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Abstract: Predicting the rail temperature of a railway system is important for establishing a rail 

management plan against railway derailment caused by orbital buckling. The rail temperature, 

which is directly responsible for track buckling, is closely related to air temperature, which contin-

uously increases due to global warming effects. Moreover, railway systems are increasingly in-

stalled with continuous welded rails (CWRs) to reduce train vibration and noise. Unfortunately, 

CWRs are prone to buckling. This study develops a reliable and highly accurate novel model that 

can predict rail temperature using a machine learning method. To predict rail temperature over the 

entire network with high-prediction performance, the weather effect and solar effect features are 

used. These features originate from the analysis of the thermal environment around the rail. Pre-

cisely, the presented model has a higher performance for predicting high rail temperature than other 

models. As a convenient structural health-monitoring application, the train-speed-limit alarm-map 

(TSLAM) was also proposed, which visually maps the predicted rail-temperature deviations over 

the entire network for railway safety officers. Combined with TSLAM, our rail-temperature predic-

tion model is expected to improve track safety and train timeliness. 

Keywords: intelligent transportation system (ITS); machine learning; rail temperature; buckling; 

XGBoost; structural health monitoring 

 

1. Introduction 

Rail temperature is important for rail safety. High rail temperature is a direct cause 

of buckling on railway tracks. Buckling is the result of excessive deformation in a high 

rail-temperature environment. When severe, it can derail the train. Although train derail-

ment by buckling is an infrequent event, it causes catastrophic casualties of human lives 

and property [1–4]. Moreover, the air temperature, which is closely related to rail temper-

ature, is continuously increasing under global warming effects, further enhancing the risk 

of buckling. 

The recent expansion of high-speed trains has increased the demand for continuous 

welded rails (CWRs), which reduce vibration and noise to offer a comfortable riding ex-

perience. Unfortunately, CWRs are also vulnerable to buckling because they are welded 

together and lack the space to expand. Therefore, controlling the buckling and monitoring 

the rail temperature is imperative for railway safety management. To prevent buckling-

induced train derailment, current railway companies issue train-speed-limit orders based 

on the rail temperature, which is monitored in real time. 

Train-speed-limit orders are directly related to the track safety and train timeliness. 

If the orders for preventing track buckling (for example, limiting the train speed or spray-

ing the tracks with water) are implemented without planning, the sudden adjustment of 

the train-operating schedule might cause bottlenecks or traffic congestion. For example, 
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during the hottest July day on record in the UK, there were 12,800 heat-related delay 

minutes and an additional 23,700 min caused by unplanned train-speed restrictions [5,6]. 

If the rail temperature in an area can be predicted beforehand, schedulers can preplan the 

speed limit of the train, adjust the intervals between trains, or cool the rail by water spray-

ing, thereby improving train timeliness and track safety. To achieve this goal, researchers 

have developed rail-temperature-prediction models (RTPMs) that predict the rail temper-

ature based on the local weather conditions around the rail.  

The previous RTPMs are classified into three types: empirical equation-based mod-

els, multivariate regression models, and thermal analysis models [7–13]. 

RTPMs based on empirical equations simply predict the rail temperature as a linear 

function of air temperature. These models are easy to use because they predict the rail 

temperature from a single parameter, but deliver lower performance (R2 = 0.9021, root 

mean square error (RMSE) = 5.866 °C) than other RTPMs [8,9]. 

Multivariate regression RTPMs predict the rail temperature not only from the air 

temperature, but also from other weather conditions such as wind speed and cloud cover. 

Such RTPMs generally outperform those based on empirical equations. Wu et al. devel-

oped a multivariate regression RTPM called the Bureau of Meteorology (BoM) prediction 

equation (1–24 h), which delivers the highest performance to date (R2 = 0.9630, RMSE = 

2.560 °C) but requires 24 features. Therefore, this model is applicable only to specific coun-

tries or environments, and is not easily generalized [10]. 

Finally, thermal analysis RTPMs thermodynamically model the environment around 

the actual rail. Since thermodynamic models consider the laws of nature, they are more 

generalizable than RTPMs based on statistical methods, which tend to require specific 

data. However, to guarantee high performance (R2 = 0.9334, RMSE = 3.799 °C), such mod-

els require precise knowledge of the rail properties, such as the reflectance and emissivity 

properties [7,10–14]. 

The previous RTPMs are hampered by two limitations. First, their performance in 

predicting the rail temperature is too low for practical use. In previous RTPMs based on 

thermodynamic principles (R2 = 0.9334, RMSE = 3.799 °C), the predicted rail temperature 

deviated by up to 15 °C from the measured rail temperature [7]. Since the main goal of 

RTPMs is preventing buckling on hot days, this difference is unacceptable in practical use. 

Furthermore, the criteria of train speed limits are shifted to a 4–5 °C change in rail tem-

perature, seriously weakening the reliability of RTPMs [15,16]. 

Second, the previous RTPMs predicted the rail temperature at a single point. This 

approach is not meaningful because actual rails are continuously interconnected over sev-

eral hundred kilometers. To develop RTPMs for practical uses, the range of the rail-tem-

perature prediction must be broadened, for example, from small-town connectivity (local 

networks) to state- or country-wide connectivity (entire network). 

The next generation of RTPMs for practical uses will require high performance RTPM 

and mapping applications, and will quickly present the rail temperatures from small net-

works to entire networks. 

Recently, machine learning approaches such as artificial neural network (ANN), sup-

port vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost) 

have attracted great interest by developers of high-performance regression models. Ma-

chine learning allows a computer to learn the relationship between the data (the input) 

and the results (the output). For instance, a regression model that predicts the room tem-

perature and daily maximum air temperature by machine learning delivers higher pre-

diction performance than other types of methods [17,18]. 

Herein, we propose a machine learning-based rail temperature prediction model 

(RTPM) with the highest performance to date (maximum R2 = 0.9984, RMSE = 0.518 °C) 

that can predict the rail temperature over an entire network. The method, called Chung-

nam National University RTPM (CNU RTPM), outperforms the previous RTPMs for pre-

dicting high rail temperatures (over 40 °C). The CNU RTPM performance is due to the 

selected features obtained by analyzing the thermal environment around the rail. With 
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these features, the CNU RTPM can predict the rail temperature over the entire network 

using weather forecast data alone. 

Additionally, a structural health-monitoring application, called the train-speed-limit 

alarm-map (TSLAM), was developed, which shows the deviation of the predicted rail 

temperature over the entire network, enabling quick searching of danger regions. This 

application is easily combined with the CNU RTPM. TSLAM is also available worldwide 

because it uses the global weather forecast data, not merely a particular region’s data. 

2. Measurement 

2.1. Measurement of Rail Temperature and Local Weather Conditions 

Direct sampling of the actual rail environment during train operation is impractical 

for safety reasons. Rail temperatures are usually measured indirectly within a measure-

ment station that simulates the environment of the railway installation [7,10,11,13,19]. As 

in previous work, we collected the rail temperature and weather data every 10 min at a 

measurement station from August of 2016 to May of 2017 [7,20]. The constructed meas-

urement station consisted of a 500-mm long KS 50n rail, a data acquisition system (DAQ), 

a weather station, and K-type thermocouples. The station was installed at a low-traffic site 

of Chungnam National University (CNU). CNU is located in Daejeon in Korea (latitude: 

36.36°, longitude: 127.34°). A schematic of the constructed measurement station is shown 

in Figure 1 and a photograph of the installed measurement system is shown in Figure A1. 

The rail of the measurement system was installed on a ballast-and-concrete sleeper 

oriented in the south–north direction, which is minimally influenced by shadow. As the 

actual rail is shadowed by mountains, trees, soundproof walls, and other objects, its tem-

perature is lower than that of the test rail [21]. By minimizing the influence of shadows, a 

higher temperature is guaranteed in the measurement system than in the shaded area of 

the real system. Since the purpose of this study was to improve the safety of train opera-

tion, we deliberately constructed a conservative measurement system. A model based on 

conservative measurement data makes conservative predictions. 

 

Figure 1. Schematic of the measurement system. 

2.2. Measurement of Local Weather Conditions  

Around the world, weather forecasts report the air temperature, relative humidity, 

rainfall amount, wind speed, and cloud cover. Using these weather factors as features, we 

can construct a globally available rail-temperature-prediction model. As confirmed in pre-

vious studies, the weather factors provided by weather forecasts are decisive predictors 
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of rail temperature. Indeed, a conventional empirical RTPM predicts the rail temperature 

from the air temperature alone [8,9]. The air temperature and rail temperature are highly 

correlated. 

The weather station (Vantage Pro2, Davis, CA, USA) installed in the measurement 

system measures the local weather data (air temperature, relative humidity, rainfall 

amount, and wind speed). The measured local weather data are transmitted to the DAQ. 

The measured environmental data were acquired once at every 10-min intervals, because 

it takes about 10-min to achieve thermal equilibrium in the rail measurement system [7]. 

The rainfall amount is difficult to measure at a specific moment, so it was obtained by 

summing the values measured over 10 min. The cloud cover, which cannot be measured 

by the measurement system, was borrowed from the data of the Korea Meteorological 

Administration (KMA), located 2.4 km from the measurement station. 

2.3. Measurement of Rail Temperature  

To develop our novel RTPM, measuring the rail temperature in summer when rail 

buckling usually occurs is needed. However, in summer, the internal and surface rail tem-

peratures can differ by as much as 7 °C, because the sun rises to a higher altitude than in 

winter, and the rail surface receives a large amount of solar radiation [7,19,22]. Such devi-

ations in rail temperature constitute a noise in the predictive regression model. We over-

come this problem by setting a representative point as follows. 

Recently, we showed that the deformation of the KS 50N rail at 74 mm from the bot-

tom of the rail represents the average deformation of the whole rail [20]. In this study, the 

rail temperature at the point of average deformation of the KS 50N rail was taken as the 

representative temperature of the whole rail. To measure the rail temperature at this point, 

K-type thermocouple probes were inserted by drilling. 

3. Feature Study: Feature Selection Based on the Thermal Analysis 

3.1. Modeling of the Thermal Environment around the Rail 

The rail is exposed to complex conduction, convection, and radiation processes that 

depend on the weather factors (such as the air temperature, wind speed, and cloud) and 

solar factors (such as solar irradiance) (see Figure 2) [7,11,12]. RTPMs based on the thermal 

analysis typically predict the rail temperature by balancing the heat transfers [7,11–13]. 

The energy balance equation is given as 

where Esun
̇  is the heat flux of the global solar irradiance and Econv

̇  and Erad
̇  are the heat 

fluxes of convection and radiation, respectively. 

Esun
̇  is a major determinant of rising rail temperature and must be modeled in detail 

[23]. When solar irradiance moves through the atmosphere, it is partially lost to absorp-

tion, reflection, and diffusion by moisture, dust, and clouds [24]. If the RTPM is built with-

out considering the detailed solar irradiance, it may predict high rail temperatures inac-

curately during the daytime. The poor performance of high rail-temperature prediction is 

a fatal weakness because high rail temperatures cause rail buckling, especially during the 

summer daytime. 

Econv
̇  is closely related to wind speed [7,13]. Generally, the higher the wind speed, 

the better the heat exchange between the atmosphere and rail surface, considering that the 

wind speed is high and the air and rail temperatures are similar. 

Erad
̇  is closely related to the air temperature above the cloud and rail surface emissiv-

ity [7]. Based on the Stefan–Boltzmann law, Erad
̇  increases to the fourth power of the ab-

solute temperature [25]. In the study of rail temperatures, Erad
̇  is of less importance com-

pared to other heat transfer mechanisms. Typically, rail temperatures range from −10 to 

60 °C. In this temperature range, Erad
̇  is negligible compared to that of other heat transfer 

mechanisms. 

Esun
̇ − �Econv

̇  + Erad
̇ � = 0, (1) 
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Figure 2. Thermal environment around the rail. 

Previous RTPMs based on the regression analysis focused only on the weather factors 

and did not properly reflect the relationship between solar irradiance and rail tempera-

ture, which is critical for rail-temperature prediction. For precise rail-temperature predic-

tion, the rail–sun relationship (solar-effect features) was treated as important while devel-

oping the RTPM based on machine learning. Based on the thermal analysis and prelimi-

nary studies, the features were classified into weather (air temperature, rainfall amount, 

wind speed, cloud cover, and relative humidity) and solar effect (azimuth, altitude, and 

total solar irradiance (TSI)) features. 

3.2. Weather Features 

Most previous regression analysis-based RTPMs predicted rail temperatures consid-

ering only weather conditions [8–10]. The Hunt models predicted the rail temperature 

using a single feature (air temperature), whereas the BoM prediction equation used 24 

features, including the temperature of the Earth’s surface and pressure [8,10].  

When building machine learning-based RTPMs, including many weather-features 

account for various weather situations, but risks the curse of dimensionality and increases 

the difficulty of data acquisition. To avoid these problems, the relevant features mainly 

affecting rail temperature must be selected from several weather factors. 

Among the weather features, we selected the air temperature, rainfall amount, wind 

speed, cloud cover, and relative humidity. The effects of the above weather features on 

the rail temperature were reported in previous studies, and are summarized below. 

Air temperature: A change in the air temperature will always change the rail temper-

ature [12]. As mentioned earlier, the simplest RTPM (Hunt models) uses only the air tem-

perature as a feature [8]. 

Rainfall amount: Moisture is crucial in suppressing the maximum rail temperature 

because of the high specific heat of water (4.184 J∙g−1∙K−1)) [13]. 

Wind speed: As mentioned earlier, wind speed is closely related to convection. When 

the wind speed increases, the difference between the air temperature and rail temperature 

decreases. This effect is enhanced in summer, when the difference between the rail and 

air temperatures is already large [11,13]. 

Cloud cover: Cloud cover is closely related to solar irradiance. On cloudy days with 

high cloud cover, the portion of lost solar irradiance increases and the ratio of diffuse hor-

izontal irradiance (DHI) to global solar irradiance (GHI) increases accordingly [13]. 

Relative humidity: A change in the relative humidity slightly changes the rail tem-

perature [13]. In Chapman’s model, the relative humidity is assumed to be closely related 

to the minimum rail temperature [13]. 
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The suggested weather features were measured as described in Section 2 and are eas-

ily obtainable worldwide because they are common components of global weather fore-

casts. By virtue of the weather features, the CNU RTPMs built by the suggested features 

can predict the rail temperatures over an entire network.  

3.3. Solar Effect Features 

The sun is the main heat source of the rail and causes a high rail temperature during 

the daytime. Therefore, the influence of the sun must be considered in the rail temperature 

prediction. To predict the rail temperature over the entire network, we here define the 

solar effects (azimuth, altitude, and TSI) as new features that can be simply calculated in 

terms of time (year, month, day, hour, minute, and second) and location (latitude and 

longitude). By using the solar effect features in the RTPM-building, the CNU RTPM can 

account for the influence of solar irradiance on rail temperature. The solar effect features 

release the temporal and location dependencies of the RTPMs, because they are physical 

variables that change in time and space. Since the rail temperature has increased under 

global warming effects, RTPMs that depend on a specific time and location cannot predict 

the rail temperature in the coming decades or at other locations. In future RTPMs that 

predict the rail temperatures of entire networks, the solar effect features are essential. 

3.3.1. Modeling of Solar Irradiance 

The GHI is closely related to rail temperature, so it must be considered in the rail-

temperature prediction. The measured rail temperature and GHI data during the summer 

of 2016 at the measurement station are compared in Appendix B. Note that the rail tem-

perature and GHI exhibited similar temporal dynamics (Figure A2a) and were positively 

correlated (Figure A2b; R2 = 0.6870). The phase difference in Figure A2a is attributable to 

the heat transfer delay caused by the heat capacity of the rail.  

Clearly, the GHI is an important predictor of rail temperature and would improve 

the performance of RTPM. As this variable is not provided in the weather forecast, it was 

replaced by the TSI on the Earth’s upper atmosphere. The TSI includes the solar power 

over all incident wavelengths per unit area and changes slowly as the Earth elliptically 

orbits the sun [25,26]. As the TSI depends on the distance between the Earth and the sun, 

it can be predicted accurately. The GHI can then be predicted from the TSI and the weather 

factors [26–29].  

The TSI, DNI, and DHI are geometrically defined in Figure 3a. Upon entering the 

atmosphere, the TSI is scattered and absorbed by weather factors such as humidity and 

clouds. At noon on a clear day, approximately 25% of the TSI is scattered and absorbed 

[30]. 

The DNI is the solar irradiance directly arriving from the sun. The DNI is measured 

as the flux of the beam radiation through a plane perpendicular to the sun’s direction [23].  

The DHI represents the solar irradiance scattered by the atmosphere. The DHI is 

measured on a horizontal surface, assuming that the radiation (excluding the circumsolar 

radiation) enters from all points in the atmosphere. 

The GHI is the total irradiance from the sun on a horizontal surface on Earth [27]. It 

is computed by summing the DNI and DHI. 

In summary, since the TSI is the reduced GHI by weather factors, simultaneously 

adopting the weather factors and TSI as features in the RTPM produces the same effect as 

directly adopting the GHI as the feature. The TSI is calculated as described in Appendix 

C. 

3.3.2. Direction of Solar Position 

As the Earth is spherical, the TSI enters the atmosphere at an oblique angle, so the 

GHI (the summed DNI and DHI) varies in each region. The DNI is oriented along the 
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direction of the sunlight, which is defined by its azimuth and altitude. The changing di-

rection of sunlight alters the sites at which the rails receive energy directly from the sun. 

Therefore, even when the GHI remains constant, the rail temperature changes with azi-

muth and altitude [7]. 

In the horizontal coordinate system, the direction of the sun is expressed by its azi-

muth and altitude, as shown in Figure 3b [30]. The azimuth (Φsun) is the angle between the 

projected vector and the north (N) vector. The altitude (αsun) is the angle between the sun-

light vector and its projected vector on the perpendicular plane.  

The azimuth and altitude are calculated in terms of time (year, month, day, hour, 

minute, and second) and location (latitude and longitude). The temporal terms are astro-

physically meaningful for predicting the rail temperature. If the time is directly applied 

to the model without any post-processing, the model’s performance is not guaranteed af-

ter decades or longer, and its reliability is severely degraded. 

In this study, the altitude and azimuth were computed from the local latitude, longi-

tude, and time by the Michalsky’s method [31]. 

 

Figure 3. Geometric definitions of (a) total solar irradiance (TSI), direct normal irradiance (DNI), 

and diffuse horizontal irradiance (DHI). (b) Azimuth and altitude in the horizontal. coordinate sys-

tem. 

4. Building the CNU RTPMs  

CNU RTPMs are based on machine learning and various statistical methods: extreme 

gradient boosting (XGBoost), support vector machine (SVM), random forest (RF), artificial 

neural network (ANN), and polynomial regression of order 2 (PR2). Their hyperparame-

ters were optimized by tuning. The performances of the various CNU RTPMs were com-

pared and the best-performing CNU RTPM was clarified. We built the models using the 

Python libraries: XGBoost, Scikit-learn, random forest, and Tensorflow. 

4.1. Machine Learning and Statistical Methods  

4.1.1. Extreme Gradient Boosting (XGBoost) 

XGBoost is popularly chosen by contestants in data and machine learning competi-

tions, owing to its higher performance than other methods [32–37]. XGBoost is suitable 

for regression and classification problems. At each step, the algorithm generates a weak 

learner and accumulates it into the total model. If the weak learner follows the gradient 

direction of the loss function, the learning method is called a gradient boosting machine 

[37]. 

XGBoost is an ensemble of classification and regression trees (CART). An ensemble 

method is a machine learning technique that combines the results of several submodels to 

determine the best result. Consider a dataset D={(X�, y
�
): i = 1⋯n, X�∈Rm, y

�
∈R} with n 

data, m feature spaces, a target value y
i
, and a predicted value y�

i
  Let y�

i
 be the result of 

an ensemble represented as follows: 
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��� = � ��(��)

�

���

, �� ∈  �, (2) 

where K is the number of trees and f
k
 is a function in the functional space F of all CARTs. 

Let L be the objective function, which consists of a training loss term and a regulari-

zation term as follows: 

L�ϕ� = ∑ l(i y�
i
,y

i
)+ ∑ Ω(f

k
)k , (3) 

Ω�f
k
� = γT + 

1

2
λ‖w‖2.  (4) 

The training loss term l measures the difference between y�
i
 and y

i
, and the regular-

ization term Ω penalizes the complexity of the model to avoid overfitting. 

The objective function is optimized by tree boosting of Equation (3). Define y�
i

t as the 

prediction of the i-th instance at the t-th iteration. To minimize the objective function, a 

term f
t
 is added to Equation (3), giving Equation (5). Equation (5) is then simplified by 

the Taylor expansion to give Equation (6): 

Lt= ∑ l(y
i
,n

i=1 y�
i

t-1+f
t
(Χi)) + Ω(f

t
), (5) 

L�
t
= ∑ [g

i
f
t
(Χi)+

1

2
hift

2(Χi)]n
i=1 + Ω(f

t
), 

where g
i
 = ∂

y�
i
t-1l�y

i
, y�

i

t-1
�, hi = ∂

y�
i
t-1

2
l�y

i
, y�

i

t-1
�. 

(6) 

The loss reduction after the best split from a given node is given by Equation (7). 

Note that this function depends only on the loss function and the regularization parameter 

γ. Clearly, this algorithm optimizes any loss function that provides the first and second-

order gradients [32]. 

������ =
1

2
�

�∑ ���∈��
�

�

∑ ℎ� + ��∈��

+
�∑ ���∈��

�
�

∑ ℎ� + ��∈��

−
(∑ ���∈� )�

∑ ℎ� + ��∈�
� − �. (7) 

4.1.2. Support Vector Machine (SVM) 

The objective of the SVM is to find the optimal hyperplane in an N-dimensional space 

(where N is the number of features) that maximizes the distance between the hyperplane 

and the nearest data point on each side. The optimal hyperplane should distinctly classify 

the data points [38]. SVMs are employed in regression and classification problems, and 

are applicable to both linear and nonlinear data [39]. 

As in previous studies, our study employs an SVM for predicting the solar generation 

from weather forecast data. The kernel function was a radial basis function with two hy-

perparameters: the kernel coefficient γ and the penalty coefficient C. 

4.1.3. Random Forest (RF) 

An RF is a substantial modification of bagging that builds a large collection of de-

correlated trees, and then averages them [40]. Bagging is one of the ensemble methods. 

Like SVMs, RFs are applicable to both linear and nonlinear data in regression and classi-

fication problems. 

In previous studies, RFs have predicted the daily maximum air temperature from the 

solar radiation, albedo, latitude, longitude, and other solar-related parameters. We simi-

larly adopt the solar effect features in temperature prediction. Here we optimize the num-

ber of variables to be split at each node (Mtry) and the number of trees in each run (Ntree) 

as the hyperparameters.  
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4.1.4. Polynomial Regression of Order 2 (PR2) 

PR2 is a traditional statistical method applied in regression modeling. It is suitable 

when the independent variable is a quadratic function of the dependent variable [38]. Ad-

ditional hyperparameter settings are not required. The PR2 can be expressed as 

�� = �� + ���� + ����
� + ⋯ + ��, (8) 

where ��  is the dependent variable, ��  is the independent variable, �� denotes the un-

known parameters, ��  is an error term, and i denotes a row of data. 

4.1.5. ANN (Artificial Neural Network) 

ANNs are powerful connectionist systems vaguely inspired by biological neural net-

works [41]. An ANN consists of multilayer perceptrons, and is suitable for solving various 

problems such as computer vision, speech recognition, and regression analyses [42]. 

Previously, ANNs were applied to body-temperature prediction in wearable-device 

studies [43]. In our study, an ANN predicts not the body (interior) temperature but the 

skin (surface) temperature. Specifically, we employ a feed-forward neural network with 

a rectified linear unit as the activation function and AdamOptimizer as the optimizer. The 

learning rate and batch size were 0.05 and 100, respectively. We optimize the number of 

nodes (one hidden layer) as the hyperparameter. 

4.2. Hyperparameter Tuning by K-Fold Cross Validation  

The performance of any model based on machine learning largely depends on the 

value(s) of the hyperparameter(s), which must be determined before running the model. 

In machine learning, the process of determining the hyperparameter(s) is called “tuning.” 

[44–46]. The suitability of the value range of the hyperparameter(s) tends to depend on 

the user’s intuition and experience. 

In this study, the hyperparameters of XGBoost, SVM, and RF were optimized by K-

fold cross validation, which divides the samples into training and test samples. The model 

was constructed using the training data and verified using the test data. K-fold cross val-

idation simply and effectively checks whether the model has overfitted the training data. 

K-fold cross validation divides the samples into k uniform groups and performs k 

iterations of cross validation. After cross validation based on the constructed hyperpa-

rameter values, the optimal combinations of hyperparameters are found using the 

GridSearchCV function in the Python library Scikit-learn. By default, GridSearchCV uses 

3-fold cross validation (k = 3); however, applying 5-fold cross validation is conducted to 

more accurately optimize the hyperparameter combination. 

The results of the hyperparameter tuning are provided in Appendix D. 

4.3. Comparison Methods of Model Performance  

In this study, 70% of the measured data were randomly selected as the training data 

and the remaining 30% were reserved as the test data. To account for the randomness in 

distributing the training and test data, the evaluation was performed five times on the test 

data and individual performances were averaged to obtain the final performance value. 

As the performances of the training and test data were not significantly different at the 

time of the experiment, the results of the test data are presented. The performances were 

described by the mean absolute error (MAE), coefficient of determination (R2), and RMSE. 

MAE is the absolute value of the average error (average difference between the orig-

inal and predicted values). A lower MAE corresponds to a higher performance of the 

model. The R2 measures how well the predicted values match the original values. Its value 

ranges from 0 (no correlation between the actual and predicted values) to 1 (perfect cor-

relation between the two values). RMSE is another measure of the average error in the 

prediction. As MAE is generally used in machine learning and RMSE is conventionally 

used in RTPMs, both measures are computed in the present analysis. Similar to MAE, a 
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low RMSE implies a high model performance. Conclusively, a good prediction model is 

characterized by low MAE, high R2, and low RMSE. MAE, R2, and RMSE measures are 

respectively expressed as follows: 

MAE = 
∑ �yI – y

i�
n
i=1

n
, (9) 

R2 =1-
∑ �y

i
 - y

i�
2n

i=1

∑ �y
i
 - y��

2n
i=1

, (10) 

RMSE = �
1

n
∑ �y

i
 -  y

i
�

2n
i=1 , (11) 

where n is the total number of test data, yi and ȳi are the measured data and the model 

predicted values, respectively, and ŷ is the average output value of the test data. 

The features and measurement conditions determine the reliability and versatility of 

the prediction model. As the model is built using the measured data, a small quantity of 

measured data will degrade the model reliability. Meanwhile, if the model includes an 

excessive number of features, it cannot easily adapt to different environments and the 

measurement system requires many instruments. Accordingly, models with too many 

features have low versatility. 

5. Train-Speed-Limit Alarm-Map (TSLAM) 

The actual rails are interconnected continuously for several hundred kilometers. 

Therefore, predicting the rail temperature in a local region is meaningless. Our TSLAM 

framework, developed by Python, visually presents the predicted rail temperature over 

the entire network. TSLAM visualizes the predicted rail temperature deviations com-

puted by the CNU RTPMs with the selected features. Using TSLAM, train safety officers 

can quickly map the rail-temperature deviations and order the train company to limit the 

train-speed in advance. 

The TSLAM can also forecast the rail temperature for up to 64 h based on the weather 

forecast data alone. This forecasting reduces train delays owing to the imposed train-

speed limit because the train company can preadjust the train operation interval. Finally, 

the TSLAM improves track safety and train timeliness. 

The TSLAM operates via a four-step algorithm: data acquisition, data preprocessing, 

rail-temperature-prediction, and data visualization (see Figure 4). The four steps of the 

TSLAM algorithm are detailed below. 

Step (1): Web crawling of weather forecast data: The KMA divides the Korean pen-

insula into (5 × 5)-km2 grid squares and forecasts the weather in each area for up to 64 h 

at 3-h intervals. Step 1 of the TSLAM algorithm obtains the local forecast data by web 

crawling (defined as data extraction from a web page [47]). The obtained data comprise 

the location and meteorological forecasts in each area. In this step, if the data source of the 

application programming interface (API) provided by the open weather map (OWM) is 

changed, the country and its local weather forecast data are newly obtained. Originally, 

we considered using the Korean local weather forecast of the OWM rather than the local 

weather forecast of the KMA. However, web crawling the weather forecast data of KMA, 

which provides a detailed local weather forecast over more regions in Korea than in the 

OWM, was selected. 

Step (2): Data preprocessing: The KMA provides local coordinate data in its own co-

ordinate system, which must then be converted to general-purpose latitudes and longi-

tudes. This step is redundant if the data source is OWM’s API because the OWM directly 

provides local latitude and longitude data. This step then computes the azimuth and alti-

tude from the latitude and longitude at the forecast time and converts the data unit into 

units compatible with CNU RTPM. 

Step (3): Prediction of the rail temperature using CNU RTPM: This step predicts the 

rail temperature from CNU RTPMs. CNU RTPM with the highest performance is then 



Sensors 2021, 21, 4606 11 of 24 
 

 

installed as the main model. Through this process, data are converted into three-dimen-

sional data of latitudes, longitudes, and predicted rail temperatures. 

Step (4): Visualization of the predicted rail temperature: This step displays the trans-

formed three-dimensional data on a map for the user. The displayed image can be ex-

pressed in either of the following two modes, Mode 1 or Mode 2, by adjusting the range 

of the legend. Mode 1 is a contour map showing the predicted rail temperature in all re-

gions of the selected country. Mode 1 compares the predicted rail-temperature deviations 

in each region but does not clarify the regions in which rails are dangerously deformed. 

Conversely, Mode 2 shows the regions of high predicted rail temperature at which the 

train-speed should be limited to ensure safe railway operation. These data quickly inform 

the train safety officer of the risky sites. 

 

Figure 4. Framework of mapping the local rail-temperature prediction. 

6. Results and Discussion 

6.1. Data Configuration  

The most important goal for building a model based on machine learning is the ac-

quisition of numerous high-quality data. Herein, high-quality data were acquired using 

the measurement station. The rail temperature was determined at the point where rail 

deformation represented the average rail deformation. Moreover, features providing a 

globally usable model were selected. 

Measurements were continuously collected over a 10-month period from August 

2016 to May 2017, obtaining 35,252 samples. The measured data were the air temperature, 

relative humidity, wind speed, rainfall amount, and rail temperature. The cloud cover 

data, which were not measured, were instead borrowed from the data of nearby KMA. 

The maximum, minimum, average, and standard deviation of the dataset are included in 

the Appendix A. Korea’s climate is characterized by a large annual range of air tempera-

tures (−10.1–38.0 °C in the collected dataset) and by various weather events, such as mon-

soon rains and snowfall, which are dynamically generated in different seasons. The Ko-

rean weather data are thus considered suitable for creating globally available models.  

The azimuth, altitude, and TSI were calculated by the method presented in Section 3 

and added to the final samples. The resulting model features were weather features (air 
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temperature, rainfall amount, wind speed, cloud cover, and relative humidity) and solar 

effect features (azimuth, altitude, and TSI). 

Herein, 70% of the data (24,676 samples) were randomly selected as the training data 

and the remaining 30% (10,576 samples) were reserved as the test data. Figure 5 is a de-

tailed flowchart of the methodology.  

 

Figure 5. Flowchart of the proposed methodology. 

6.2. Feature Importance  

Tree-based machine learning methods such as XGBoost can calculate the importance 

of features. The feature importance quantitatively evaluates the effect of a particular fea-

ture on the model performance. By ranking and comparing the importance of each feature, 

we can remove the unnecessary features with low feature importance from the model. 

Such low-importance features can degrade the performance of the model.  

The feature importance values computed by XGBoost are graded in Figure 6. The 

most important, second-most important, and third-most important features were the TSI, 

azimuth, and altitude, respectively. Note that these features are the solar effect features 

reflecting the GHI, which are obtained by simple calculations but largely affect the per-

formance of the model. That is, the solar effect features play an important role in predict-

ing the rail temperature. 
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Figure 6. Graded importance of features in the rail-temperature. prediction, obtained by XGBoost. 

6.3. Model Performance Comparison 

6.3.1. Performance at the Whole Range of Rail Temperatures 

Table 1 compares the performances of the previous RTPMs (white) and the newly 

developed CNU RTPMs (yellow and orange). To compare the models’ performances, the 

datasets used in the RTPMs should be similar. However, direct performance comparison 

was difficult because of the restricted data set used in developing previous RTPMs. Thus, 

the Hunt model, which uses the air temperature as the sole feature, was used to confirm 

the similarity of the dataset used in this study with that used in other RTPMs. Besides, the 

Hunt model is common because similar studies have also compared model performance 

using it [7,10,13]. In a study by Wu (development of the BoM prediction equation), the 

RMSE of the Hunt 1 model was determined as 6.952 °C, while in this study, it was deter-

mined as 5.866 °C. These results disprove the similarity between Wu’s study and the 

measurement conditions adopted in this research, such as the rail installation environ-

ment and climate. Figure 7 shows the predicted and measured rail temperatures from 

August 9 to August 12 in 2016, when the rails were the hottest. The Hunt 1 model predicts 

the temperature of the rails to be somewhat higher, while the CNU RTPM–XGBoost pre-

dicts it with high accuracy regardless of day or night conditions.  

Table 1. Comparison of prediction errors in previous RTPMs and CNU RTPMs. 

Performance Range 
Performance in Whole Range of 

Rail Temperature 

Performance in High Rail 

Temperature Range 

(over 40 °C) 

Model Name MAE (°C) R2 
RMSE 

(°C) 
MAE (°C) R2 

RMSE 

(°C) 

Hunt model 1 [8] 2.913 0.9021 5.866 2.660 0.4471 3.925 

Hunt model 2 [8] 14.396 0.9021 15.117 3.661 0.4471 4.448 

Munro model [1] Unknown 0.9180 Unknown Unknown Unknown 
Un-

known 

BoM Prediction 

Equation (1–24 h) [10] 
0.136 0.9630 2.560 Unknown Unknown 

Un-

known 

Weather station 

Regression model 

[10] 

0.659 0.8960 4.193 Unknown Unknown 
Un-

known 

CNU RTPM–PR2 0.693 0.9709 2.316 0.103 0.5605 2.7108 
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Chapman’s model 

[13] 
0.200 Unknown 2.500 Unknown Unknown 

Un-

known 

CNU 

Heat Transfer model 

[7] 

1.537 0.9334 3.799 0.618 0.3406 5.935 

CNU RTPM–SVM 0.068 0.9720 2.135 1.055 0.5465 2.802 

CNU RTPM–ANN 0.519 0.9839 1.732 1.213 0.7115 2.355 

CNU RTPM–RF 0.029 0.9972 0.685 0.191 0.9199 0.927 

CNU RTPM–

XGBoost 
0.008 0.9984 0.518 0.119 0.9415 0.771 

CNU RTPM–

XGBoost 

Without a solar effect 

0.043 0.9816 1.744 0.570 0.7243 1.898 

 

Figure 7. (a) Comparison of the predicted rail temperature and the measured rail temperature graphs. (b) Error of pre-

dicted rail temperature in August 2016. 

Among the previous RTPMs, the BoM prediction equation showed the highest per-

formance (MAE = 0.136 °C, R2 = 0.9630, RMSE = 2.560 °C) over the whole range of rail 

temperatures. However, the BoM equation requires 24 features, which severely reduces 

its versatility. Moreover, the BoM equation is constructed from data collected over one 

month during the Australian winter, casting doubt on its global and seasonal applicabil-

ity. In contrast, the CNU RTPMs use consecutive data collected over 10 months (including 

summer and winter), ensuring their reliability over the four seasons. Moreover, the 

weather factors and solar effects are easily obtainable, ensuring the versatility of the CNU 

RTPMs. The weather factors are globally available through weather forecasts, and the so-

lar effects are readily calculated at any given time. These selected features enable easy 

combination of CNU RTPM and TSLAM.  

The highest performer among the RTPMs over the whole range of rail temperatures 

was CNU RTPM–XGBoost (MAE = 0.008 °C, R2 = 0.9984, RMSE = 0.518 °C). The RMSE was 

approximately 2 °C lower in CNU RTPM–XGBoost than in the BoM prediction model, the 

previously highest performance RTPM. 

Accordingly, CNU RTPM–XGBoost was selected as the main model in this study and 

its hyperparameters were optimized by K-fold cross validation. Adding the solar effect 
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features improved the performance of CNU RTPM–XGBoost over that of CNU RTPM–

XGBoost without solar effects, built using the weather data only.  

6.3.2. Performance at the High Rail-Temperature Range (over 40 °C) 

The most important practical requirement of RTPM is predicting the high rail tem-

peratures that cause buckling. When predicting rail temperatures over 40 °C (Table 1), the 

CNU RTPM–RF and CNU RTPM–XGBoost delivered the highest performance among the 

tested models (CNU RTPM–RF: MAE = 0.191 °C, R2 = 0.9199, RMSE = 0.927 °C; CNU 

RTPM–XGBoost: MAE = 0.119 °C, R2 = 0.9415, RMSE = 0.771 °C). The ability to predict 

high rail temperatures was conferred by a selected algorithm and proposed features. 

Since they adopt the ensemble method, tree-based machine learning algorithms 

(CNU RTPM–RF and CNU RTPM–XGBoost) are more suitable for high temperature pre-

diction than other machine learning algorithms. Tree-based RTPMs are composed of var-

ious submodels constructed under specific conditions. As one of these submodels predicts 

high rail temperatures, tree-based RTPMs can outperform models with other architec-

tures. 

Additionally, we showed that the newly proposed solar effect features further im-

prove the performance of predicting the high rail temperature in RTPM by comparing the 

performance of the CNU RTPM–XGBoost with or without the solar effect (R2 = 0.9415 and 

0.7243, respectively).  

6.3.3. Raw Error Data of CNU RTPM 

The practical applicability of CNU RTPMs was investigated on raw error data. The 

performances of the CNU RTPMs with the same features are compared in Figure 8. This 

figure shows the box plots of the errors in the CNU RTPMs, allowing a comparison of the 

raw error data in each CNU RTPMs.  

The box plots differ in shape; the fence length (distance between the upper and lower 

whiskers) is shorter in the CNU RTRMs based on machine learning (SVM, ANN, RF, and 

XGBoost) than in the regression model (PR2). The tree-based RTPMs (RF and XGBoost) 

yielded the shortest fence lengths around a median of 0 °C. 

 

Figure 8. Boxplots showing the error ranges in the CNU RTPMs based on SVM, ANN, PR2, RF, and 

XGBoost. 

The error ranged by almost 9 °C in CNU RTPM–PR2, SVM, and ANN, nearly 6 °C in 

CNU RTPM–RF, and nearly 3 °C in CNU RTPM–XGBoost. A narrow error range guaran-

tees a reliable rail-temperature prediction that minimizes the risk of incorrect prediction. 
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As confirmed by its short fence lengths and narrow error range (3 °C), the CNU 

RTPM–XGBoost is the most suitable algorithm in practical situations, because the criteria 

of train-speed limits are shifted to a 4–5 °C change in rail temperature. This varies from 

country to country. In Korea, high-speed trains run at 230 km∙h−1 when the rail tempera-

ture is 55–60 °C, 70 km∙h−1 when the rail temperature is 60–64 °C, and are cancelled when 

the rail temperature exceeds 64 °C [15]. In the UK, the train speed is determined by the 

stress-free temperature (STF, usually equal to 27 °C in the UK). On well-maintained tracks, 

the speed limit is 60 mph and 20 mph at rail temperatures of STF + 37 °C and STF + 42 °C, 

respectively. However, under poor track conditions (inadequate ballast), the temperatures 

of the 60 mph and 20 mph speed limits reduce to STF + 13 °C and STF + 15 °C, respectively 

[21].  

6.4. TSLAM with CNU RTPM–XGboost 

TSLAM is a structural health-monitoring application for analyzing railway safety us-

ing CNU RTPM–XGBoost, the highest-performing CNU RTPM. Using TSLAM, railway 

safety managers can know the rail temperature in advance or in real-time. Based on the 

predicted rail temperature, railway safety managers could decide on safety measures, 

such as limiting the train speed and spraying water. 

Figure 9a shows the graphical user interface (GUI) of TSLAM. The user selects the 

time, country, and map mode through input-selection widgets and obtains the rail tem-

perature predicted by CNU RTPM–XGBoost. The predicted rail temperature is displayed 

either in Mode 1 (the standard mode showing the predicted rail temperatures in all re-

gions) or Mode 2 (the detection mode displaying the danger zones on the map). The text-

display panel reports the risk points demanding rail-temperature management and the 

train-speed limits recommended by the Korea Railroad Operation Safety Managers Asso-

ciation [15] (see Appendix E). Equipped with this information, railway safety officers can 

either plan the lowering of the rail temperature by water spraying or adjust the train op-

eration interval in advance. 

The main advantage of TSLAM is its worldwide applicability, enabled by including 

the globally available features in CNU RTPM–XGBoost. A user can select a country 

through the GUI, and visually observe the predicted rail temperature of that country us-

ing the weather forecast provided by the OWM. In other words, users can obtain the rail 

temperature or warnings from devices installed with TSLAM, independent of location. As 

an example, Panels (b) and (c) of Figure 9 show the predicted rail-temperature maps of 

France and the USA, respectively, in Mode 1. In this mode, users can compare the regional 

deviations in the predicted rail temperatures. In Mode 2 (Figure 9a), the user must know 

the train driving rules of the selected country. 

 

Figure 9. (a) GUI of TSLAM and maps of the predicted local rail temperatures in (b) France and (c) the USA. 
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TSLAM can improve the efficiency of a train system controlled by a safety manage-

ment system. As mentioned above, TSLAM requires the weather forecast data from the 

OWM, which are easily accessible. Therefore, operators of a train safety management sys-

tem can acquire the information required for rerouting or applying derailment-prevention 

measures at any locality. With this information, they can appropriately adjust the train 

interval, avoid bottlenecks, and efficiently operate the rail system. 

Additionally, TSLAM can support the indirect measurement of the rail temperature 

over the entire network. Generally, the rail temperature is directly measured using ther-

mocouples; however, installing thermocouples over the entire network results in high in-

stallation and maintenance costs. Additionally, because of the safety issue, it is difficult to 

attach the thermocouples in some networks. However, TSLAM prediction showed nearly 

the same result as directly measuring the rail. Thus, TSLAM is expected to serve as a sup-

porting system that provides the predicted rail temperature using real-time weather 

measurement data or weather forecast data. 

6.5. Limitations and Directions for Improvement 

The features of CNU RTPM were designed by using the thermal analysis. The aim 

was to improve the performance of rail-temperature prediction and to extend its network 

applicability. However, some relevant features were excluded because of data unavaila-

bility and restriction. The particulate matter (PM) is one of the excluded features, which 

can be incorporated into an improved RTPM in future work. 

Recently, PM2.5 (with diameters of 2.5 μm or less) has been shown to decrease the 

DNI proportion and increase the DHI proportion in the GHI [48]. By definition, the DNI 

is related to the direction of sunlight and induces a temperature distribution on the cross- 

section of the rail. In contrast, the DHI is less directional and tends to smooth the temper-

ature distribution on the rail cross-section. In regions with high PM2.5 concentration, this 

interplay causes a slight difference between the rail temperature predicted by CNU RTPM 

and the actual rail temperature. 

Moreover, sleeper material might be incorporated into an improved RTPM in future 

work. During the measurements, the rail was installed on concrete sleepers with a thermal 

conductivity of 0.13 W∙m−1∙k−1 [49]. Although the installation of concrete sleepers is in-

creasing with the development of high-speed trains, wooden sleepers remain common in 

many parts of the world. The thermal conductivity of wood is 2.0 W∙m−1∙k−1 [49,50]. The 

different thermal conductivities of these two materials will degrade the universal applica-

bility of CNU RTPM. Concrete sleepers with low thermal conductivity will conduct a 

lower heat flux than wooden sleepers. For this reason, when the solar irradiance is high, 

a rail installed on wood sleepers will reach a lower temperature than a rail installed on 

concrete sleepers. 

Furthermore, the health status of rails can be integrated into an improved RTPM. The 

health status of the rail is directly related to its thermal properties, such as solar absorp-

tivity, and mechanical properties, which include hardness and density [7,51]. For exam-

ple, according to a previous study, solar absorptivity is important for predicting rail tem-

peratures [7]. The solar absorptivity expresses how much solar irradiation affects the tem-

perature change of the rail. The rail surface condition affects the solar absorptivity. Usu-

ally, the solar absorptivity of unused rail is 98.7%, whereas that of used rail is 81.1%. This 

difference comes from the rail surface and paint erosion. Thus, the performance of RTPM 

can be improved in future works by considering the health status of rail. 

7. Conclusions 

Herein, we developed novel rail-temperature prediction models (CNU RTPMs) and 

a TSLAM using weather forecast data alone, which can predict the rail temperature over 

the entire network. 
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 The CNU RTPMs were developed with different machine learning methods using the 

long-term (over 10 months) measured data from all seasons. Such long-term data col-

lection ensures a reliable model. 

 To improve the prediction performance, the CNU RTPMs combine standard weather 

features with newly suggested solar effect features. These features originate from the 

analysis of the thermal environment around the rail. Additionally, they are easily ob-

tained from global weather forecasts and additional calculations on the weather fore-

cast data. Precisely, the solar effect features significantly improved prediction perfor-

mance at the high-rail-temperature range. 

 In a performance comparison, the CNU RTPM–XGBoost emerged as the best predic-

tor of the rail temperature among the machine learning methods. The proposed CNU 

RTPM–XGBoost, which delivered higher performance, reliability, and versatility than 

previous RTPMs, was suggested as a new model for predicting rail temperature over 

the entire network. The CNU RTPM–XGBoost is applicable worldwide because its 

features are globally available in weather forecast data.  

 The visualization application, TSLAM, maps the predicted rail temperatures, which 

assist railway safety officers (if necessary) in planning safety measures.  

We expect that CNU RTPM–XGBoost and TSLAM will significantly improve both 

train safety and train timeliness. 
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Abbreviations 

The following abbreviations are used in this article: 

CWR Continuous welded rail 

BoM Bureau of meteorology 

RTPM Rail-temperature-prediction model 

RMSE Root mean square error 

MAE Mean absolute error 

R2 Coefficient of determination 

ANN Artificial neural network 

SVM Support vector machine 

RF Random forest 

XGBoost Extreme gradient boosting 

TSLAM Train-speed-limit alarm-map 

DAQ Data acquisition system 

CNU Chungnam national university 

KMA Korea meteorological administration 

TSI Total solar irradiance 

GHI Global solar irradiance 
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DHI Diffuse horizontal irradiance 

DNI Direct normal irradiance 

API Application programming interface 

OWM Open weather map 

GUI Graphical user interface 

PM Particulate matter 

Appendix A 

The summary of the dataset is shown in Table A1. This dataset is consisted of meas-

ured data (air temperature, relative humidity, wind speed, rainfall amount, and rail tem-

perature) and borrowed data (cloud cover). Table A1 shows the maximum value, mini-

mum value, average value, and standard deviation. 

Table A1. Summary of the dataset (from August of 2016 to May of 2017). 

Features 
Maximum 

Value 

Minimum 

Value 
Average Value 

Standard 

Deviation 

Air temperature 38.00 °C −10.10 °C 11.03 °C 10.30 °C 

Relative humidity 98.00% 14.00% 67.59% 18.64% 

Wind speed 19.30 m/s 0.00 m/s 1.64 m/s 2.12 m/s 

Rainfall amount 3.81 mm 0.00 mm 0.03 mm 0.98 mm 

Rail temperature 53.04 °C −11.67 °C 13.63 °C 13.08 °C 

Cloud cover 10 1 6.90 2.84 

 

Figure A1. The installed measurement system. 

Appendix B 
The global horizontal irradiance (GHI) is closely related to rail temperature. The com-

parison of the measured rail temperature and GHI at the measurement station during the 

2016 summer (16.08.05–16.08.30) are shown in Figure A2. Figure A2a shows the positive 

correlation between the measured rail temperature and GHI. This result is more clearly 

shown in Figure A2b. According to Figure A2b, the coefficient of determination (R2) was 

0.6870. 
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Figure A2. (a) Measured rail temperatures and global horizontal irradiance data. (b) 

Correlation between rail temperature and global horizontal irradiance at the study site 

in summer (August of 2016). 

Appendix C 

The total solar irradiance (TSI) is governed by the elliptical orbit of the Earth. The TSI 

is maximized and minimized at the perihelion (January) and apex (July) of the Earth, re-

spectively, and is calculated as follows: 

θ = �dn - dp�×
360

365.256363004
×

π

180
,  (A1) 

D = 
α × (1 − e2)

1 + e×cos(θ)
, (A2) 

It = Isc× �
Davg

D
�

2

. (A3) 

In the above expressions, dn and dp denote the elapsed day from January 1 and peri-

helion day (January 2–5), respectively, and θ is the circumferential angle from perihelion. 

D and Davg are the actual and mean sun–Earth distances, respectively, α is the semi-major 

axis of the ellipse (149,598,261 km), e is the eccentricity of the Earth’s orbit (0.01671123), Isc 

is the solar constant (1367 W/m2), and It is the TSI.  

Note that dn is the only variable in the TSI calculation. 

Appendix D 

The optimized hyperparameters of the extreme gradient boosting (XGBoost) were 

n_estimators, colsample_bytree, learning_rate, max_depth, and subsample. The value range of 

hyperparameters were described in the list of candidate hyperparameters in Table A2. As 

a result, tuning was performed to find the optimal value for the combination of hyperpa-

rameters in the 3750 preset value for the combination of hyperparameters. The results of 

the hyperparameters tuning are described in Table A2. Since the results were difficult to 

describe completely, the top six results were shown based on the best score. The score was 

calculated based on the coefficient of determination (R2). As a result, the optimal hyperpa-

rameters set was n_estimators = 3000, colsample_bytree = 1.0, learning_rate = 0.03, max_depth 

= 9, and subsample = 0.4. 
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Table A2. The list of candidate parameters and parameters tuning results for finding the optimal 

parameter set in XGBoost. 

List of Candidate Hyperparameters  

n_estimatorsColsample_bytree Learning_rate Max_depth Subsample 

{500, 1000, 

1500, 2000, 

2500, 3000} 

{0.2, 0.4, 0.6, 0.8, 

1.0} 

{0.01, 0.03, 0.05, 

0.07, 0.09} 
{5, 6, 7, 8, 9} 

{0.2, 0.4, 0.6, 

0.8, 1.0} 

Hyperparameters Tuning Results (top 6) 

n_estimatorsColsample_bytree Learning_rate Max_depth Subsample Best Score 

3000 1.0 0.03 9 0.4 0.998009 

2500 1.0 0.03 9 0.4 0.997989 

3000 1.0 0.03 8 0.4 0.997984 

2000 1.0 0.03 9 0.4 0.997951 

2500 1.0 0.03 8 0.4 0.997945 

3000 1.0 0.05 8 0.4 0.997924 

The hyperparameter of the support vector machine (SVM) was optimized using 

GridSearchCV same as XGBoost. The optimized hyperparameters are the kernel coeffi-

cient γ and penalty coefficient C. The value range of hyperparameters and result of hy-

perparameters tuning are described in Table A3. Table A3 shows the optimal hyperpa-

rameters set is γ = 0.1 and C = 10.  

Table A3. The list of candidate parameters and parameters tuning results for finding the optimal 

parameter set in SVM. 

List of Candidate Hyperparameters  

γ C 

{ 0.001, 0.01, 0.1, 1, 10} { 0.001, 0.01, 0.1, 1, 10} 

Hyperparameters Tuning Results (top 6) 

γ C Best Score 

0.1 10 0.960011 

1 10 0.958223 

1 1 0.957759 

1 0.1 0.956218 

0.1 1 0.953065 

0.01 10 0.944773 

The hyperparameter of the random forest (RF) was optimized using GridSearchCV 

same as SVM and RF. The optimized hyperparameters are the number of variables to pick 

to split on at each node (Mtry) and the number of trees in the run (Ntree). The value range 

of hyperparameters and result of hyperparameters tuning are described in Table A4. Ta-

ble A4 shows that the optimal hyperparameters set was Mtry = 11 and Ntree = 3000. 

Table A4. The list of candidate parameters and parameters tuning results for finding the optimal 

parameter set in RF. 

List of Candidate Hyperparameters  

Mtry Ntree 

{7, 8, 9 10, 11} {500, 1000, 1500, 2000, 2500, 3000} 

Hyperparameters Tuning Results (top 6) 

Mtry Ntree Best Score 

11 3000 0.993880 

11 1000 0.993865 
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11 1500 0.993865 

11 2000 0.993861 

11 2500 0.993859 

11 500 0.993845 

To optimize the number of nodes in one hidden layer artificial neural network 

(ANN), we compared the losses generated by changing the number of nodes. This ANN 

model used MSE as a loss function. The optimization of ANN seeks to minimize a loss 

function. Figure A3 shows the tuning result in ANN. In this graph, node 22 shows the 

minimum loss value. This means node 22 is an optimal hyperparameter. 

 

Figure A3. Tuning result of the ANN. 

Appendix E 

To prevent buckling-induced train derailment due to the rise of the rail temperature, 

the Korea Railroad Operation Safety Managers Association (KORSMA), made a rule on 

the train speed limit according to the rail temperature [15]. The rule is divided into part 

of regular trains and Korea Train eXpress (KTX). The rule is summarized in Table A5.  

Table A5. Train driving rules according to rail temperature in KORSMA. 

Rail Temperature            

 

Train Type 

55–60 °C 60–64 °C Exceed 64 °C 

Regular train - <70 km/h <20 km/h 

KTX 

(Korea Train eXpress) 
<230 km/h <70 km/h Stop 
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