, F. A fast multi source sound DOA estimator considering colored noise in circular array.

IEEE Sens. J. 2019, 55, 6914–6926.
2. Soheil, S.; Francois, C.; Yiu-Tong, C.; Il-Min, K.; Roger, C. Joint DOA and clutter covariance matrix estimation in compressive

sensing MIMO radar. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 318–331.
3. Sanjoy, B. Passive radio system for real-time drone detection and DOA estimation. In Proceedings of the IEEE International

Conference on Military Communications and Information Systems (ICMCIS), Warsaw, Poland, 22–23 May 2018.
4. Schmidt, R.O. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280.

[CrossRef]
5. Roy, R.; Kailath, T. ESPRIT-a subspace rotation approach to estimation of parameters of cissoids in noise. IEEE Trans. Acoust.

Speech Signal Process 1986, 34, 1340–1342. [CrossRef]
6. Ziskind, I.; Wax, M. Maximum likelihood location of multiple sources by alternating projection. IEEE Trans. Acoust. Speech Signal

Process 1988, 36, 1553–1560. [CrossRef]
7. Candes, E.J.; Romberg, J.K.; Tao, T. Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl.

Mathema 2006, 59, 1207–1223. [CrossRef]
8. Donoho, D. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [CrossRef]
9. Gorodnitsky, I.F.; Rao, B.D. Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm

algorithm. IEEE Trans. Signal Process. 1997, 45, 600–616. [CrossRef]
10. Cotter, S.F.; Rao, B.D.; Engan, K.; Kreutz-Delgado, K. Sparse solutions to linear inverse problems with multiple measurement

vectors. IEEE Trans. Signal Process. 2005, 53, 2477–2488. [CrossRef]

http://doi.org/10.1109/TAP.1986.1143830
http://doi.org/10.1109/TASSP.1986.1164935
http://doi.org/10.1109/29.7543
http://doi.org/10.1002/cpa.20124
http://doi.org/10.1109/TIT.2006.871582
http://doi.org/10.1109/78.558475
http://doi.org/10.1109/TSP.2005.849172


Sensors 2021, 21, 4614 13 of 13

11. Bilik, I. Spatial Compressive sensing for direction-of-arrival estimation of multiple sources using dynamic sensor arrays. IEEE
Trans. Aerosp. Electron. Syst. 2011, 47, 1754–1769. [CrossRef]

12. Malioutov, D.; Cetin, M.; Willsky, A.S. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE
Trans. Signal Process 2005, 53, 3010–3022. [CrossRef]

13. Jeffs, B.D. Sparse inverse solution methods for signal and image processing applications. In Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing, Seattle, WA, USA, 15 May 1998.

14. Rao, B.D.; Kreutz-Delgado, K. An affine scaling methodology for best basis selection. IEEE Trans. Signal Process 1999, 47, 187–200.
[CrossRef]

15. Liu, Z.M.; Huang, Z.T.; Zhou, Y.Y. Direction of-arrival estimation of wideband signals via covariance matrix sparse representation.
IEEE Trans. Signal Process. 2011, 59, 4256–4270. [CrossRef]

16. Wipf, D.; Nagarajan, S. Iterative reweighted L1 and L2 methods for finding sparse solution. IEEE J. Select Topic Signal Process 2010,
4, 317–329. [CrossRef]

17. Liu, F.L.; Peng, L.; Wei, M.; Chen, P.P.; Guo, S.M. An improved L1-SVD algorithm based on noise subspace for DOA estimation.
Progress Electromagn. Res. C 2012, 29, 109–122. [CrossRef]

18. Dou, H.; Gao, L.; Zhu, Z. DOA estimation based on weighted l1 norm sparse signal representation. J. Beijing Univ. Technol. 2018,
44, 1297–1302.

19. Xu, X.; Xiaohan, W.; Zhongfu, Y. DOA estimation based on sparse signal recovery utilizing weighted-norm penalty. IEEE Signal
Process Lett. 2012, 19, 155–158. [CrossRef]

20. Marcos, T.; de Oliveira Ricardo, K.M. Low cost antenna array based on drone tracking device for outdoor environments. Hindawi
Wirel. Commun. Mobile Compu. 2019, 1, 1–14.

21. Gao, Y.; Deng, Z.; Zhang, Y.; Sun, S.; Li, Z. Mobile Phone passive positioning through the detection of uplink signals for search
and rescue. Sensors 2019, 19, 4526. [CrossRef]

22. Meryem, M.; Elif Nur, A.; Meltem, G.; Asuman, S.; Ali, Ö. A novel GFDM waveform design based on cascaded WHT-LWT
transform for the beyond 5G wireless communications. Sensors 2021, 21, 1831.

23. Georgia, L.; Dimitrios, M.; Dimitris, G. Defending airports from UAS: A survey on cyber-attacks and counter-drone sensing
technologies. Sensors 2020, 20, 3537.

24. Martins, E.; Fatih, E.; Chethan, K.A. Detection and classification of UAVs using RF fingerprints in the presence of Wi-Fi and
bluetooth interference. IEEE Open J. Commun. Soc. 2019, 1, 60–76.

25. Zuo, M.; Xie, S.; Zhang, X.; Yang, M. Recognition of UAV video signal using RF fingerprints in the presence of WiFi interference.
IEEE Access 2021, 9, 88844–88851. [CrossRef]

http://doi.org/10.1109/TAES.2011.5937263
http://doi.org/10.1109/TSP.2005.850882
http://doi.org/10.1109/78.738251
http://doi.org/10.1109/TSP.2011.2159214
http://doi.org/10.1109/JSTSP.2010.2042413
http://doi.org/10.2528/PIERC12021203
http://doi.org/10.1109/LSP.2012.2183592
http://doi.org/10.3390/s19204526
http://doi.org/10.1109/ACCESS.2021.3089590

	Introduction 
	System Model and the Proposed Method 
	Sparse Representation of Narrowband Array Signal 
	Weighted l1-norm Method 

	Results 
	Simulation Results and Analysis 
	Simulation 1 
	Simulation 2 
	Simulation 3 
	Simulation 4 
	Simulation 5 

	Experiment Results and Analysis 

	Discussion 
	Conclusions 
	References

