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Abstract: To aid the development of future unmanned naval vessels, this manuscript investigates
algorithm options for combining physical (noisy) sensors and computational models to provide
additional information about system states, inputs, and parameters emphasizing deterministic
options rather than stochastic ones. The computational model is formulated using Pontryagin’s
treatment of Hamiltonian systems resulting in optimal and near-optimal results dependent upon the
algorithm option chosen. Feedback is proposed to re-initialize the initial values of a reformulated
two-point boundary value problem rather than using state feedback to form errors that are corrected
by tuned estimators. Four algorithm options are proposed with two optional branches, and all
of these are compared to three manifestations of classical estimation methods including linear-
quadratic optimal. Over ten-thousand simulations were run to evaluate each proposed method’s
vulnerability to variations in plant parameters amidst typically noisy state and rate sensors. The
proposed methods achieved 69–72% improved state estimation, 29–33% improved rate improvement,
while simultaneously achieving mathematically minimal costs of utilization in guidance, navigation,
and control decision criteria. The next stage of research is indicated throughout the manuscript:
investigation of the proposed methods’ efficacy amidst unknown wave disturbances.

Keywords: virtual sensoring; physical sensors; smart/intelligent sensors; sensor technology and
applications; sensing principles; signal processing in sensor systems

1. Introduction

Inertial measurement units provide continuous and accurate estimates of motion states
in between sensor measurements. Future unmanned naval vessels depicted in Figure 1a
require very accurate motion measurement units including active sensor systems and
inertial algorithms when active sensor data is unavailable. State observers are duals of
state controllers used for establishing decision criteria to declare accurate positions and
rates and several instantiations are studied here when fused with noisy sensors, where
theoretical analysis of the variance resulting from noise power is presented and validated
in over ten-thousand Monte Carlo simulations.

The combination of physical sensors and computational models to provide additional
information about system states, inputs, and/or parameters, is known as virtual sensor-
ing. Virtual sensoring is becoming more and more popular in many sectors, such as the
automotive, aeronautics, aerospatial, railway, machinery, robotics, and human biomechan-
ics sectors. Challenges include the selection of the fusion algorithm and its parameters,
the coupling or independence between the fusion algorithm and the multibody formu-
lation, magnitudes to be estimated, the stability and accuracy of the adopted solution,
optimization of the computational cost, real-time issues, and implementation on embedded
hardware [1].

The proposed methods stem from Pontryagin’s treatment of Hamiltonian systems,
rather than utilization of classical or modern optimal estimation and control concepts
applied to future naval vessels as depicted in (Figure 1) [2–4].
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The proposed methods stem from Pontryagin’s treatment of Hamiltonian systems, 
rather than utilization of classical or modern optimal estimation and control concepts ap-
plied to future naval vessels as depicted in (Figure 1) [2–4]. 
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Figure 1. Representative motion measurement units for future ships depicted in (a) with measure-
ment bases depicted in (b) are proposed to be augmented by virtual sensoring by minimization of 
Hamiltonian systems by the principles of Pontryagin depicted in (c). Future unmanned U.S. Navy 
vessels [3] Medium Unmanned Surface Vessel (MUSV) concept renderings in (a) from shipbuilder 
Austal USA. Photo Credit: Austal USA. Boat motion monitoring [4] uses measurement bases de-
picted in (b) whose graphic is from cited reference modified by author. Photo (c) of Lev Pontryagin 
from the archive of the Steklov Mathematical Institute [2] used with permission (30 June 2021) 

Typical motion reference units conveniently have accuracies on the order of 0.05 (in 
meters and degree for translation and rotation, respectively, as depicted in Figure 1b for 
representative naval vessels as depicted in Figure 1a). These figures of merit are aspira-
tional for the virtual sensor that must provide accurate estimates whether active measure-
ments are available to augment the algorithm. Lacking active measurements, the algo-
rithm is merely an inertial navigation unit, while with active measurements, the algorithm 
becomes an augmented virtual sensor. This manuscript investigates virtual sensoring by 
evaluating several options for algorithms, resulting estimated magnitudes, accuracy of 
each solution, optimization of resulting costs of motion, and sensitivity to variations like 
noise and parameter uncertainty of the translational and rotational motion models inves-
tigated (both simplified and high-fidelity). Algorithms are compared using various deci-
sion criteria to compare approaches for consideration of usage as motion reference units 
potentially aided by global navigation systems. 

Noting the small size of motion measurement units, simple algorithms are preferred 
to minimize computational burdens that can increase unit size. Motion estimation and 
control algorithms to be augmented by sensor measurements are based on well-known 
mathematical models of translation and rotation from physics, both presented in equa-
tions. In 1834, the Royal Society of London published two celebrated papers by William 
R. Hamilton on Dynamics in the Philosophical Transactions. Ref. [5] The notions were 
slowly adopted, and not presented relative to other thoughts of the age for nearly seventy 
years [6], but quickly afterwards, the now-accepted axioms of translational and rotational 
motion were self-evidently accepted by the turn of the twentieth century [7–10] as ubiq-
uitous concepts. Half a century later [11,12], standard university textbooks elaborate on 
the notions to the broad scientific community. Unfortunately, the notions arose in an en-
vironment already replete with notions of motion estimation and control based on classi-
cal proportional, rate, and integral feedback, so the fuller utilization of the first principals 
languished until exploitation by Russian mathematician Pontryagin [13]. Pontryagin pro-
posed to utilize the first principles as the basis for treating motion estimation and control 
as the classical mathematical feedback notions were solidifying in the scientific commu-
nity. Decades later, the first-principal utilization proposed by Pontryagin are currently 
rising in prominence as an improvement to classical methods [14]. After establishing per-
formance benchmarks [15] for motion estimation and control of unmanned underwater 
vehicles, the burgeoning field of deterministic artificial intelligence [16,17] articulates the 
assertion of the first-principles as “self-awareness statements” with adaption [18,19] or 

Figure 1. Representative motion measurement units for future ships depicted in (a) with measurement bases depicted in (b)
are proposed to be augmented by virtual sensoring by minimization of Hamiltonian systems by the principles of Pontryagin
depicted in (c). Future unmanned U.S. Navy vessels [3] Medium Unmanned Surface Vessel (MUSV) concept renderings in
(a) from shipbuilder Austal USA. Photo Credit: Austal USA. Boat motion monitoring [4] uses measurement bases depicted
in (b) whose graphic is from cited reference modified by author. Photo (c) of Lev Pontryagin from the archive of the Steklov
Mathematical Institute [2] used with permission (30 June 2021).

Typical motion reference units conveniently have accuracies on the order of 0.05 (in
meters and degree for translation and rotation, respectively, as depicted in Figure 1b for
representative naval vessels as depicted in Figure 1a). These figures of merit are aspirational
for the virtual sensor that must provide accurate estimates whether active measurements
are available to augment the algorithm. Lacking active measurements, the algorithm is
merely an inertial navigation unit, while with active measurements, the algorithm becomes
an augmented virtual sensor. This manuscript investigates virtual sensoring by evaluating
several options for algorithms, resulting estimated magnitudes, accuracy of each solution,
optimization of resulting costs of motion, and sensitivity to variations like noise and
parameter uncertainty of the translational and rotational motion models investigated (both
simplified and high-fidelity). Algorithms are compared using various decision criteria to
compare approaches for consideration of usage as motion reference units potentially aided
by global navigation systems.

Noting the small size of motion measurement units, simple algorithms are preferred to
minimize computational burdens that can increase unit size. Motion estimation and control
algorithms to be augmented by sensor measurements are based on well-known mathemati-
cal models of translation and rotation from physics, both presented in equations. In 1834,
the Royal Society of London published two celebrated papers by William R. Hamilton on
Dynamics in the Philosophical Transactions. Ref. [5] The notions were slowly adopted,
and not presented relative to other thoughts of the age for nearly seventy years [6], but
quickly afterwards, the now-accepted axioms of translational and rotational motion were
self-evidently accepted by the turn of the twentieth century [7–10] as ubiquitous concepts.
Half a century later [11,12], standard university textbooks elaborate on the notions to the
broad scientific community. Unfortunately, the notions arose in an environment already
replete with notions of motion estimation and control based on classical proportional,
rate, and integral feedback, so the fuller utilization of the first principals languished until
exploitation by Russian mathematician Pontryagin [13]. Pontryagin proposed to utilize the
first principles as the basis for treating motion estimation and control as the classical math-
ematical feedback notions were solidifying in the scientific community. Decades later, the
first-principal utilization proposed by Pontryagin are currently rising in prominence as an
improvement to classical methods [14]. After establishing performance benchmarks [15] for
motion estimation and control of unmanned underwater vehicles, the burgeoning field of
deterministic artificial intelligence [16,17] articulates the assertion of the first-principles as
“self-awareness statements” with adaption [18,19] or optimal learning [20] used to achieved
motion estimation and control commands. The key difference between the usage of first
principals presented here follows. Classical methods impose the form of the estimation and
control (typically negative feedback with gains) and they have very recently been applied
to railway vehicles [21], biomechanical applications [22], and remotely operated undersea
vehicles [23], electrical vehicles [24], and even residential heating energy consumption [25]
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and multiple access channel usage by wireless sensor networks [26]. Deterministic artificial
intelligence uses first principals and optimization for all quantities but asserts a desired
trajectory. Meanwhile the proposed methods in this manuscript leave the trajectory “free”
and calculate an optimal state and rate trajectory for fusion with sensor data and calculates
optimal decision criteria for estimation and controls in the same formulation.

This manuscript seeks to use the same notion, assertion of the first principals (via Pon-
tryagin’s formulation of Hamiltonian systems) in the context of inertial motion estimation
fused with sensor measurements (that are presumed to be noisy). Noise in sensors is a
serious issue elaborated by Oliveiera et al. [27] for background noise of acoustic sensors and
by Zhang et al. [28] for accuracy of pulse ranging measurement in underwater multi-path
environments. Barker et al. [29] evaluated impacts on doppler radar measurements beneath
moving ice. Thomas et al. [30] proposes a unified guidance and control framework for
Autonomous Underwater Vehicles (AUVs) based on the task priority control approach,
incorporating various behaviors such as path following, terrain following, obstacle avoid-
ance, as well as homing and docking to stationary and moving stations. Zhao et al. [31]
very recently pursued the presently ubiquitous pursuit of optimality via stochastic artificial
intelligence using particle swarm optimization genetic algorithm, while Anderlini et al. [32]
used real-time reinforcement learning. Sensing the ocean environment parallels the current
emphasis in motion sensing, e.g., Davidson et al.’s [33] parametric resonance technique for
wave sensing and Sirigu et al.’s [34] wave optimization via the stochastic genetic algorithm.
Motion control similarly mimics the efforts of motion sensing and ocean environment
sensing, e.g., Veremey’s [35] marine vessel tracking control, Volkova et al.’s [36] trajectory
prediction using neural networks, and the new guidance algorithm for surface ship path
following proposed by Zhang et al. [37]. Virtual sensory will be utilized in this manuscript
where noisy state and rate sensors are combined to provide smooth, non-noisy, accurate
estimates of state, rate, and acceleration, while no acceleration sensors were utilized. A
quadratic cost was formulated for acceleration, since accelerations are directly tied to forces
and torques and therefore fuels.

“ . . . condition of the physical world can either be “directly” observed (by a physical
sensor) or indirectly derived by fusing data from one or more physical sensors, i.e.,
applying virtual sensors”. [38]

Thus, the broad context of the field is deeply immersed in a provenance of classical
feedback driving a current emphasis on optimization by stochastic methods. Meanwhile
this study will iterate options utilizing analytic optimization including evaluation of the
impacts of variations and random noise in establishing the efficacy of each proposed
approach. Analytical predictions are made of the impacts of applied noise power, and
Monte Carlo analysis agrees with the analytical predictions. Developments presented in
this manuscript follow the comparative prescription presented in [39], comparing many
(eleven) optional approaches permitting the reader to discern their own preferred approach
to fusion of sensor data with inertial motion estimation:

1. Validation of simple yet optimal inertial motion algorithms for both translation and
rotation derived from Pontryagin’s treatment of Hamiltonian systems when fused
with sensor data that is assumed to be noisy.

2. Validation of high-fidelity optimal (nonlinear, coupled) internal motion algorithms
for rotation with translation asserted by logical extension derived from Pontryagin’s
treatment of Hamiltonian systems when fused with sensor data that is assumed to
be noisy;

3. Validation of three approaches for sensor data fused with the proposed motion
estimation algorithm (not using classical feedback in a typical control topology):
pinv, backslash, and LU inverses derived from Pontryagin’s treatment of Hamiltonian
systems when fused with sensor data that is assumed to be noisy;

4. Comparison of each proposed fused implementation algorithm to three varieties of
classical feedback motion architectures including linear-quadratic optimal tracking
regulators, classical proportional plus velocity feedback tuned for performance spec-
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ification and manually tuned proportional plus integral plus derivative feedback
topologies, where these classical methods are utilized as benchmarks for performance
comparisons when fused with sensor data that is assumed to be noisy.

5. Comparisons are made based on motion state and velocity errors, algorithm parameter
estimation errors, and quadratic cost functions, which map to fuel used to create
translational and rotational motion.

6. Vulnerability to variation is evaluated using ten-thousand Monte Carlo simulations
varying state and rate sensor noise power and algorithm plant model variations,
where noise power is tailored to the simulation discretization, permitting analytic
prediction of the impacts of variations to be compared to the simulations provided.

7. Sinusoidal wave action is programmed in the same simulation code to permit future
research, and inclusion of such is indicated throughout the manuscript.

Appendix A, Table A1 contains a consolidated list of variables and acronyms in
the manuscript.

2. Materials and Methods

Inertial navigation algorithms use physics-based mathematics to make predictions
of motion states (position, rate, acceleration, and sometimes jerk). The approach taken
here is to utilize the mathematical relationships from physics in a feedforward sense
to produce optimal, nonlinear estimates of states that when compared to noisy sensor
measurements yield corrected real-time optimal, smooth, and accurate estimates of state,
rate, and acceleration. Sensors are modeled as ideal with added Gaussian noise and the
smooth estimates will be seen to exhibit none of the noise. The optimization of the estimates
will be derived using Pontryagin’s optimization.

Motion control algorithms to be augmented by sensor measurements are based on
well-known mathematical models of translation and rotation from physics, both presented
in Equation (1), where both high-fidelity motion models are often simplified to identical
double-integrator models where nonlinear coupling cross-products of motion are sim-
plified, linearized, or omitted by assumption. The topologies are provided in Figure 2.
Centrifugal acceleration is represented in Equation (1) by −mω × (ω× r′). Coriolis ac-
celeration is represented in Equation (1) by −2mω× v′. Euler acceleration is represented
in Equation (1) by m

.
ω × r′. In this section, double-integrator models are optimized by

Pontryagin’s treatment of Hamiltonian systems, where the complete (not simplified, lin-
earized, or omitted) nonlinear cross-products of motion are accounted for using feedback
decoupling. Efficacy of feedback decoupling of the full equations of motion is validated by
disengaging this feature in a single simulation run to reveal the deleterious effects of the
coupled motion when not counteracted by the decoupling approach.

τ = I
.

ω + ω× Iω︸ ︷︷ ︸
rotation due
to rotating
re f erence

↔ F = ma′ + m
.

ω× r′ − 2mω× v′ −mω×
(
ω× r′

)︸ ︷︷ ︸
translation due to rotating re f erence

(1)

where

F, τ external force and torque, respectively
m, I mass and mass moment of inertia, respectively
ω,

.
ω angular velocity and acceleration, respectively

r′, v′, a′ position and velocity, and acceleration relative to rotating reference
τ = I

.
ω and F = m a′ are double integrator plants

ω× Iω cross-product rotational motion due to rotating reference frame
m

.
ω× r′ cross-product translation motion due to rotating reference frame
−2mω× v′ cross-product translation motion due to rotating reference frame
−mω× (ω× r′) cross-product translation motion due to rotating reference frame.
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Figure 2. SIMULINK simulation program topologies used to generate the results in Section 3: (a) Overall system topology
used to simultaneously produce state and rate estimates integrated with noisy sensors and additionally optimal control
calculations; (b) Euler’s moment from Equation (1) elaborated in [5–12] describing rotational motion (notice the nonlinear
coupled motion).

2.1. Problem Scaling and Balancing

Consider problems whose solution must simultaneously perform mathematical op-
erations on very large numbers and very small numbers. Such problems are referred
to as poorly conditioned. Scaling and balancing problems are one potential mitigation
where equations may be transformed to operate with similarly ordered numbers by scaling
the variables to nominally reside between zero and unity. Scaling problems by common,
well-known values permits single developments to be broadly applied to a wide range of
state spaces not initially intended. Consider problems simultaneously involving very large
and very small values of time (t), mass (m)/mass moments of inertia (I), and/or length (r).
Normalizing by a known value permit variable transformation such that newly defined
variables are of similar order, e.g., t ≡ t

t f
, I ≡ I

Isystem
= J ≡ J

Jsystem
, m ≡ m

msystem
, r ≡ r

r′ where
r indicates generic displacement units like x, y, or angle. Such scaling permits problem
solution with a transformed variable mass and inertia of unity value, initial time of zero
and final time of unity, and state and rate variables that range from zero to unity making
the developments here broadly applicable to any system of particular parameterization.

2.2. Scaled Problem Formulation

The problem is formulated in terms of standard form described in Equations (2)–(8),
where x(·), v(·) are the decision variables. The endpoint cost E

(
x
(

t f

))
is also referred to

as the Mayer cost. The running cost F(x(t), u(t)) is also referred to as the Lagrange cost
(usually with the integral). The standard cost function J[x(·), u(·)] is also referred to as the
Bolza cost as the sum of the Mayer cost and Lagrange cost. Endpoint constraints e

(
x
(

t f

))
are equations that are selected to be zero when the endpoint is unity.

xT = [x, v], u = [u] (2)

Minimize J[x(·), v(·), u(·)] = E
(

x
(

t f

))
+
∫ t f

0
F(x(t), u(t))dt =

1
2

∫ t f

0
u2dt (3)

Subject to
.
x1 = f1(x(t), u(t)) = v (4)

.
x2 = f2(x(t), u(t)) =

.
v = u (5)

(x0, v0) = (0, 0) (6)(
x f−1, v f , t f−1

)
= (0, 0, 0) (7)

e
(

x
(

t f

))
= 0 (8)

where

J[x(·), u(·)] cost function
xT = [x, v] state vector of motion state x and rate v with initial condition
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xT = [x, v] (x0, v0) and final conditions
(

x f−1, v f , t f−1

)
= (0, 0, 0)

u = [u] decision vector
H Hamiltonian operator corresponding to system total energy
λT adjoint operators, also called co-states (corresponding to each state)
υT endpoint costates

e
(

x
(

t f

))
endpoint constraints.

2.3. Hamiltonian System: Minimization

The Hamiltonian in Equation (8) is a function of the state, co-state, and decision criteria
(or control) and allows linkage of the running costs F(x, u) with a linear measure of the
behavior of the system dynamics f (x, u). Equation (9) articulates the Hamiltonian of the
problem formulation described in Equations (2)–(5). Minimizing the Hamiltonian with
respect to the decision criteria vector per Equation (10) leads to conditions that must be
true if the cost function is minimized while simultaneously satisfying the constraining
dynamics. Equation (11) reveals the optimal decision u will be known if the rate adjoint
can be discerned.

H = F(x, u) + λT f (x, u) (9)

H =
1
2

u2 + λxv + λvu (10)

∂H
∂u

= 0→ u + λv = 0 (11)

2.4. Hamiltonian System: Adjoint Gradient Equations

The change of the Hamiltonian with respect to the adjoint λ maps to the time-evolution
of the corresponding state in accordance with Equations (12) and (13).

.
λx = −∂H

∂x
= 0→ λx(t) = a (12)

.
λv = −∂H

∂v
= λx →

.
λv = λx(t) = a→ λv(t) = −at− b (13)

The rate adjoint was discovered to reveal the optimal decision criteria, and the adjoint
equations reveal the rate adjoint is time-parameterized with two unknown constants still
to be sought. Together, Equations (11)–(13) form a system of differential equations to be
solved with boundary conditions (often referred to as a two-point boundary value problem
in mathematics).

2.5. Terminal Transversality of the Enpoint Lagrangian

The endpoint Lagrangian E in Equation (14) adjoins the endpoint function endpoint
cost E

(
x
(

t f

))
and the endpoint constraints functions e

(
x
(

t f

))
in Equation (8) and pro-

vides a linear measure for endpoint conditions in Equation (7). The endpoint Lagrangian
E exists at the terminal (final) time alone. The transversality condition in Equation (15)
specifies the adjoint at the final time is perpendicular to the cost at the end point. In this
problem, the endpoint cost E

(
x
(

t f

))
= 0. These Equations (16) and (17) are often useful

when seeking a sufficient number of equations to solve the system.

E = E + υTe = υTe = υx

(
x f − 1

)
+ υv

(
v f − 0

)
= υx

(
x f − 1

)
+ υvv f (14)

∂E
∂x f

= λx

(
t f

)
(15)
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∂E
∂x f

= λx

(
t f

)
= υx (16)

∂E
∂v f

= λv

(
t f

)
= υv (17)

2.6. New Two-Point Boundary Value Problem

For the two-state system, four equations are required with four known conditions to
evaluate the equations. In this instance, two Equations (3)–(10) have been formulated for
state dynamics, two more Equations (18) and (19) have been formulated for the adjoints,
and two more Equations (20) and (21) have been formulated for the adjoint endpoint condi-
tions. Four known conditions, Equations (22)–(25) have also been formulated. Combining
Equations (11) and (13) produce Equation (26).

.
x = v (18)

.
v = u (19)
.
λx = 0 (20)

.
λv = −λx (21)

x(0) = 0 (22)

v(0) = 0 (23)

x(1) = 1 (24)

v(1) = 0 (25)

Evaluating Equation (27) with Equation (23) produces the value c = 0. Evaluating
Equation (28) with Equation (22) produces the value d = 0. Evaluating Equation (27) with
Equation (25) produces Equation (29), while evaluating Equation (28) with Equation (24)
produces Equation (30).

.
v = −λv(t) = at + b (26)

v =
∫

.
vdt =

1
2

at2 + bt + c (27)

x =
∫

vdt =
1
6

at3 +
1
2

bt2 + ct + d (28)

v(1) =
1
2

a + b = 0 (29)

x(1) =
1
6

a +
1
2

b = 1 (30)

Solving the system of two Equations (29) and (30) produces a = −12 and b = 6.
Substituting Equation (26) into Equation (11) with a and b produces Equation (31), and
substitution of a and b into Equations (27) and (28), respectively, produce Equations (32)
and (33) the solution of the trajectory optimization problem.

u∗(t) = −12t + 6 (31)

v∗(t) = −3t2 + 6t (32)

x∗(t) = −2t3 + 3t2 (33)

Equations (31)–(33) constitute the optimal solution for quiescent initial conditions and
the state final conditions (zero velocity and unity scaled position). To implement a form
of feedback (not classical feedback), consider leaving the initial conditions non-specific in
variable-form as described next.
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2.7. Real-Time Feedback Update of Boundary Value Problem Optimum Solutions

Classical methods utilize feedback of asserted form u = −Kx for state variable x,
where the decision criteria (for control or state estimation/observer) and gains K are solved
to achieve some stated performance criteria. Such methods are used in Section 3 and their
results are established as benchmarks for comparison. So-called modern methods utilize
optimization problem formulation to eliminate classical gain tuning substituting optimal
gain selection but retaining the asserted form of the decision criteria. Such methods are
often referred to as “linear-quadratic optimal” estimators or controllers. These estimators
are also presented as benchmarks for comparison, where the optimization problem equally
weights state errors and estimation accuracy.

Alternative use of feedback is proposed here (whose simulation is depicted in Figure 3b).
Rather than classical feedback topologies asserting u = −Kx utilization of state feed-
back in formulating the estimator or control’s decision criteria, this section proposes re-
labeling the current state feedback as the new initial conditions of the two-point boundary-
value problems used to solve for optimal state estimates or control decision criteria in
Equations (22) and (23). The solution of (26)–(28) using the initial values of (22) and (23)
manifest in values of the integration constants: a = −12 and b = 6. As done in real-time
optimal control, the values of the integration constants are left “free” in variable form, and
their values are newly established for each discrete instance of state feedback (re-labeled as
new initial conditions). This notion is proposed in Proposition 1, whose proof expresses
the form of the online calculated integration constants that solve the new optimization
problem. The two constants â and b̂ are utilized in the same decision Equation (31) where
the estimates replace the formerly solved values of the boundary value problem resulting
in Equation (40).

Sensors 2021, 21, x FOR PEER REVIEW 10 of 24 
 

 

2.9. Analytical Prediction of Impacts of Variations 
Assuming Euler discretization (used in the validating simulations) for output y, in-

dex i and integration solver timestep h Equation (43) would seem to indicate a linear noise 
output relationship. Equation (44) indicates the relationship for quiescent initial condi-
tions indicating the results of a style draw. In a Monte Carlo sense (to be simulated) of a 
very large number n, Equation (45) indicates expectations from theory Equation (46) in 
simulation for scaled noise entry to the simulation to correctly reflect the noise power of 
the noisy sensors in the discretized computer simulation. Equation (46) was used to 
properly enter the sensor noise in the simulation (Figures 2a and 3a). 

(a) Sensor topology (b) Decision topology 

Figure 3. Simulink systems for noisy sensors and decision criteria (guidance or control) subsystem: (a) noisy sensor sub-
system; (b) decision topology (guidance or control). 

𝑦ሶ(𝑡) = 𝑦௜ାଵ − 𝑦௜ℎ = 𝑛௜ → 𝑦௜ାଵ = 𝑦௜ + ℎ𝑛௜ (43)𝑦ଵ = 𝑦଴⏟଴ + ℎ𝑛଴ (44)1𝑁 ෍ 𝑦ଵ௜ଶே
௜ୀଵ = 𝜎௬ଶ → 1𝑁 ෍൫ℎ𝑛௢,௜൯ଶே

௜ୀଵ = ℎଶ 1𝑁 ෍ 𝑛௢,௜ଶே
௜ୀଵ → 𝜎௬ଶ = ℎଶ𝜎௡ଶ (45)

let 𝜎௦௜௠ଶ = ఙ೙మ௛ → 𝜎௬ଶ = ℎଶ𝜎௦௜௠ଶ = ℎଶ ఙ೙మ௛ = ℎ𝜎௡ଶ → 𝜎௦௜௠ଶ = ఙ೙మ௛  (46)

Assuming this implementation of noise power for a given Euler (ode1) discretization 
in SIMULINK, 1−𝜎 error ellipse may be calculated as Equation (47) for the system in ca-
nonical form in accordance with [40] and was implemented in Figure 3a and depicted on 
“scatter plots” in Section 3’s presentation of results of over ten-thousand Monte Carlo 
simulations. 

𝜎௡ೞ೟ೌ೟೐ = ඨ𝜔௡ଶ + 4𝜁ଶ4𝜁𝜔௡      𝜎௡ೝೌ೟೐ = ඨ𝜔௡ଷ + 4𝜁ଶ𝜔௡4𝜁  (47)

2.10. Numerical Simulation in MATLAB/SIMULINK 
Validating simulations were performed in MATLAB/SIMULINK Release R2021a 

with Euler integration solver (ode1) and a fixed time step of 0.01 s, whose results are pre-
sented in Section 3, while this subsection displays the SIMULINK models permitting the 
reader to duplicate the results presented here. Sensor noise was added per Section 2.8. The 
classical feedback subsystem is displayed in Figure 4a. The optimal open loop subsystem 
implements Equation (31), and is elaborated in Figure 4b,c. The real time optimal subsys-
tem implements Equations (42) and (31) augmented by feedback decoupling as in Equa-
tion (42). The “switch to open loop” subsystem switches when the matrix inverted in 
Equation (39) is singular indicated by a zero valued determinant and is elaborated in Fig-
ure 4d. The quadratic cost calculation computes Equation (3) and is elaborated in Figure 
4b, while the cross-product motion feedback implements the cross product of Equation 
(42). The P + V subsystem and PD/PI/PID subsystems depicted in Figure 4a implement 

Figure 3. Simulink systems for noisy sensors and decision criteria (guidance or control) subsystem: (a) noisy sensor
subsystem; (b) decision topology (guidance or control).

Proposition 1. Feedback may be utilized not in closed form to solve the constrained optimization
problem in real time.

x =
1
6

at3 +
1
2

bt2 (34)

v =
1
2

at2 + bt (35)

x f =
1
6

at3
f +

1
2

bt2
f (36)

v f =
1
2

at2
f + bt f (37)

Proof of Proposition 1. Implementing Equations (34)–(37) in matrix form as revealed in
Equation (38) permits solution for the unknown constants as a function of time as displayed
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in Equation (39), and subsequent use of the unknown constants form the new optimal
solution from the current position and velocity per Equation (40).


t3
0
6

t2
0
2 t0 1

t2
0
2 t0 1 0
1
6

1
2 1 1

1
2 1 1 0


︸ ︷︷ ︸

T


a
b
c
d

︸ ︷︷ ︸
p

=


x0
v0
1
0

︸ ︷︷ ︸
q

(38)


â
b̂
ĉ
d̂

 =


t3
0
6

t2
0
2 t0 1

t2
0
2 t0 1 0
1
6

1
2 1 1

1
2 1 1 0


−1

x0
v0
1
0

 (39)

u∗ ≡ ât + b̂ (40)

In Section 3, estimation of â and b̂ becomes singular due to the inversion in Equation (39)
as approaching the terminal endpoint, where switching to Equations (31)–(33) is imple-
mented as depicted in Figure 4d to avoid the deleterious effects of singularity when
applying Proposition 1. The cases with switching at singular conditions are suffixes with
“with switching” in the respective label.
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2.8. Feedback Decoupling of Nonlinear, Coupled Motion Due to Cross Products

The real-time feedback update of boundary value problem optimum solutions is often
used in the field of real-time optimal control, but a key unaddressed complication remains
the nonlinear, coupling cross-products of motion due to rotating reference frames. Here,
a feedback decoupling scheme is introduced, allowing the full nonlinear problem to be
addressed by the identical scaled problem solution presented, and such is done without
simplification, linearization, or reduction by assumption. In proposition 2, feedback
decoupling is proposed to augment the optimal solution already derived. The resulting
modified decision criteria in Equation (42) is utilized in simulations presented in Section 3
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of this manuscript, but a single case omitting Proposition 2 is presented to highlight the
efficacy of the approach.

Proposition 2. The real-time optimal guidance estimation and/or control solution may be extended
from the double-integrator to the nonlinear, coupled kinetics by feedback decoupling as implemented
in Equation (41).

τ = I
.

ω + ω× Iω︸ ︷︷ ︸
rotation due
to rotating
re f erence

(41)

Proof of Proposition 2. For nonlinear dynamics of translation or rotation as defined in
Equation (1), where the double-integrator is augmented by cross-coupled motion due to
rotating reference frames, the same augmentation may be added to the decision criteria in
Equation (40) using feedback of the current motion states in accordance with Equation (42).
The claim is numerically validated with simulations of “cross-product decoupling” that
are nearly indistinguishable from open loop optimal solution, and a single case “without
cross-product decoupling” is provided for comparison.

u∗ ≡ ât + â + ω× Iω (42)

2.9. Analytical Prediction of Impacts of Variations

Assuming Euler discretization (used in the validating simulations) for output y, index
i and integration solver timestep h Equation (43) would seem to indicate a linear noise
output relationship. Equation (44) indicates the relationship for quiescent initial conditions
indicating the results of a style draw. In a Monte Carlo sense (to be simulated) of a very large
number n, Equation (45) indicates expectations from theory Equation (46) in simulation
for scaled noise entry to the simulation to correctly reflect the noise power of the noisy
sensors in the discretized computer simulation. Equation (46) was used to properly enter
the sensor noise in the simulation (Figures 2a and 3a).

.
y(t) =

yi+1 − yi
h

= ni → yi+1 = yi + hni (43)

y1 = y0︸︷︷︸
0

+ hn0 (44)

1
N

N

∑
i=1

y2
1i = σ2

y →
1
N

N

∑
i=1

(hno,i)
2 = h2 1

N

N

∑
i=1

n2
o,i → σ2

y = h2σ2
n (45)

let σ2
sim =

σ2
n

h
→ σ2

y = h2σ2
sim = h2 σ2

n
h

= hσ2
n → σ2

sim =
σ2

n
h

(46)

Assuming this implementation of noise power for a given Euler (ode1) discretization
in SIMULINK, 1 − σ error ellipse may be calculated as Equation (47) for the system in
canonical form in accordance with [40] and was implemented in Figure 3a and depicted
on “scatter plots” in Section 3’s presentation of results of over ten-thousand Monte Carlo
simulations.

σnstate =

√
ω2

n + 4ζ2

4ζωn
σnrate =

√
ω3

n + 4ζ2ωn

4ζ
(47)
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2.10. Numerical Simulation in MATLAB/SIMULINK

Validating simulations were performed in MATLAB/SIMULINK Release R2021a with
Euler integration solver (ode1) and a fixed time step of 0.01 s, whose results are presented
in Section 3, while this subsection displays the SIMULINK models permitting the reader to
duplicate the results presented here. Sensor noise was added per Section 2.8. The classical
feedback subsystem is displayed in Figure 4a. The optimal open loop subsystem implements
Equation (31), and is elaborated in Figure 4b,c. The real time optimal subsystem implements
Equations (42) and (31) augmented by feedback decoupling as in Equation (42). The “switch
to open loop” subsystem switches when the matrix inverted in Equation (39) is singular
indicated by a zero valued determinant and is elaborated in Figure 4d. The quadratic cost
calculation computes Equation (3) and is elaborated in Figure 4b, while the cross-product
motion feedback implements the cross product of Equation (42). The P + V subsystem and
PD/PI/PID subsystems depicted in Figure 4a implement classical methods not re-derived
here, but whose computer code is presented in Appendix B, Algorithms A1 and A2.

Figure 5 displays the SIMULINK subsystems used to implement the three instan-
tiations of real-time optimization (labeled RTOC from provenance in optimal control)
where the switching displayed in Figure 3b permits identical simulation experiments to
be performed with all conditions fixed, varying only the proposed implementation. The
subsystems execute Equation (39) with three variations of matrix inversion: (1) MATLAB’s
backslash “\”, (2) Moore-Penrose pseudoinverse (pinv), (3) LU-inverse.
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Section 2.10 presented SIMULINK subsystems used to implement the equations
derived in the section. Table 1 displays the software configuration used to simulate the
equations leading to the results presented immediately afterwards in Section 3.

Table 1. Software configuration for simulations reported in Section 3.

Software Version Integration Solver Step-Size

MATLAB R2021a Euler (ode1) 0.01 secs
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3. Results

Section 2 derived several options for estimating state, rate, and control simultaneously
as outputs of Pontryagin’s treatment of the problem formulated as Hamiltonian systems.
Section 2.9 described implementation of sensor noise narratively, while Figure 3 illustrated
the topological elaboration using SIMULINK including state and rate sensor with added
Gaussian noise whose noise power was set in accordance with Section 2.9. SIMULINK
subsystems were presented to aid repeatability (with callback codes in the Appendix B).
Those subsystems were used to run more than ten-thousand simulations: a nominal sim-
ulation run for each technique with the remainder utilized to evaluate vulnerability to
variations as described in Section 2.9. In Section 3.1, benchmarks of performance are
established using classical methods for state and rate errors and optimum cost calculated
in Section 2. Sections 3.2–3.4 describe real-time optimal utilization of feedback to estab-
lish online estimates of the solution of the modified boundary value problem described in
Section 2. Each section respectively evaluates the three methods compared: backslash\inverse,
pinv inverse, and LU inverse.

General lessons from the results include:

1. Classical feedback estimation methods are very effective at achieving very low estima-
tion errors, but at higher costs utilizing the estimates in the decision criteria (guidance
or control).

2. Backslash\inverse is relatively inferior to all other inverse methods
3. Singular switching generally improves state and rate estimation and costs;
4. LU inverse and pinv inverse methods perform alike with disparate strengths and

weaknesses relative to each other.
5. Choosing the pinv inverse method as the chosen recommendation, Monte Carlo anal-

ysis reveals the residual sensitive to parameter variation is indistinguishable from
the inherent sensitivity of the optimal solution when using the singular switching
technique. Meanwhile, substantial vulnerability to parameter variation is revealed
when singular switching is not used.

6. Lastly, omitting the complicating cross-products in the problem results in an order
of magnitude high estimation errors and several orders of magnitude higher pa-
rameter estimation error. Therefore, cross-product motion decoupling is strongly
recommended for all instantiations of state and rate estimation.

3.1. Benchmark Classical Methods

Classical methods as presented in [41,42] with nonlinear decoupling loops as pro-
posed in Equation (42) depicted in Figure 3b were implemented in SIMULINK accord-
ing to Figure 4a. Computer code implementing these classical methods is presented in
Appendix B, Algorithm 1. Estimation was executed by feedback of proportional plus inte-
gral plus derivative (PID), proportional plus derivative (PD), and also proportional plus
velocity, and the results displayed in Figure 6, establishing the benchmark for state and
rate tracking. Table 2 displays quantitative data corresponding to Figure 6’s qualitative
displays. Notice the optimal estimation of state, rate, and decision criteria is also included
in Figure 6 and Table 2, since the optimal cost benchmark is established by Pontryagin’s
treatment in Equation (31).
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Figure 6. Comparison of classical methods with scaled time on the abscissae and respective ordinates titled in the subplot
captions: thinner solid blue line is manually tuned PID, dashed line is linear quadratic optimal PD, dotted line is proportional
plus velocity tuned to performance specification, thicker solid black line is open loop optimal per Pontryagin (Equation (31)
provided for anticipated comparison). (a) States, (b) rates, and (c) decision criteria). Notice the solid black line representing
the optimal open loop solution in subfigure (c) is initially positive to create movement in the desired direction, and the
control switches exactly at the halfway point to a negative input, slowing progress towards the final desired end states
(position and rate states). The ranges of the zoomed view in the inset are indicated by the respective scales.

Table 2. Comparison of classical decision methods.

Decision Method Final State Error Final Rate Error Decision
Criteria/Control Effort

Classical feedback: proportional + integral +
derivative (manually tuned) 0.0949 0.0850 2192

Classical feedback: proportional + derivative (linear
quadratic optimal) −0.0120 0.4341 152.7

Classical feedback: proportional + velocity (tuned to
performance specs) −0.0082 0.0555 30.82

Open loop optimal 0.0296 0.06 6

3.2. Real-Time Optimal Methods with Backslash

This section displays the results of real-time optimal estimation using the backslash\inverse
depicted in Figure 5b with and without singular switching displayed in Figure 4d to inverse
the [T] in Equation (39). The results are compared to open loop optimal results per Equation
(31) displayed in Figure 4c. Figure 7 reveals real-time optimal state estimation performs
relatively poorly using the MATLAB backslash\inverse, but performance is restored to near-
optimal performance when augmented with singular switching. State and rate errors are
restored to essentially optimal values, while cost is restored to very near the optimal case
as evidenced by the quantitative results displayed in Table 3.

Table 3. Comparison of real-time optimal decision methods using backslash matrix inversion.

Decision Method Final State Error Final Rate Error Decision Criteria/Control Effort

Open loop optimal 0.0296 0.06 6
Real-time optimal using backslash 0.2849 2.0762 2.863

Real-time optimal using backslash with singular
switching 0.0296 0.06 6.0012
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(position and rate states). The ranges of the zoomed view in the inset are indicated by the respective scales.

Figure 8 and Table 4 reveal the estimation performance of the constants of integra-
tion solving the modified two-point boundary value problem (BVP) using state and rate
feedback to reset the initial conditions of the BVP. Oddly, despite relatively superior per-
formance estimating the state and rates when using singular switching augmentation,
parameter estimation is far inferior.
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tion, and the control switches exactly at the halfway point to a negative input, slowing progress towards the final desired 
end states (position and rate states). The ranges of the zoomed view in the inset are indicated by the respective scales. 
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Figure 8. Comparison of real-time optimal methods with scaled time on the abscissae and respective ordinates titled in
the subplot captions: dashed line is real-time optimal using backslash, dotted line is real-time optimal using backslash with
singular switching. (a) Estimates of â, (b) estimates of b̂. The ranges of the zoomed view in the inset are indicated by the
respective scales.

Table 4. Comparison of real-time optimal decision methods using backslash matrix inversion.

Decision Method Mean â Error Mean b̂ Error

Open loop optimal −12 6
Real-time optimal using backslash 21.2 −26.6

Real-time optimal using backslash with
singular switching 4142 −4121

Section 3.1 presented the results of classical and optimal methods as benchmarks
for performance. Meanwhile, Section 3.2 presented the results of implementing real-time
optimal estimation with backslash\inverse with and without singular switching compared
to the optimal benchmark. Next, Section 3.3 presents results using pinv inverse with and
without singular switching.
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3.3. Real-Time Optimal Methods with Pinv

Inversion of the [T] matrix in Equation (39) was also accomplished by the Moore–

Penrose pseudoinverse equation: [T]−1 ∼= [T]† ≡
(
[T]T [T]

)−1
[T]T . All other facets of the

problem are left identical, while only the method of matrix inversion is modified resulting
in state and rates estimates and comparison of control in Figure 9 with corresponding
quantitative results in Table 5. Parameter estimation accuracy is displayed in Figure 10 and
Table 6.
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Figure 9. Comparison of real-time optimal methods with scaled time on the abscissae and respective ordinates titled in the
subplot captions: solid line is open loop optimal (benchmark), dashed line is real-time optimal using backslash, thick dotted
line is real-time optimal using pinv with singular switching. (a) States, (b) rates, and (c) decision criteria or control. The
ranges of the zoomed view in the inset are indicated by the respective scales.

Table 5. Comparison of real-time optimal decision methods using pinv matrix inversion.

Decision Method Final State Error Final Rate Error Decision Criteria/Control Effort

Open loop optimal 0.0296 0.060 6
Real-time optimal using pinv 0 −0.1088 6.6914
Real-time optimal using pinv

with singular switching 0.0296 0.0600 6.0012

−without cross-product
decoupling 0.3381 −0.5936 6.0012
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Figure 10. Comparison of real-time optimal methods with scaled time on the abscissae and respective ordinates titled in the
subplot captions: dashed line is real-time optimal using backslash, dotted line is real-time optimal using pinv with singular
switching. (a) Estimates of â, (b) estimates of b̂. The ranges of the zoomed view in the inset are indicated by the respective scales.
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Table 6. Comparison of real-time optimal decision methods using p-inv matrix inversion.

Decision Method Mean â Error Mean b̂ Error

Open loop optimal −12 6
Real-time optimal using p-inv 21 −26
Real-time optimal using p-inv

with singular switching 4101 −4080

3.4. Real-Time Optimal Methods with Lu-Inverse

Inversion of the [T] matrix in Equation (39) was also accomplished by the LU-inverse,
which first creates a pivoted version Tp and then inverts the product of a lower triangular

matrix, [L] and an upper triangular matrix [U] based on [T]: [T]−1 ∼=
[
Tp
]−1 ≡ ([L][U])−1.

All other facets of the problem are left identical, while only the method of matrix inversion is
modified resulting in state and rates estimates and comparison of control in Figure 11 with
corresponding quantitative results in Table 7. Parameter estimation accuracy is displayed
in Figure 12 and Table 8.
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Figure 11. Comparison of real-time optimal methods with scaled time on the abscissae and respective ordinates titled in the
subplot captions: solid line is open loop optimal (benchmark), dashed line is real-time optimal using backslash, thick dotted
line is real-time optimal using LU-inverse with singular switching. (a) States, (b) rates, and (c) decision criteria or control.
The ranges of the zoomed view in the inset are indicated by the respective scales.

Table 7. Comparison of real-time optimal decision methods using LU-inverse matrix inversion.

Decision Method Final State Error Final Rate Error Decision Criteria/Control Effort

Open loop optimal 0.0296 0.060 6
Real-time optimal using LU-inverse 0.0030 −0.087 6.371
Real-time optimal using LU-inverse

with singular switching 0.0284 0.1188 5.8283

Table 8. Comparison of real-time optimal decision methods using LU-inverse matrix inversion.

Decision Method Mean â Error Mean b̂ Error

Open loop optimal −12 6
Real-time optimal using LU-inverse 21 21

Real-time optimal using LU-inverse with
singular switching 4142 4142
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3.5. Monte Carlo Analysis Using Pinv (with Singular Switching) and Open Loop Optimal with
Cross-Product Deoupling

Over ten-thousand simulation runs were performed with 10% uniformly random
variations in plant parameters (mass and mass moment of inertia). Noise was added to state
and rate sensors with zero mean and standard deviation 0.01, and the results are displayed
in the “scatter” plots in Figure 13 with corresponding quantitative results displayed in
Table 9. Feedback implemented by resetting the initial condition of the reformulated
boundary value problem (when implemented with singular switching) yielded optimal
results when augmented with cross-product decoupling.
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Table 9. Impact of variations with real-time optimal decision methods using pinv inversion.

Decision Method Mean Final State Error Mean Final RateError

Open loop optimal 0.0264 0.0573
Real-time optimal using pinv 0.0041 −4.960
Real-time optimal using pinv

with singular switching 0.0264 0.0573

3.6. Comparison of Results

Section 3.1 presented the benchmark results produced by classical methods and open
loop optimal mathematical solutions. Section 3.2 presented results utilizing MATLAB’s
backslash\inversion, while Section 3.3 included results using Moore–Penrose pseudoinverse,
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pinv. Section 3.4 presented results using LU-inverse. Section 3.5 revealed robustness to
variations in plan parameters with both state and rate sensor noise. This section consolidates
the results into a single table of raw data depicted in Table 10. This data will be used to
produce percent performance improvement as figures of merit in the Discussion (Section 4).

Table 10. Comparison of real-time optimal decision methods.

Decision Method Mean â
Error

Mean b̂
Error

Mean Final
Position Error

Mean Final Rate
Error

Decision
Criteria Cost

Classical feedback: PID (manually tuned) – – 0.0949 0.0850 2192
Classical feedback: PD (linear quadratic optimal) – – −0.0120 0.4341 152.7

Classical feedback: P+V (tuned to performance specs) – – −0.0082 0.0555 30.82
Open loop optimal 0 0 0.0264 0.0573 6.000

Real-time optimal using Backslash (\) inverse 9.2 −20.6 0.2849 2.0762 2.863
Real-time optimal using Backslash (\) with switching 4130 −4115 0.0296 0.0600 6.0012

Real-time optimal using LU-inverse 9 15 0.0041 −4.960 6.371
Real-time optimal using LU-inverse with switching 4142 4136 0.0264 0.0573 5.8283

Real-time optimal using pinv-inverse 21 −20 0.0000 −0.1088 6.6914
Real-time optimal using pinv-inverse with switching 4130 −4074 0.0296 0.0600 6.0012

− without cross-product decoupling −47,766 47,449 0.3381 −0.59357 6.0012

4. Discussion

State and rate estimation algorithms fused with noisy sensor measurements using
several of the proposed methodologies achieve state-of-the art accuracies with optimality
that is analytic and deterministic rather than stochastic, and therefore use very simple
equations with necessarily low computational burdens. Simple relationships with small
numbers of multiplications and additions are required to be comparable to the simplicity
of classical methods, but optimum results are produced that exceed the modern notion of
linear-quadratic optimal estimation. Implementation of non-standard feedback achieves
robustness with the additional computational cost of a matrix inverse, and therefore three
optional inversion methods were compared. General lessons taken with manually tuned
PID as a benchmark for state and rate estimation errors, while optimal loop optimal cost is
the benchmark for the cost of utilization of state estimations for guidance and control:

1. Classical feedback estimation methods (tuned per computer code is presented in
Appendix B, Algorithm A1) are very effective at achieving very low estimation errors,
but at higher costs utilizing the estimates in the decision criteria (guidance or control).

a. Linear-quadratic optimal estimation achieved 87% better state estimates, but
over 400% poorer rate estimates compared to classical PID with costs over
2000% open-loop optimal costs.

b. Classical position plus velocity estimation achieved 90% improved state estima-
tion with over 30% better rate estimation, but cost of implementation remains
high (over 400% higher than the optimal benchmark).

2. Open loop optimal estimation established the mathematical benchmark for cost, and
achieved 72% improved state estimation and 33% rate estimation errors.

3. Backslash\inverse is relatively inferior to all other inverse methods, producing 200%
poorer state estimation and over 2000% poorer rate estimates with 52% reduced costs
compared to the optimal benchmark;

4. Singular switching generally improves state and rate estimation and costs;

a. Singular switching with backslash\inverse produced 69% improvement in state
estimation and 29% improvement in rate estimation with roughly optimal costs.

b. Singular switching with LU-inverse produced 72% improvement in state estima-
tion and 33% improvement in rate estimation with roughly optimal costs (3%
better than optimal . . . a numerical curiosity).

c. Singular switching with pinv inverse produced 69% improvement in state esti-
mation and 29% improvement in rate estimation with roughly optimal costs
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(approximately identical improvement percentages to LU-inverse with singular
switching).

5. LU inverse and pinv inverse methods perform alike with disparate strengths and
weaknesses relative to each other.

6. Choosing the pinv inverse method as the chosen recommendation, Monte Carlo anal-
ysis reveals the residual sensitive to parameter variation is indistinguishable from
the inherent sensitivity of the optimal solution when using the singular switching
technique. Meanwhile, substantial vulnerability to parameter variation is revealed
when singular switching is not used.

7. Lastly, omitting the complicating cross-products in the problem results in an order
of magnitude higher estimation errors and several orders of magnitude higher pa-
rameter estimation error. Therefore, cross-product motion decoupling is strongly
recommended for all instantiations of state and rate estimation.

4.1. Notes on Percentages of Performance Improvements

The choice of benchmarks for establishing percentage performance improvements
leads to seemingly exaggerated numbers. The current selection of benchmarks empha-
sizes the strengths of the respective methods: classical feedback estimation methods are
designable to achieve high accuracy but suffer from high effort by the decision criteria
associated with their use. Optimal methods as instantiated here emphasize minimization
of decision effort, so the benchmark for control effort is selected as optimal open loop
rather than classical feedback (e.g., manually tuned PID). Percent degradation over thirty
thousand percent results when compared to the optimal value (of six) as a benchmark. If
the calculation had instead used the manually tuned classical PID as a benchmark, the
optimal effort would exhibit an improvement over ninety-nine percent.

The final line in Table 11 illustrates the extreme penalty of not using feedback de-
coupling of the vector cross-products in Equation (1) representing translation due to the
rotating reference. The penalty embodies the deleterious effects of neglecting treatment of
the nonlinear, coupled, full six-degree-of-freedom system of equations.

Table 11. Percent improvement comparison of real-time optimal decision methods percent performance improvement.

Decision Method Mean Final Position Error
Percent Improvement

Mean Final Rate Error
Percent Improvement

Decision Criteria/Control
EffortPercent Compared to

Optimal

Classical PID (manually tuned) – – +36,433%
Classical PD (linear quadratic optimal) 87% −411% +2445%

Classical P+V (tuned to performance specs) 91% 35% +414%
Open loop optimal 72% 33% –

Real-time optimal using Backslash (\) inverse −200% −2343% −52%
Real-time optimal using Backslash (\)

with switching 69% 29% 0%

Real-time optimal using LU-inverse 96% −5735% +6%
Real-time optimal using LU-inverse with switching 72% 33% −3%

Real-time optimal using pinv-inverse 100% −28% +12%
Real-time optimal using pinv-inverse

with switching 69% 29% 0%

−without cross-product decoupling −256% −598% 0%

4.2. Notes on Executability

Table 12 displays simulation run time for the eleven methods compared in the
manuscript. Run-time was established by establishing the run start-time with the tic
command, while simulation stop-time was the very first command (toc) following each
simulation run. Simply neglecting the cross-product terms results in the fastest calculation.
All the methods evaluated are of the same order of magnitude of computational burden.
Simulations are depicted graphically in Figures 2–5 and alphanumerically in Appendix B.
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Table 12. Simulation run-time comparison.

Decision Method Simulation Run-Time Percent Improvement

Classical PID (manually tuned) 1.4342 - -
Classical PD (linear quadratic optimal) 1.4325 −0.1

Classical P + V (tuned to performance specs) 1.3372 −6.8
Open loop optimal 1.3511 −5.8

Real-time optimal using Backslash (\) inverse 1.3908 −3.0
Real-time optimal using Backslash (\) with switching 1.3954 −2.7

Real-time optimal using LU-inverse 1.3814 −3.7
Real-time optimal using LU-inverse with switching 1.3829 −3.6

Real-time optimal using pinv-inverse 1.3407 −6.5
Real-time optimal using pinv-inverse with switching 1.3361 −6.8

−without cross-product decoupling 1.3273 −7.5

4.3. Future Research

Notice in Figure 3c sinusoidal wave input is coded using the identical time-index
of the rest of the simulation. The next stages of future research will utilize this identical
simulation to investigate efficacy of the proposed virtual sensoring amidst unknown wave
actions. Secondly, hardware validation of key facets of this research is a logical next step.

5. Conclusions

Using variations of mathematical optimization to provide state, rate, and decision/control
provides virtual sensing information useful as sensor replacements. In this instance, ar-
bitrary position and rate sensors were modeled as ideal sensors, plus Gaussian random
noise and algorithms were presented and compared that provide very smooth (not noisy)
signals for position, rate, and acceleration (manifest in the decision/control). There was
no acceleration sensor, so the notion of sensor replacement is manifest for acceleration,
while the position and rate information was provided by the selected algorithm acting as
a vital sensor. Real-time optimal (nonlinear) state estimation using the Moore–Penrose
pseudoinverse (implemented in MATLAB using the pinv command) was revealed to be
the most advised approach with very highly accurate estimates and essentially mathemati-
cally optimally low costs of utilization. The real-time optimal inverse calculation becomes
poorly conditioned as the end-state is approached due to rank deficiency in the matrix
inversion, so switching to the open loop optimal in the very end was implemented when
the determinant of the matrix became nearly zero.
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Appendix A

This appendix contains a table of variable and acronym definitions used in
the manuscript.

Table A1. Variables and acronyms.

Variable/Acronym Definition

F, τ external force and torque, respectively
m, I mass and mass moment of inertia, respectively
ω,

.
ω angular velocity and acceleration, respectively

r′, v′, a′ position and velocity, and acceleration relative to rotating reference
τ = I

.
ω & F = ma′ double integrator plants
ω× Iω cross-product translation motion due to rotating reference frame
m

.
ω× r′ cross-product translation motion due to rotating reference frame

−2mω× v′ cross-product translation motion due to rotating reference frame
−mω× (ω× r′) cross-product translation motion due to rotating reference frame

E
(

x
(

t f

))
endpoint cost also known as “Mayer cost”

F(x(t), u(t)) running cost also known as “Lagrange cost”
J[x(), u()] cost function
e
(

x
(

t f

))
endpoint constraints

xT = [x, v]
state vector of motion state x and rate v with initial condition (x0, v0)

and final conditions
(

x f−1, v f , t f−1

)
= (0, 0, 0)

u = [u] control vector
H Hamiltonian operator corresponding to system total energy
λT adjoint operators, also called co-states (corresponding to each state)
υT endpoint costates

a, b, c, d constants of integration
â, b̂ estimates of constants of integration

t time variable
x f , v f states evaluated at the final endpoint time t f
x0, v0 states evaluated at the initial time t0

. Dot notation for time-derivative d
dt

1
s notation for integration
I mass moment of inertia, normalized to unity by scaling in Section 2.1
yi output at discrete time index i
i discretization time-interval (timestep)

σ2
y theoretical variance of output

σ2
sim variance predicted in simulation of proposed methods

ζ, ωn critical damping ratio and natural frequency
P+V proportional plus velocity

PD,PI,PID proportional plus derivative, integral respectively
det determinant

RTOC real-time optimal calculation
\ backslash matrix inversion (a MathWorks technique)

pinv Moore–Penrose pseudoinverse matrix inversion
LU matrix inversion by factoring and inverting a row-pivoted variant
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Appendix B

The appendix contains computer codes inserted into the InifFcn callback and StopFcn
call back, respectively. Together with figures, implementation of Equations (1), (31)–(46),
this is the only computer code needed to achieve the results presented in this manuscript.

Algorithm A1. InitFcn callbacks for SIMULINK model depicted in Figures

Includes classical feedback tuning methods

clear all; close all; clc;

% Initialize variables and matrices for assembly of results
timestep = 0.01; theta0 = 0; omega0 = 0; thetaD = 1; omegaD = 0; J = 1;
MeanAngleNoise = 0; STDAngleNoise = 0.01; VarianceAngleNoise = (STDAngleNoise)ˆ2/sqrt(timestep);
MeanRateNoise = 0; STDRateNoise = 0.01; VarianceRateNoise=(STDRateNoise)ˆ2/sqrt(timestep);

% PID: Rule of thumb
Kp = 1; Kd = 6.5; Ki = 5;
A = [0 1; 0 0]; B = [0;1]; C = [10]; D = 0; Q = ones(2,2); R = 1*ones(1);

% PD: Ziegler-Nichols tuning for manually tuning PD
%[NUM,DEN] = ss2tf(A,B,C,D); G = tf(NUM,DEN); C = tf([Kd Kp],[1]); sisotool(G,C)

% PD: Linear Quadratic Regulator
%K = lqr(A,B,Q,R); Kp = K(1); Kd = K(2); Ki = 0; % J = 76 (ish)
Kp = 1; Kd = 1.7321; Ki = 0;

% P + V: Tuning for performance specification
tr = 0.3; ts = 2; wn = 1.8/tr; zeta = 4.6/(ts*2.4);
Kp = wnˆ2;
Kv = 2*zeta*wn;

Algorithm A2. StopFcn callbacks for SIMULINK model depicted in Figures

% Printing scripts

theta = squeeze(out.theta); omega = squeeze(out.omega);
t = squeeze(out.tout); J = squeeze(out.J); u = squeeze(out.u);

qxv = squeeze(out.qxv); a = squeeze(qxv(1,:)); b = squeeze(qxv(2,:));
thetaText = [‘\theta(t) J=‘, num2str(J(end)), ‘: ‘, ‘\theta(t_f)= ‘, num2str(theta(end))];
omegaText = [‘\omega(t) J=‘, num2str(J(end)), ‘: ‘, ‘\omega(t_f)= ‘, num2str(omega(end))];
ControlText = [‘\mu_u_(_t_)=‘, num2str(mean(u)) ];

figure(1); plot(t,theta, ‘:’, ‘LineWidth’, 2); hold on; plot(t,omega, ‘–’, ‘LineWidth’, 2); hold off;
legend(thetaText, omegaText, ‘FontSize’,16, ‘FontName’,’Palatino Linotype’);
set(gca, ‘FontSize’,16, ‘FontName’,’Palatino Linotype’);grid;

figure(2); plot(t,a, ‘:’, ‘LineWidth’, 2); hold on; plot(t,b, ‘:’, ‘LineWidth’, 2); hold off;
legendtexta=[‘\mu_a=‘, num2str(mean(a))]; legendtextb=[‘\mu_b=‘, num2str(mean(b))]
legend(legendtexta,legendtextb,’FontSize’,16, ‘FontName’,’Palatino Linotype’);
set(gca, ‘FontSize’,16, ‘FontName’,’Palatino Linotype’);grid; axis([0,1,-12.1,6.1])

figure(3); plot(t,u,’LineWidth’, 2);
legend(ControlText, ‘FontSize’,16, ‘FontName’,’Palatino Linotype’);
set(gca, ‘FontSize’,16, ‘FontName’,’Palatino Linotype’);grid;
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