
sensors

Article

Stream-Based Visually Lossless Data Compression Applying
Variable Bit-Length ADPCM Encoding

Shinichi Yamagiwa 1,2,* and Yuma Ichinomiya 3

����������
�������

Citation: Yamagiwa, S.; Ichinomiya,

Y. Stream-Based Visually Lossless

Data Compression Applying Variable

Bit-Length ADPCM Encoding.

Sensors 2021, 21, 4602. https://

doi.org/10.3390/s21134602

Academic Editor: Stefania Perri

Received: 31 May 2021

Accepted: 28 June 2021

Published: 5 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Engineering, Information and Systems, University of Tsukuba, 1-1-1 Tennodai,
Tsukuba, Ibaraki 305-8573, Japan

2 JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
3 Department of Computer Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan;

ichinomiya@padc.cs.tsukuba.ac.jp
* Correspondence: yamagiwa@cs.tsukuba.ac.jp

Abstract: Video applications have become one of the major services in the engineering field, which
are implemented by server–client systems connected via the Internet, broadcasting services for mobile
devices such as smartphones and surveillance cameras for security. Recently, the majority of video
encoding mechanisms to reduce the data rate are mainly lossy compression methods such as the
MPEG format. However, when we consider special needs for high-speed communication such as
display applications and object detection ones with high accuracy from the video stream, we need
to address the encoding mechanism without any loss of pixel information, called visually lossless
compression. This paper focuses on the Adaptive Differential Pulse Code Modulation (ADPCM)
that encodes a data stream into a constant bit length per data element. However, the conventional
ADPCM does not have any mechanism to control dynamically the encoding bit length. We propose a
novel ADPCM that provides a mechanism with a variable bit-length control, called ADPCM-VBL,
for the encoding/decoding mechanism. Furthermore, since we expect that the encoded data from
ADPCM maintains low entropy, we expect to reduce the amount of data by applying a lossless
data compression. Applying ADPCM-VBL and a lossless data compression, this paper proposes
a video transfer system that controls throughput autonomously in the communication data path.
Through evaluations focusing on the aspects of the encoding performance and the image quality,
we confirm that the proposed mechanisms effectively work on the applications that needs visually
lossless compression by encoding video stream in low latency.

Keywords: data compression; ADPCM; visual data compression; stream-based data compression;
lossless data compression; ASE coding

1. Introduction

The video data stream is one of main data streams utilized in the recent mobile and
Internet of Things (IoT) applications. For example, surveillance camera systems [1] are
widely used to detect irregular events in society [2,3] and home security [4] by applying
machine learning methods [5,6]. In such applications, a fast, seamless and high resolution
video transmission improves the accuracy of the image processing for the video frames. We
can also find hardware sensory approaches for accelerating image processing such as the
dynamic vision sensor [7] applied to applications (see, e.g., [8]) and the retina-like sensor [9].
However, the main technology trend of the video image processing is still based on the
techniques for high performance processing of frame data stream captured from commodity
color image sensors.

Recent methods to transfer the video data stream focus on maintaining an available
data rate between the producer and the consumer. The main objective is to keep a stable
casting of the video stream in the communication media. For example, the Moving Picture

Sensors 2021, 21, 4602. https://doi.org/10.3390/s21134602 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3807-2726
https://doi.org/10.3390/s21134602
https://doi.org/10.3390/s21134602
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21134602
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21134602?type=check_update&version=2

Sensors 2021, 21, 4602 2 of 24

Experts Group (MPEG) format uses a discrete cosine transform to reduce high- and low-
frequency parts in the luminance and color of frames. Inserting key frames periodically, the
technique compliments differences among the frames. This kind of video transfer method
is used in broadcasting on digital TVs and video streaming services on the Internet such as
via web cameras and smartphones. Because the information of original image frames is
reduced, we call the method to compress video data stream lossy compression.

In the lossy compression system, effective architectures are proposed (e.g., [10]),
which handles multiple connections from the producer to the consumers and the ones with
unstable bandwidth. The architecture uses the buffering technique to maintain stable data
communication. The buffering is effective to keep a stable transfer of video data stream not
to drop frames. However, it increases delay from the production of the original image data
to the visualization on the consumer side.

Although the lossy compression method is effective to provide a stable bandwidth of
video data stream, it needs large calculations for deriving statistics of video stream that can
be removed from the original color pixels. The recent human-less automation lines and
IoT applications in industry demand fast processing for high-yield production. The major
examples are image inspection [11] and security equipment using video images [1]. Those
need to reduce latency among the processes for image acquisition, the transfer of the image
to the abnormal detection and the control to exclude the abnormal state [12]. The final
process feedbacks the action from the detection processor to the mechanical control. The
higher feedback speed will result in higher yield production. Here, we can accelerate the
abnormal detection because we can apply high performance processors on the server side
with Graphics Processing Units (GPUs) [13] and Artificial Intelligence (AI) processors [14].
On the other hand, the communication part of the system includes the lossy compression
and the transfer via a network media. Even if we improve the communication performance
of the network, the lossy compression part will become the bottleneck to transfer the video
stream to the abnormal detection part due to the heavy calculation of the compression
processes. To overcome the difficulty of improving the lossy compression performance, we
can accelerate the compressor and the decompressor by applying GPUs [15] and dedicated
hardware [16]. However, the lossy compression reduces information of pixels in frames
and guarantees the bandwidth of the video stream. This inevitably lacks small objects in
the frame and degrades the abnormal detection performance. Thus, we need to develop a
novel lossy compression mechanism that maintains pixel level information in video frames
and achieves a controllable bandwidth of the video stream with a small delay.

To overcome the low latency compression and manage the stable transmission of video
data stream, a compression method was proposed equipped in High-Definition Multimedia
Interface (HDMI) [17]. The resolution of display is enormously growing from HD to 4K
and 8K. The large resolution and the high frame rate cause difficulties for image data
transmission. The Video Electronics Standards Association (VESA) proposed a solution
for the situation, called Display Stream Compression (DSC) [18]. This standard includes
a data compression technique that applies Differential Pulse-Code Modulation (DPCM)
to the video data stream. DPCM reduces the number of bits in a pixel by quantizing
differences between color data of the neighbor pixels in a video frame. If the number of the
quantized bits is less than the one of the original data, it can compress each pixel. Because
the method uses simple calculations, we can implement it in a fast software/hardware
without buffering. Thus, DSC is able to compress the video data stream and also can
compress the original video data stream. However, DPCM can result in overranges when
the difference among the pixels is large. To avoid this overrange situation, we need to
employ a larger number of bits for the quantization.

The compression method based on DPCM replaces the original pixels with the quan-
tized color values based on the differences among the neighbor pixels. The color infor-
mation is visually acceptable even if the difference overranges the number of encoding
bits used by the quantization. In this paper, we call this lossy compression method that
reserves all quantized/original pixel data of video frames visually lossless data compression.

Sensors 2021, 21, 4602 3 of 24

It has an advantage that the compressed data maintains the full information of all pixels.
However, considering the implementation of industrial applications, we need to address
the aspects of the processing speed of treating the video stream and the accuracy of the
predicted pixel color. Thus, according to the discussion above, we need to develop a novel
method for visually lossless compression that satisfies the following three conditions: (a)
it reserves visually equivalent pixel color information; (b) it processes video data stream
without stalling and in low latency; and (c) it controls bandwidth adaptively against the
dynamic overhead of the communication data path for sending the compressed video data.

This paper proposes a new method of visually lossless compression applying the
Adaptive Differential Pulse-Code Modulation (ADPCM) [19]. ADPCM is a classical method
extended from DPCM to calculate the compressed data adaptively from predicted differ-
ence value among the original data. ADPCM is mainly and widely used for compression
of Pulse-Code Modulation (PCM) data in audio applications such as wireless microphones
and headphones. This paper applies the method to pixel data of video frames and validates
the effect of ADPCM in video application. Although ADPCM can predict adaptively pixel
colors in a number of compressed data bits, the number is fixed by a configuration of
parameters in ADPCM. If the number of compressed data bits M is smaller than the one of
the original color data N, it constantly compresses to M/N times. This is not suitable for
the dynamic bandwidth in communication data path. In this paper, we also propose a new
ADPCM with variable bit-length mechanism. Additionally, we expect that the compressed
data after visually lossless compression maintain low entropy due to the algorithm of
ADPCM. We also apply lossless data compression after ADPCM with variable bit length.
This provides further compression effect to the video stream. By applying the stream-based
lossless data compression called Adaptive Stream-based Entropy (ASE) coding [20] with vi-
sually lossless compression, we propose a video transfer system that implements dynamic
control of the data transfer in communication data path.

The main contributions of this paper that can be used for other related systems are
as follows:

1. We developed a new ADPCM by adding a mechanism for variable bit length in the
conventional method. It is able to control the compressed data size and the image quality
dynamically. The video image quality is acceptable in the industrial applications.

2. We proved that a lossless data compression is effective by applying it after the pro-
posed ADPCM with variable bit length. Applying our previous work, ASE coding, we
evaluated the effect of the lossless data compression by experimental evaluation.

3. We proposed a low latency video transfer system by combining the novel ADPCM
with variable bit length and a lossless data compression. We employed our previous
work, ASE coding, to implement the stream-based manner. The system works without
any stalling during the data compression and achieves low latency for video data
stream. We proved the validity of the system from experimental evaluations by
software emulation.

This paper is organized as follows. Section 2 describes the backgrounds and the
definitions of our research. Section 3 proposes the method for ADPCM with variable bit
length and will organize a video transfer system. Section 4 evaluates and validates the
compression performances of the proposed visually lossless compression method and the
system. Finally, we conclude the paper.

2. Background and Definitions
2.1. Visual Data Compression

The image compression techniques have been given attention by the field of signal
processing [21]. Many techniques to overcome Shannon’s limit have been proposed and im-
plemented such as the data compression technique that removes high and low frequencies
in the image applying Fast Furrier Transform (FFT) and Discrete Cosine Transform (DCT).
These lossy methods predict pixels in images from the reduced frequency information.
JPEG2000 is one of the well-known methods applying wavelet transform [22]. It decodes

Sensors 2021, 21, 4602 4 of 24

the frequency information to pixel colors by a wavelet. The wavelet transform can also
provide a lossless compression method. Although the compressed data can become larger
than the data size of the original image, it is mainly utilized as a lossy compression method.
We can decide decoding overhead by selecting the frequency levels encoded by the method
of the wavelet transform. This allows us to choose a tradeoff between the processing per-
formance and the image quality. These methods were originally developed for still image
data to compress them considering portability among information equipment. However,
the encoders for the methods need to scan whole image pixels with buffering the color
information as well as a large amount of computation to compress multiple image frames
in the timeline of a video. Therefore, novel image and video compression methods have
been developed.

Due to the growth of streaming broadcasting via the Internet, it is standardized to
perform streaming of movies by using the MPEG format. The format provides encoding
methods with the frequency-based compression mentioned above and another method in
the timeline direction. The key frame is introduced in the format, which is a compressed
full frame image data. The format encodes multiple frames in the timeline direction by
extracting the differences of pixel color information from the key frame. The method
provides techniques to compliment the differences based on the visual nature that human
eyes do not sense precisely the high-frequency parts of scenes. Therefore, the format
reduces the color information between the key frames. The motion detection techniques
(e.g., [23]) help to compliment the color and luminance information to chase changes of
color pixels in video using vectors derived from the color changes. This technique results in
a good compression ratio in the encoded movie data. Thus, the methods explained above
can transfer the movie via an unstable communication data path by controlling throughput
of the compressed data size.

Advanced video encoders such as H.264 and H.265 [24] have recently been utilized
for embedded small devices in the fields of IoT and mobile devices [25]. However, we
need to address two difficulties in the implementations of the embedded applications.
The first one is the degradation of image quality because the number of predicted pixels
increases as the data size of the encoded video stream is reduced. The performance of
machine learning applications such as object detections can degrade due to the lower
image quality. To maintain good performance for the detection, we need to decide to
include enough key frames. Therefore, we need to consider the tradeoff between the video
quality and the compression ratio [26]. Another difficulty is the overhead for encoding
video data as increasing the sort of compression algorithms such as the motion detections.
Those algorithms need to buffer and scan multiple frames of the original video. Although
these dense compression processes provide good compression ratio, increasing the en-
coding time becomes a drawback for realtime processing [27,28]. Therefore, we need to
invent a novel video encoding method that overcomes these two difficulties. It provides
a fast and compact implementation particularly in embedded systems such as sensor
networks [4], surveillance cameras [1,3] in security IoT equipment [2] and applications in
factory automation [11,29].

2.2. Visual Lossless Compression Methods

DPCM was applied originally to the audio data compression field. The DSC com-
presses a video stream that consists of pixel color data as a single data stream by applying
DPCM. As shown in Figure 1, DPCM processes a pixel data stream Pi of a Width × Height
image frame, which data width of each pixel is N bit. DPCM calculates the difference xk
between Pi−1 and Pi and quantizes it to an M bit value qk. The encoding flow is formally
written as follows;

xi = Pi − Pi−1

qi = Q(xi).

Sensors 2021, 21, 4602 5 of 24

Here, when the condition M < N is satisfied, the method reduces the amount of the
original pixel data stream. The decoding is easily performed by the reverse calculations of
the encoding steps: qi is dequantized by the offset used during the quantization and then
the result is added to the previous pixel value Pi−1.

Original signal
Difference

Quantized signal

0

1i-1ix = P P

P

i-1

i

P
q = Q(x)ii

2

3Encoding bit-width

Figure 1. Encoding processes of DPCM.

During the encoding and the decoding processes of DPCM, it only needs to buffer
single pixel data. Therefore, it can be implemented in software/hardware with small
resources and runs quickly because the processing steps are very simple. Therefore, it
works effectively in a stable communication data path in the applications. In the aspect
of image quality, DPCM maintains all pixels nearly equivalent to the originals if we can
apply an effective quantization for visually equality. In this paper, we call this kind of
method that reserves whole nearly equal pixels visually lossless compression. However,
unless DPCM applies an M that consists of a larger number of bits not to cause overflow
during the quantization, the pixel quality degrades due to its coarse resolution. Therefore,
we need to decide the bit length of M heuristically with considering the tradeoff between
the image quality and the compression ratio statically.

2.3. ADPCM

Adaptive DPCM (ADPCM) [19] is another method for visually lossless compression
that overcomes the problem on the tradeoff regarding bit length of M. ADPCM was
developed in the 1980s mainly for audio data compression targeted to telephone and fax. It
is also standardized by ITU Telecommunication Standardization Sector [30]. ADPCM uses
an adaptive quantization mechanism that follows data tendency in M bits.

Let us explain the algorithm for a typical implementation of ADPCM by referring
to Figure 2. Here, let us consider the case when an original unit of a data stream Pk in N
bits is compressed (encoded) to an ADPCM value pi in M bits. We show the encoding
steps in Algorithm 1. The figure depicts the roles of parameters and values combining
with an example where N = 8 and M = 4. That performs a quantization of pi = Q(Pi).
The condition N > M satisfies to compress the original data stream. At compressing the
ith original data Pi to an ADPCM value pi in a data stream, the encoding can be invoked
by caching the previous original data Pi−1 and the predicted offset wi−1 that has been used
for deriving Pi−1. The first step of the algorithm calculates the difference di = Pi − Pi−1.
Then, the next step is the important part of the encoding to derive the ADPCM value. The
encoder maps region numbers in M bits regarding di to the predicted domain specified in
an axis between +wi−1 × 2 and −wi−1 × 2. The domain is divided into 2M regions. The
region numbers are assigned as incremental numbers, as illustrated in Figure 2. Here, the
regions more than +wi−1× 2 and less than−wi−1× 2 are assigned to 2M−1− 1 and 2M − 1,
respectively. Finally, the region number of di is outputted as the ADPCM value pi. The
pi is a positive integer value and satisfies the condition 0 ≤ pi ≤ 2M − 1. The predicted
offset is updated by a function f (wi−1, pi) for the next encoding. The function is specified
heuristically, for instance:

wi = f (wi−1, pi) = wi−1 × C(pi)/(2M × 4).

Sensors 2021, 21, 4602 6 of 24

The C is a constant value of an array associated by the M − 1 bits of pi. The array is
configured by, for example, {57, 57, 57, 57, 77, 102, 128, 153} where M = 4. These values
are actually used in some frequency modulation sound ICs. The function f returns the
larger value when the difference d becomes larger. This means that the predicted domain is
assigned in a wider area when the original data change largely. Therefore, the encoding
works for the quantization by avoiding overrange and follows the value change of Pi
adaptively in the timeline. Regarding an implementation of Algorithm 1, fprev and w are
equivalent. We only need to cache Pprev and w during the encoding steps.

d
Pprev

P

0

1

2

3

Pprev
+step

+step
d

p=

Encoding Process Decoding Process

d = step*(p*2+1)/2

15

14

13

12

11

10

9

8 step

When M=4,
step=w*2/2M-1=w/4

4

5

6

7

+w

w

step

0

1

2

3p=

15

14

13

12

11

10

9

8

4

5

6

7

+w

Pprev

ADPCM
value

P’

value
Decoded

w

Figure 2. Encoding and decoding processes of ADPCM.

Algorithm 1 Encoder of ADPCM [19].

Require: P // a unit of data to be compressed.
Ensure: p // an ADPCM value.

w← W_INIT
Pprev ← P_INIT
C[]← [c0, c1, ..., c2M−1]
fprev ← w
d← P− Pprev

step← (w× 2)/2M−1

if d > 0 then
if |d|/step > 2M−1 − 1 then

p← 2M−1 − 1
else

p← ceil(d/step)
end if

else
if |d|/step > 2M − 1 then

p← 2M − 1
else

p← ceil(−d/step) + 2M−1

end if
end if
fprev ← fprev × C[p&((1� M)− 1)]/64
w← fprev

Sensors 2021, 21, 4602 7 of 24

The decoding performs Pi = Q−1(pi), as listed in Algorithm 2. The decoder requires
the predicted original value Pi−1 and a predicted offset wi−1 in the previous decoding. In
addition to the encoding steps, the decoder outputs a predicted original value Pi by using
the middle value in a region selected from pi. Similar to the encoding steps, the region is
derived by using wi−1 divided into 2M regions, as depicted in Figure 2. Then, wi is updated
by the equivalent function f (wi−1, pi) used in the encoder. Here, the decoder also needs to
cache just Pi−1 and wi.

As explained above, ADPCM does not need to buffer a large amount of data such
as an image frame or a line in a frame. Furthermore, it encodes and decodes with simple
calculations. It also works quickly on a hardware implementation with little resources.
According to the characteristics of the algorithm, we are able to implement a fast visually
lossless compression method. Actually, advanced studies (e.g., [31–33]) are applying ADPCM
to embedded systems and IoT applications as an image compression methods. Although
we can find the other standardized methods (e.g., [34,35]), those need to buffer one or more
lines during encoding and decoding steps. This is a potential drawback to accept a video data
stream in an implementation with minimal resources as ADPCM performs.

Algorithm 2 Decoder of ADPCM [19].

Require: p // an ADPCM value.
Ensure: P // a unit of data to be compressed.

w← W_INIT
Pprev ← P_INIT
C[]← [c0, c1, ..., c2M−1]
fprev ← w
step← (w× 2)/2M−1

if p < 2M−1 then
d← step× (p× 2 + 1)/2

else
d← −step× ((p− 2M−1)× 2 + 1)/2

end if
P← Pprev + d
fprev ← fprev × C[p&((1� M)− 1)]/64
w← fprev

In ADPCM, a larger M results in better image quality. The number of bits is fixed
to a constant one conventionally. Therefore, we must decide the best M to satisfy the
application’s needs heuristically. However, this does not allow us to apply ADPCM to any
applications that transfer images via an unstable communication data path or on memory
devices with dynamic throughput.

2.4. Stream-Based Lossless Data Compression

Another style of data compression method is the lossless method that the original
data are decoded from the compressed ones. Focusing on the lossless compression for
data stream, the Adaptive Stream-based Entropy (ASE) coding has been developed [20,36].
It eliminates buffering any part of the data stream and any stall during compression/
decompression operations based on a look-up table. Because we can choose any number
of the table entries, it is available to implement the compressor/decompressor using few
software/hardware resources.

ASE coding compresses an N bit original data unit in a data stream (called symbol) using
the lookup-table. When the symbol is hit in an index of the table, the index is outputted
as the compressed data with the Cmark bit (=1) by reducing it to m bits with the entropy
calculation m = log2 k, where k is the number of occupied entries in the table. On the
other hand, when the symbol is missed in the table, it is registered to the table and the
original symbol is outputted with the Cmark bit (=0). When the decompressor receives the

Sensors 2021, 21, 4602 8 of 24

compressed data stream from the compressor, it first receives the Cmark bit and checks if
the subsequent data bits are compressed or original. If the Cmark is set, the subsequent m
bits calculated by the same entropy calculation using the number of occupied entries in the
decompressor. The m bis are extended to the number of bits of the table index with zero(s).
Then, the decompressor associates the contents of the table by the index and outputs the
symbol from the table. If the Cmark is zero, the subsequent N bits are registered to the
look-up table and outputs it as the original symbol.

Here, the look-up tables in both the compressor and the decompressor are equivalently
managed because the registrations of new symbols are performed at the same timings. The
look-up table is managed as a stack in the Least Recently Used (LRU) manner. When the
symbol is hit in the table, the associate entry is moved to the top of the table. Otherwise, the
new symbol is pushed from the top. This mechanism allows the compressor/decompressor
to know the number of occupied entries k.

As the operations proceed, the table will become full. In this case, k becomes always the
number of table entries E. This means that the compressed data size equals M = log2 E and
then the compression does not work. To avoid this situation, ASE coding has a mechanism
to delete occupied entries in the look-up table from the one in the bottom, called the entropy
culling. After a number of table hits during the compression/decompression, it removes an
occupied entry at the bottom of the table. This mechanism adaptively follows data entropy of
data stream and instantaneously assigns the minimal number of bits as the compressed data.

As shown above, ASE coding works with simple operations without buffering as
accepting data stream. Thus, it is implemented on fast software/hardware.

Here, let us consider a situation with lossless data compression when the compressor
conveys a change of configuration to the decompressor. This occurs when, for example,
the bit width of a symbol changes in the compressor and it must be conveyed to the
decompressor. The conventional algorithms such as LZ-based methods [37] prepare special
symbol for the exception handling. However, this needs to allow the compressor to waste
additional bits to the compressed data. Then, the compression ratio becomes worse. To avoid
this situation, ASE coding introduces the exception symbol [38] that provides the implicit
information in the compressed data stream without any additional bits. The mechanism
works with inconsistent states that occur when the table search operation meets inconsistent
result. The exception symbol consists of two types: (1) an original symbol with Cmark = 0
that is already registered in the look-up table; or (2) a compressed symbol with Cmark = 1
that is an index of an empty entry in the table. The former exception symbol is sent from the
compressor, and the decompressor tries to register the symbol. However, an inconsistent
state occurs because it is already registered in the table. Besides, in the case of the latter
exception symbol, the decompressor finds that the entry specified by the index associated
from the compressed data is empty. This is also inconsistent. These are detected as the
exception events and the decompressor regards the compressed data as a command set
from the compressor. This is useful function to exchange exceptional commands via a
communication data path equipped between the compressor and the decompressor where
a data stream is transferred continuously without degrading the compression ratio.

2.5. Discussion

As presented in the background above, when targeting visually lossless video trans-
mission, ADPCM can become a method to implement an appropriate communication data
path with low latency. However, it is not suitable for unstable connection between the
encoder and the decoder because the conventional ADPCM uses a fixed number of bits
as the encoded output. If we can employ a new mechanism for the adaptive throughput
control to ADPCM by changing the encoding bit length, we can stably transfer the video
data with a communication buffer between the encoder and the decoder while the image
quality is adaptively controlled. Thus, a new ADPCM with variable encoding mechanism
will provide improved and more productive performance for imaging applications such as
the object detection by machine learning on IoT devices.

Sensors 2021, 21, 4602 9 of 24

In addition to the visually lossless encoding we focus on in the encoding mechanism of
ADPCM above, we expect that the output data stream from the encoding includes the simi-
lar bit patterns because the predicted offset adaptively adjusts the origin of the difference
regarding the original values. This means that the encoded output from ADPCM forms a
low entropy data stream. Here, we can consider employing lossless data compression after
the visually lossless encoding. Therefore, we can reduce the data stream from ADPCM
compressed in M/N time and also the additional lossless data compression will reduce it
further. The lossless compression should treat data stream and achieve a low latency for
the operation. Thus, we can employ ASE coding that satisfies the conditions.

According to the discussion above, this paper proposes three methods below. First, we
propose a novel ADPCM with a variable encoding bit-length mechanism. Second, employing
ADPCM, we propose a video transfer system that includes a data flow control and a buffering
mechanism for communication. Finally, employing ASE coding as lossless data compression in
the system, we aim to compress the visually lossless data further.

3. Visually Lossless Data Compression Applying Variable Bit-Length ADPCM
3.1. System Modelling

Let us begin by defining the model of the video transfer system illustrated in Figure 3.
The producer is a generator for compressed data stream of video frames from capturing
devices such as CMOS image sensors or CCD cameras. The consumer is an application
server that decompresses and decodes the received data stream from the producer. Those
are connected via an unstable communication media such as Ethernet. We model the path
as a First In First Out (FIFO) buffer. FIFO is prepared for sending/receiving the compressed
data stream. The producer writes the compressed frame data to the FIFO buffer by applying
a variable bit-length encoding depending on a flow control regarding the communication
data path. In this paper, we develop an autonomous system that decides whether the
encoding bit length is increased/decreased as upgrading/degrading the image quality by
applying a new ADPCM.

Compressor

ADPCM

ASE coding
compressor

Producer

Consumer
Decompressor

ADPCM

ASE coding
decompressor

NAND

encoder

F
lo

w
c
o

n
tr

o
l

C
a

p
tu

re
 d

e
v
ic

e
in

te
rf

a
c
e

M bits

module

M bits

decoder

Threshold

Encoding
bit-length

memory, etc.Memory
Interface

FIFO buffer
Communication

module

B
a

c
k
e

n
d

 a
p

p
lic

a
ti
o

n
O

b
je

c
t
d

e
te

c
ti
o

n
,
e

tc
.

Figure 3. The system model for the visually lossless video transfer.

The producer is organized with a compressor module, a communication FIFO and
a flow control module. The compressor module includes the ADPCM encoder that is
able to change the bit length M and ASE coding’s compressor. The compressed data
stream from the compressor module is written to FIFO. ADPCM has an option input that
dynamically changes the configured encoding bit length from the flow control module. The
flow control is managed by the feedback whether the amount of buffering data stored in
FIFO passes a threshold or not. If it passes the threshold, the flow control module generates
a signal to ADPCM to decrease the encoding bit length M. This reduces the throughput
and avoids overflow. As the amount of stored data in FIFO decreases to a lower level than
the threshold, the flow control module generates a signal to increase M. The output data
stream from ADPCM is sent to ASE coding, and, then, it is compressed and written to
the FIFO buffer. As explained above, in the producer, the frame data from the capture
device will be sent to ADPCM with the mechanism of variable bit length. The encoded

Sensors 2021, 21, 4602 10 of 24

data are compressed by lossless data compression. As the bit length is controlled by the
threshold of the FIFO buffer, the throughput is adjusted autonomously to the dynamic
communication performance.

The consumer is organized with a decompressor module and the communication FIFO
buffer. The consumer can decompress and decode the received data from FIFO continuously
without any stall by using the decoder of the decompressor of ASE coding and the variable
bit-length ADPCM, respectively. Here, the output from the consumer is a pixel data stream.
Thus, the video data stream from the producer to the consumer is transferred continuously by
controlling the throughput of the communication data path.

Here, let us focus on the mechanism to convey the modification command of the
encoding bit length M from the producer to the consumer. There are tree methods: (1) a
separated communication channel for the command from the data one is prepared; (2) data
packeting is performed before writing to FIFO; and (3) the exception symbol is sent from the
producer’s ASE coding. The first method has difficulty synchronizing the timings between
when the data and the command are received by the consumer. The second method has
to implement a protocol for the packeting and increase additional data size for the packet
envelope. Therefore, we use the last method because the producer inserts an exception
symbol easily in the data stream and the consumer is able to synchronize to change the bit
length as soon as it receives the symbol.

In the video transfer system mentioned above, the key technology is ADPCM with a bit-
length control. It needs not only a control method to change the encoding bit length by the
configuration input but also a method to preserve a visually lossless encoding mechanism
in high-quality images. In the next section, we propose the variable bit-length ADPCM.

3.2. ADPCM with Variable Bit-Length Control

First, let us consider how we apply an image data stream to the variable bit-length
ADPCM encoding. We assume a data stream of each color element in a pixel, such as R,
G and B or Y, U and V, is encoded by ADPCM. For example, when the color format is
24 bit RGB, each color element is 8 bit. In this case, each element inputted to the encoder is
organized as N = 8. Another example is YUV420 [39]. If Y is organized with 8 bit, U and V
are both 8 bit while the data size is one fourth of Y because U and V elements are stored
every 2× 2 pixels. These cases prepare individual encoders/decoders for the streams,
respectively. Additionally, the encoder must be controlled by following the frame size of
the width and height. We especially need to take care of the last pixel on each line and
need to control the encoding to eliminate the effect from the last pixel to the first pixel on
the next line. We can reset the encoder and decoder every line by initializing the predicted
offset. However, it is not enough because the initial value of the predicted offset may have
a large disparity of the color around the first pixel. Therefore, ADPCM needs to have an
input to initialize the previous data Pi−1 and the initial predicted offset w.

Considering the controls explained above regarding the encoder and the decoder, we
propose ADPCM with variable bit-length control (ADPCM-VBL) that extends the interfaces
to accept the variable M and the specialization for image encoding/decoding into Algorithms
3, 4, 5 and 6. Two parts are affected by the extension. One is the array C used in the update
for the predicted offset w. We need to prepare all available contents in C that can be used
for any M. Here, when the M is large enough, the encoded ADPCM value becomes fine
grained. This requires that the predicted offset should be fine grained. To support this
characteristic, we employ the C that includes available contents for any M. The initialization
of a two-dimensional array C is defined in Algorithm 3. The first step of the initialization
defines ck where M = N/2 and 0 ≤ k ≤ 2M−1, as shown in Figure 4, as well as the C in
Algorithm 1. The contents of C where M < N/2 are defined by average values of two
neighbor elements in C[M + 1] (i.e., (C[M][k] + C[M][k + 1])/2). Where M > N/2, the
middle value between C[M][k− 1] and C[M][k + 1] is assigned to C[M][k]. Here, we do not
need to consider the case when N = M because it is just a passthrough mode of the input

Sensors 2021, 21, 4602 11 of 24

data stream to the output of the encoder/decoder. Thus, the number of arrays in C is N − 1
and each array includes 2M−1. The total number of elements in C is derived from

N−1

∑
i=1

2i−1 = 2N−1 − 1.

Another modification from the original ADPCM is the update operation of the predicted
offset. As discussed in the previous section, we need to care for the predicted offset
and the previous original data to encode/decode the first data in a line of an image.
Therefore, we prepare initialization inputs for those values in ADPCM-VBL. Additionally,
we need to consider the predicted offset when M is changed dynamically depending on
the difference between the last M and the new M. When the difference is positive, the
predicted offset should be increased because the resolution of the ADPCM value presented
by M increases. Otherwise, the offset should be decreased. We use bit shift operation to
modify the predicted offset w using the difference of M. This mechanism provides adaptive
encoding/decoding following the dynamic change of M.

Algorithm 3 Initialize the array of the predicted offsets.

Require: M // the number of bits for ADPCM encoder.
Require: ck // the array of the initial values for C[N/4].
Ensure: C // the array used for the predicted offset amount.

// When M=N/2
for j = 0 to 2N/2−1 do

C[N/2][j]← ck
end for
// When M<N/2
for i = N/2− 1 downto 1 do

for j = 1 to 2i−1 do
C[i][j− 1]← (C[i + 1][j× 2− 2] + C[i + 1][j× 2− 1])/2

end for
end for
// When M>N/2
for i = N/2 + 1 to N do

C[i][0]← C[i− 1][0]
j← 2
while j < 2i−1 do

C[i][j− 1]← C[i− 1][j/2− 1]
C[i][j]← (C[i− 1][j/2− 1] + C[i− 1][j/2])/2
j← j + 2

end while
C[i][2i−1 − 1]← C[i− 1][j/2− 1]

end for

1531411281151029077675757575757575757

1531281027757575757

141905757C[3]

C[4]

C[5]

. . .
. . .

Figure 4. An example of the array C in ADPCM-VBL when N = 8.

The algorithms of initialization and encoding/decoding for ADPCM-VBL that the modifi-
cations above are applied are shown in Algorithms 4–6, respectively. Before encoding/decoding
using those algorithms, the initialization is invoked when the video transfer system is reset.
The encoding function has argument inputs for w and Pprev. Those are given by the video

Sensors 2021, 21, 4602 12 of 24

transfer system. When the input value for M is modified, the predicted offset w is shifted
by the number of bits in the difference between M and Mprev. According to the algorithms,
ADPCM-VBL will encode the inputted data stream into M bit ADPCM value following the
changes of the original data. Now, we apply the algorithms to the video transfer system.

Algorithm 4 Initialization for variable bit-length ADPCM.

Require: N // N bit Pixel element.
Require: C_INIT[] // N bit Pixel element.

w← W_INIT
Pprev ← P_INIT
fprev ← w
Mcurr ← M_INIT

Algorithm 5 Variable bit-length ADPCM encoder.

Require: P // N bit Pixel element.
Require: M // bits of the current ADPCM value.
Require: InitW // if the predicted offset is initialized or not.
Require: Winit // a predicted offset to be initialized.
Require: InitP // if the Pprev is initialized or not.
Require: Pinit // an original data to be set to Pprev.
Ensure: p // ADPCM value.

if M = N then
p← P
return

end if
if M 6= Mprev then

if M > Mprev then
w← w� (M−Mprev)

else
w← w� (Mprev −M)

end if
end if
if InitW = true then

w←Winit
end if
if InitP = true then

Pprev ← Pinit
end if
d← P− Pprev

step← (w× 2)/2M−1

if d > 0 then
if |d|/step > 2M−1 − 1 then

p← 2M−1 − 1
else

p← ceil(d/step)
end if

else
if |d|/step > 2M − 1 then

p← 2M − 1
else

p← ceil(−d/step) + 2M−1

end if
end if
fprev ← fprev × C[p&((1� M)− 1)]/64
w← fprev

Sensors 2021, 21, 4602 13 of 24

Algorithm 6 Variable bit-length ADPCM decoder.

Require: p // ADPCM value.
Require: M // bits of the current ADPCM value.
Require: InitW // if the predicted offset is initialized or not.
Require: Winit // a predicted offset to be initialized.
Require: InitP // if the Pprev is initialized or not.
Require: Pinit // an original data to be set to Pprev.
Ensure: P // N bit Pixel element.

if M = N then
P← p
return

end if
if M 6= Mprev then

if M > Mprev then
w← w� (M−Mprev)

else
w← w� (Mprev −M)

end if
end if
if InitW = true then

w←Winit
end if
if InitP = true then

Pprev ← Pinit
end if
step← (w× 2)/2M−1

if p < 2M−1 then
d← step× (p× 2 + 1)/2

else
d← −step× ((p− 2M−1)× 2 + 1)/2

end if
P← Pprev + d
fprev ← fprev × C[p&((1� M)− 1)]/64
w← fprev

3.3. Application Examples with Variable Bit-Length ADPCM

Here, let us propose video transfer applications with ADPCM-VBL. As illustrated
in Figure 3, we can consider two types of applications. One is an application that has a
communication data path connecting the producer and the consumer. This is typically a
network application with unstable throughput that transfers video data to a server, and
the server analyzes the video images. Another is the one with only the producer. The
output is saved in a local storage such as NAND-based memory card. This application has
the advantage of avoiding a limitation for the speed on write operation that depends on
manufacturing technology of the memory.

Now, we focus on the former type of applications with the producer and consumer
as well as the one equivalent to the video transfer system mentioned in Section 3.1. The
latter can be implemented by the producer part of the former one. The producer and the
consumer of this application are controlled by Algorithms 7 and 8, respectively. During
the system reset, the initialization of Algorithm 4 is invoked. The producer compresses
data blocks from the capturing device input. The data block is organized with one or more
pixel elements. The producer receives Mcurr that is the input to change the encoding bit
length of ADPCM. FifoTh is a constant value of the threshold in the communication FIFO
buffer. If the amount after a data block is written in FIFO becomes more than the threshold,
Mcurr is decremented. Otherwise, it is incremented to increase the image quality. When the
increment/decrement occur, ASE coding is reset, and the input symbol width is modified

Sensors 2021, 21, 4602 14 of 24

according to the new Mcurr. The symbol width for ASE coding should be large enough to
achieve good compression ratio. We define the symbol width as Sw ×Mcurr where Sw is an
integer greater than 0. The predicted offset and the previous color data Pprev is reset every
number of pixels in a line. The line width is defined by a constant value WIDTH. The color
element of the first pixel in a line is saved to Pinit and used for the initialization.

The data block size mentioned above is an integer value greater than 0. During
the encoding/decoding the data block, Mcurr is not modified regardless of the threshold
detection of FIFO. Therefore, the symbol width is neither changed. The smaller the data
block size is, the lower the latency the stream-based encoding/decoding achieves. However,
note that too small a data block is not effective for ASE coding because every modification
of Mcurr causes a reset to ASE coding. If it is too big, Mcurr does not change for a long time.
This brings degradation of image quality while Mcurr is a small value. Thus, we need to
decide a suitable size of the data block.

Algorithm 7 Producer function.

Require: SendBlockSize
Require: Block[]
Require: Mcurr
Ensure: BlockSizeC
Ensure: BlockC

FullCheck← AFi f oCurrSize + SendBlockSize
if FullCheck ≤ Fi f oTh then

Mcurr ← Mcurr < N?Mcurr + 1 : N
else

Mcurr ← Mcurr > 1?Mcurr − 1 : 1
end if
i← 0
while SendBlockSize > i do

if WidthCount = 0 then
BlockP[i]← AdpcmEncoder(Block[i], Mcurr,

true, Winit,
true, Pinit)

WidthCount← WIDTH
else

BlockP[i]← AdpcmEncoder(Block[i], Mcurr,
f alse, null,
f alse, null)

end if
if WidthCount = WIDTH then

Pinit ← Block[i]
end if
i← i + 1
WidthCount←WidthCount− 1

end while
if Mprev 6= Mcurr then

AseChangeDataWidth(Mcurr)
AseSendException(Mcurr)
Mprev ← Mcurr

end if
AseCompression(BlockSize, BlockP,

&BlockSizeC, &BlockC)

Sensors 2021, 21, 4602 15 of 24

Algorithm 8 Consumer function.

Require: RecvBlockSize
Require: BlockC
Require: Mcurr
Ensure: BlockSize
Ensure: Block

if Mprev 6= Mcurr then
AseChangeDataWidth(Mcurr)
Mprev ← Mcurr

end if
AseDecompression(RecvBlockSize, BlockC,

&BlockSize, &BlockP)
i← 0
while BlockSize > i do

if WidthCount = 0 then
BlockP[i]← AdpcmDecoder(BlockP[i], Mcurr,

true, Winit,
true, Pinit)

WidthCount← WIDTH
else

Block[i]← AdpcmDecoder(BlockP[i], Mcurr,
f alse, null,
f alse, null)

end if
if WidthCount = WIDTH then

Pinit ← Block[i]
end if
i← i + 1
WidthCount←WidthCount− 1

end while

The offset of increasing/decreasing Mcurr relates to a tradeoff between the image
quality and the throughput. If the one of decreasing Mcurr is large, the recovery from
the status of FIFO full may become fast. However, the degradation of image quality will
become large. Besides, if the one of increasing Mcurr is small, the number of color data
with degradation increases. Here, we use 1 as the offset for increasing/decreasing Mcurr.
Of course, we can use unbalanced increasing/decreasing offsets for Mcurr. When Mcurr is
modified, an exception symbol is generated by ASE coding, written to the FIFO buffer, and
then the event is conveyed to the consumer.

The consumer’s algorithm in the application is shown in Algorithm 8. After the con-
sumer receives an exception symbol by ASE coding, Mcurr in ADPCM-VBL is modified and
the subsequent uncompressed data from ASE coding is decoded by ADPCM-VBL without
any flow control. The consumer performs the same operations regarding the predicted offset
and the previous pixel data at the beginning of a line in an image frame as the producer.

In summary, as proposed in this section, we improve the conventional ADPCM to ac-
cept dynamic modification of the bit length in ADPCM for encoding/decoding operations.
It seamlessly adopts ADPCM to applications that support visually lossless compression.
Additionally, we combine lossless data compression after the encoding by ADPCM-VBL.
This is expected to further compress the encoded data. We propose a model of a producer
and a consumer connected via a communication data path applying the encoding/decoding
mechanisms. The system transfers the captured image in a stream, and the throughput is
adaptively controlled by the variable bit length in ADPCM. We expect that the quality of
image also follows the color changes fluently. We evaluate the proposed methods above in
the aspect of the compression performance and the image quality in the next section.

Sensors 2021, 21, 4602 16 of 24

4. Experimental Evaluation
4.1. Experimental Setup

We evaluated ADPCM-VBL and the system employing it. We focused on the per-
formance aspects of the compression ratios and the image quality. We performed two
evaluations: (1) the evaluation of ADPCM-VBL; and (2) the evaluation of the system pre-
sented in Section 3.3. We used two videos stored in YUV420 format that were captured by
the Blackmagic Pocket Cinema Camera 6K and saved in BRAW format. The first frames
are shown in Figure 5. The resolutions of the images are both 3840 × 2160. The data size
per YUV420 frame is 12 Mbyte. We gathered the same elements in the order of Y, U and V
elements (i.e., the file includes the Y part, U part and V part in the order). Here, Y, U and V
are all 8 bit.

Evaluation image a) Evaluation image b)

Figure 5. The first frames of two videos used for evaluations.

The constant parameters for encoder/decoder of ADPCM-VBL used in Algorithm 4–6
are defined by Winit = 2Minit−1, Pinit = 2N−1 and Minit = N, where N is the bit length of the
original data. Note that, during the evaluations below, N = 8 due to the YUV420 format.
Thus, we used heuristically Winit = 128, Pinit = 128 and Minit = 8 in the experiments.
However, the evaluation results disseminated in this section do not differ largely even
if we applied other settings because those values were fitted to adaptive ones during
the encoding/decoding. On the other hand, regarding the settings of ASE coding, we
configured to perform the entropy culling at every two hits and implemented 256 entries
in the look-up table. We set Sw to 4 as the multiplied number with M for the symbol width
in ASE coding, as mentioned in Section 3.3.

During the evaluations, we used two metrics for the image quality and the com-
pression ratio. The first is Peak Signal-to-Noise Ratio (PSNR) [40]. A larger PSNR (dB)
represents equality compared to the original image with respect to each pixel from the
Mean Squared Errors (MSE) as follows;

MSE =
1
N

N

∑
i=0
{Po(i)− Pe(i)}2

where N, Po and Pe are the number of pixels in a frame, the original pixel value and the
encoded one. The PSNR of a frame is calculated by the following equation;

PSNR = 20 log10
MAX√

MSE
.

MAX is the maximal number of a pixel value. According to the literature [41], the values of
several videos encoded by H.264 vary within 31–38. This means around 35 (dB) preserves
high visual quality equivalent to an 800 kbps video stream. The second is presented by the
percentage derived from: (compressed data size/original data size) × 100. Depending on
evaluations, the original/compressed data are the ones of the input/output from ADPCM-

Sensors 2021, 21, 4602 17 of 24

VBL or the input data to ADPCM-VBL or from ASE coding. We explain the combination
according to the objective in each evaluation.

4.2. Evaluation for Variable Bit-Length ADPCM Encoding

Let us begin from the evaluation of ADPCM-VBL focusing on image quality of en-
coding and the compression performance. We performed the encoding/decoding of the
frames shown in Figure 5 by varying the encoding bit length M. We evaluated the image
quality according to the PSNRs of the decoded images. We also evaluated the compression
ratios derived from ASE coding where the encoded data stream generated by ADPCM-VBL
is inputted.

The graphs depicted in Figure 6 show the PSNRs after decoding by a line and the
compression ratios by bars. The vertical axis on the left side is the compression ratio.
The one on the right side is the PSNR. Regarding Evaluation Image (a), the PSNRs when
varying the encoding bit length M from 4 to 8 show about 50. As M is decreasing from 3 to
1, the PSNRs are decreasing. However, we confirmed any M maintains adequate image
quality because all PSNRs in this experiment show values greater than 30. Here, let us
focus on the visual qualities between the bit lengths M of 1 and 2, as shown in Figure 7.
When M = 1, as shown on the left in Figure 7, the image becomes blurry in the horizontal
direction. This is caused by the low flexibility because the predicted offset is decided by
only a single bit. When M = 2, as shown on the right in Figure 7, it is sharper than the
image of M = 1. However, it still has blurry parts in edges of colors such as the one
between a leaf and the sky in the image. This is a typical encoding characteristic because
ADPCM cannot follow such large changes of color values when the encoding bit length
is small. On the other hand, Evaluation Image (b) also maintains the same relationship
as Evaluation Image (a) between the image quality and M, as shown in Figure 8. Thus,
we confirmed that we should avoid M = 1 to maintain adequate image quality as well as
restrict the condition 2 ≤ M ≤ N in applications of ADPCM-VBL.

0

10

20

30

40

50

60

0

20

40

60

80

100

120

1bit 2bit 3bit 4bit 5bit 6bit 7bit 8bit

P
S

N
R

(d
B

)

C
o

m
p

re
s
s
io

n
 R

a
te

(%
)

ADPCM bit length (M)

ADPCM ASE TOTAL PSNR

0

10

20

30

40

50

60

0

20

40

60

80

100

120

1bit 2bit 3bit 4bit 5bit 6bit 7bit 8bit

P
S

N
R

(d
B

)

C
o

m
p

re
s
s
io

n
 R

a
te

(%
)

ADPCM bit length (M)

ADPCM ASE TOTAL PSNR

Evaluation image a) Evaluation image b)

Figure 6. PSNRs and compression ratios regarding ADPCM-VBL and ASE coding. The graph in the left and the one in the
right show the results regarding the evaluation image a) and b) shown in Figure 5, respectively.

The decoded image where M=1 The decoded image where M=2

Figure 7. The decoded images when M = 1 and M = 2 using the evaluation image a) shown in Figure 5.

Sensors 2021, 21, 4602 18 of 24

The decoded image where M=1 The decoded image where M=2

Figure 8. The decoded images when M = 1 and M = 2 using the evaluation image b) shown in Figure 5.

Next, let us evaluate the compression performance. The bar graphs in Figure 6 show
three types of compression ratios: “ADPCM” shows the ratios after encoding the original
data by ADPCM-VBL; “ASE” shows the ones after compressing the encoded data by
ASE coding; and “TOTAL” shows the total compression ratio with ADPCM-VBL and
ASE coding. For example, in the case of Evaluation Image (a) with M = 2, the encoder
compresses the original frame data into 2/8× 100 = 25% and ASE coding compresses
the encoded data into 85.61%. Finally, the total compression ratio becomes 25/85.61× 100
= 21.40%. According to the bar graphs, we confirmed that the lossless compression is
effective while M is varying from 2 to 8 regarding both evaluation images. Especially, when
M = 2, the compression ratio becomes about 20% in both cases.

According to the evaluations presented above, we confirmed that ADPCM-VBL can
achieve adequate visual quality to the image frames. Especially, even if the encoding bit
length is small such as M = 2, we confirmed that the degradation of the image quality is
low. However, when M = 1, the degradation becomes large and the image has significant
blur. Therefore, the case is not acceptable for visually lossless compression. Furthermore,
we confirmed that the lossless data compression works effectively after the encoding by
ADPCM. This proves the hypothesis discussed in Section 2.5 that we expected low entropy
in the encoded data generated from ADPCM. Thus, we concluded that it is an effective
combination that the video data stream is encoded by ADPCM-VBL and compressed by
ASE coding.

4.3. Evaluation for Video Transfer System with ADPCM-VBL

Next, we evaluate the application with the communication data path explained in
Section 3.3 using the algorithms for the producer. We focus on the validities of the dynamic
control of the communication throughput and the quality of the images. In this evaluation,
we implemented a software emulator with the producer using multiple threads. Those
threads read video data from file, encode/compress the data and write the compressed
data into another file. The execution environment was organized on a Windows 10 machine
with Intel Core i5 3.3 GHz and 24 GB memory. Figure 9 illustrates the organization and
the dataflow of the emulator. There are three threads in the emulator. The Read Thread
reads video data from a file and writes it to Read FIFO buffer (Figure 9a). The Comp Thread
implements Algorithm 7 that performs ADPCM-VBL and ASE coding (Figure 9b) and then
writes the compressed data to the Comp FIFO (Figure 9c). The Comp Thread works at every
writing an amount SendBlockSize of video data into the Read FIFO. Finally, the Output
Thread reads the compressed data from the Comp FIFO and writes it into a file (Figure 9d).
The Output Thread works at every writing an amount WriteBlockSize of video data into
the Comp FIFO. The Output Thread checks the threshold FifoTh of the Comp FIFO and
informs if the data size in FIFO passes the threshold or not (Figure 9e). Here, the Output
Thread emulates the communication overhead with inserting a delay while the thread is
writing the compressed data to a file. We implemented the delay using the sleep function in
the host system.

Sensors 2021, 21, 4602 19 of 24

Read Thread

YUV420
image file

Comp Thread

Comp FIFO

Output Thread

Read FIFO

Sleep
delay

Reading
 compressed data.

a) Reading original data
 from an image file and
 write it to Read FIFO

Writing data blocks
based on SendBlockSize.

b) Invoking ADPCM-VBL
 and ASE coding
 based on SendBlockSize

e) feedback to change
 encoding bit-length
 with checking FifoTh

c) Writing the
 compressed data
 to the Comp FIFO

d) Reading the
 compressed data
 from the Comp FIFO
 based on
 WriteBlockSize

Writing
 to a file.

Figure 9. The organization and the data flow of the emulator.

We configured the parameters in the emulator and Algorithm 7 as follows: SendBlock-
Size is four pixels (i.e., four bytes due to N = 8), WriteBlockSize is 4096 byte and FifoTh is
WriteBlockSize × 200 byte. We used two contiguous frames of the evaluation video that
the first frame is shown as the evaluation image a) in Figure 5. According to the result in
the previous section, we applied 2 ≤ M ≤ N. The delay was generated periodically by a
sine function and passed as the argument of the sleep function.

Applying the emulator, we focused on the following three evaluation points. First,
observing the Comp FIFO, we evaluated the performance for the throughput control
by ADPCM-VBL in the communication data path. Second, we evaluated the realtime
compression ratios during the emulation by comparing the data amount written into the
Read FIFO and the one read from the Comp FIFO. Finally, we evaluated the image qualities
of the transferred image frames.

Figure 10 shows the realtime data amount of the Comp FIFO in the left axis with
the blue line and the delay in the right axis with the orange line. The horizontal axis is
the number of WriteBlockSize written to the Comp FIFO. The threshold FifoTh of FIFO is
depicted by the red horizontal line. The frequency of the delay given by sine function is
100 ms. The amplitude is 5 ms. As the number of the data blocks written to FIFO is increased,
the amount of data in the FIFO buffer reaches the threshold. For example, although the
data amount passes the threshold around the 500th data block, it is reduced soon due to the
feedback control by the producer and the autonomous control of the encoding bit length by
ADPCM-VBL. Thus, we confirmed that the producer adaptively controls the throughput
with the dynamic compression mechanism.

Next, let us evaluate the compression ratios referring two graphs. Figure 11 depicts
the compression ratios of every data block written to the Comp FIFO during the emulation
with respect to the right axis. The gray line shows the total compression ratio after ADPCM-
VBL and ASE coding. The orange line shows the one only by ASE coding. Figure 12 shows
the number of bits M used for ADPCM encoding in the left axis with blue line. When
the data amount in FIFO does not pass the threshold, the producer keeps M = 8 and
passthroughs the original pixel data. In this case, the total compression ratio becomes
equivalent to that of ASE coding. As M is decreased when the data amount in FIFO passes
the threshold, the producer tries to reduce the data amount in FIFO below the threshold.
According to Algorithm 7, the compression ratio becomes bad instantly due to the reset
of ASE coding right after M is changed. However, we confirm that ASE coding achieves
effective compression ratios at almost all situations. The average compression ratio of
ASE coding during this emulation becomes 48.25%. This shows lossless data compression
works effectively against the encoded data from ADPCM-VBL.

Sensors 2021, 21, 4602 20 of 24

We discuss the effect of the lossless data compression after ADPCM-VBL encoding
focusing on the theoretical aspect of ASE coding. The compression ratio is derived by the
following equation according to our previous work [20]:

(mavg + 1)h
s

+
(s + 1)(1− h)

s
= 0.4825.

Here, mavg is an average bit length of the compressed data after the entropy calculation,
s is the bit length of the original data and h is the average hit rate in the look-up table. If
h = 0, the compression ratio becomes more than 100%. Therefore, h must be more than 0.5.
Besides, the first term of the equation above must be less than 0.5. Assuming that the worst
case of the hit ratio is 0.5, we derive the relationship below:

(mavg + 1)
s

+
(s + 1)

s
.

We find the relation mavg < s. This means that ASE coding shrinks an encoded data to
a smaller number of bits than the original data size in a short time window restricted by
the size of the look-up table in a stream manner. Thus, we confirmed that the encoded
data stream by ADPCM-VBL has potentially low entropy and also has the possibility to
be compressed.

Finally, let us evaluate the image quality transferred by this emulation. Figure 13
shows the contiguous image frames used in this experiment before/after the compression.
The variable bit-length control of ADPCM-VBL makes some continuous pixels suddenly
blurry due to the bit error propagation when M is decremented. However, the degradation
is recovered quickly by the adaptive characteristic of the predicted offset. Therefore, the
visual image qualities are maintained because the PSNRs of those frames are 46.68 and
44.48, respectively. Regarding the PSNR of the first frame, it is equivalent to the one of
M = 3 according to the graph in Figure 6. Despite that the minimal M is 2, we confirmed
that the emulation resulted in better image quality.

According to the evaluations above, we confirmed that it is available to develop an
effective and stream-based image transfer system with ADPCM-VBL and ASE coding. We
maintain the image quality adequately with changing the bit length used for the encoding
from 2 bits to N bits. Moreover, we confirmed that the data entropy of the encoded data
from ADPCM becomes low. This allows the lossless data compression to reduce the data
size further. Thus, we concluded that the evaluations presented in this section proved the
efficiencies of ADPCM-VBL and the system with the encoding that combines the lossless
compression mechanism.

0

2

4

6

8

10

12

0

200000

400000

600000

800000

1000000

1200000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100

S
le

e
p

 d
e

la
y
 (

m
s
)

T
h

e
 d

a
ta

 a
m

o
u

n
t
in

C

o
m

p
 F

IF
O

 b
u

ff
e

r
(b

y
te

)

The number of data blocks written into Comp FIFO buffer

Data amount in Comp FIFO Threshold (FifoTh) sleep delay
,,

,,

,

,

,

,

Figure 10. The data amount maintained in Comp FIFO and the communication overhead (delay) given during the emulation.

Sensors 2021, 21, 4602 21 of 24

0

20

40

60

80

100

120

140

0

200000

400000

600000

800000

1000000

1200000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100

C
o

m
p

re
s
s
io

n
 r

a
ti
o

 (
%

)

T
h

e
 d

a
ta

 a
m

o
u

n
t
in

C

o
m

p
 F

IF
O

 b
u

ff
e

r
(b

y
te

)

The number of data blocks written into Comp FIFO buffer

Data amount in Comp FIFO Threshold (FifoTh) ASE TOTAL

,,

,,

,

,

,

,

Figure 11. The data amount maintained in Comp FIFO and the compression ratios during the emulation.

0

20

40

60

80

100

120

140

0

1

2

3

4

5

6

7

8

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100

C
o

m
p

re
s
s
io

n
 r

a
ti
o

 (
%

)

T
h

e
 d

a
ta

 a
m

o
u

n
t
in

C

o
m

p
 F

IF
O

 b
u

ff
e

r
(b

y
te

)

The number of data blocks written into Comp FIFO buffer

The number of encoding bits in ADPCM-VBL Threshold (FifoTh) ASE TOTAL

Figure 12. The number of encoding bits in ADPCM-VBL (M) and the compression ratios during the emulation.

The original first frame of the evaluation video a) The original second frame of the evaluation video a)

The encoded first frame of the evaluation video b) The encoded second frame of the evaluation video b)

Figure 13. The first and the second frames encoded by the emulation.

Sensors 2021, 21, 4602 22 of 24

5. Conclusions

We proposed a novel stream-based method of visually lossless data compression that
transfers image data in low latency and high quality applying ADPCM. We proposed a new
ADPCM that allows dynamically changing the encoding bit length, called ADPCM-VBL.
Furthermore, since we expected that the data entropy becomes low after the encoding of
ADPCM, we proposed a video transfer system that combines the encoder and a lossless
data compressor applying ASE coding. Applying the new algorithms, we evaluated the
video transfer system by an emulation in the aspects of the compression ratio and the image
quality. We confirmed that ADPCM-VBL effectively reduces the amount of data adaptively
against the dynamic throughput changes in the communication data path. Additionally,
we confirmed that the lossless data compression after the encoding by ADPCM effectively
works to reduce the data amount. Finally, we confirmed that ADPCM-VBL achieves high
visual quality, preserving all pixels under the condition that the encoding bit length is
more than 2. Thus, we concluded that the methods proposed in this research are proven as
effective and worthy for video applications that need fast communication and high visual
quality.

For future works, we are planning to implement the proposed methods in hardware.
Then, we will apply it to the display application such as HDMI. We will also evaluate
the methods to prove the validity in the object detection applications such as CNN-based
analysis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21134602/s1.

Author Contributions: Conceptualization, S.Y. and Y.I.; methodology, S.Y. and Y.I.; software, S.Y. and
Y.I.; validation, S.Y. and Y.I.; formal analysis, S.Y. and Y.I.; investigation, S.Y. and Y.I.; resources, S.Y.
and Y.I.; data curation, S.Y. and Y.I.; writing—original draft preparation, S.Y. and Y.I.; writing—review
and editing, S.Y. and Y.I.; visualization, S.Y. and Y.I.; supervision, S.Y.; project administration, S.Y.;
and funding acquisition, S.Y. All authors have read and agreed to the published version of the
manuscript.

Funding: This work was partially supported by JSPS KAKENHI (Grant Numbers 18K19773 and
20H04152), JST CREST (Grant Number JPMJCR1402), and JST PRESTO (Grant Number JPMJPR203A).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The image files in the original resolutions resulted from the evaluations
are available from the supplemental material. The compressed file includes the files in bitmap format
stored in the corresponding directories to the figures in the paper.

Acknowledgments: The authors of this paper thank Koichi Marumo to his proofreading of the
manuscript and his expensive advice regarding the presentations.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Shidik, G.F.; Noersasongko, E.; Nugraha, A.; Andono, P.N.; Jumanto, J.; Kusuma, E.J. A Systematic Review of Intelligence Video

Surveillance: Trends, Techniques, Frameworks, and Datasets. IEEE Access 2019, 7, 170457–170473. [CrossRef]
2. Gautam, A.; Singh, S. Trends in Video Object Tracking in Surveillance: A Survey. In Proceedings of the 2019 Third International

conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), Palladam, India, 12–14 December 2019; pp. 729–733.
3. Khurana, R.; Kushwaha, A.K.S. Deep Learning Approaches for Human Activity Recognition in Video Surveillance—A Survey. In

Proceedings of the 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC), Jalandhar,
India, 15–17 December 2018; pp. 542–544.

4. Olagoke, A.S.; Ibrahim, H.; Teoh, S.S. Literature Survey on Multi-Camera System and Its Application. IEEE Access 2020, 8,
172892–172922. [CrossRef]

https://www.mdpi.com/article/10.3390/s21134602/s1
https://www.mdpi.com/article/10.3390/s21134602/s1
http://doi.org/10.1109/ACCESS.2019.2955387
http://dx.doi.org/10.1109/ACCESS.2020.3024568

Sensors 2021, 21, 4602 23 of 24

5. Bellavista, P.; Chatzimisios, P.; Foschini, L.; Paradisioti, M.; Scotece, D. A Support Infrastructure for Machine Learning at the Edge
in Smart City Surveillance. In Proceedings of the 2019 IEEE Symposium on Computers and Communications (ISCC), Barcelona,
Spain, 29 June–3 July 2019; pp. 1189–1194.

6. Wang, F.; Zhang, M.; Wang, X.; Ma, X.; Liu, J. Deep Learning for Edge Computing Applications: A State-of-the-Art Survey. IEEE
Access 2020, 8, 58322–58336. [CrossRef]

7. Lichtsteiner, P.; Posch, C.; Delbruck, T. A 128× 128 120 dB 15 µs Latency Asynchronous Temporal Contrast Vision Sensor. IEEE J.
Solid-State Circuits 2008, 43, 566–576. [CrossRef]

8. Baby, S.A.; Vinod, B.; Chinni, C.; Mitra, K. Dynamic Vision Sensors for Human Activity Recognition. In Proceedings of the 2017
4th IAPR Asian Conference on Pattern Recognition (ACPR), Nanjing, China, 26–29 November 2017; pp. 316–321.

9. Sandini, G.; Questa, P.; Scheffer, D.; Diericks, B.; Mannucci, A. A retina-like CMOS sensor and its applications. In Proceedings of
the 2000 IEEE Sensor Array and Multichannel Signal Processing Workshop, Cambridge, MA, USA, 17 March 2000; pp. 514–519.

10. Tung, Y.S.; Wu, J.L. Architecture design, system implementation, and applications of MPEG-4 systems. In Proceedings of the
Workshop and Exhibition on MPEG-4, San Jose, CA, USA, 20–20 June 2001; pp. 37–40.

11. Silvestre-Blanes, J.; Almeida, L.; Marau, R.; Pedreiras, P. Online QoS Management for Multimedia Real-Time Transmission in
Industrial Networks. IEEE Trans. Ind. Electron. 2011, 58, 1061–1071. [CrossRef]

12. Jiao, L.; Zhang, F.; Liu, F.; Yang, S.; Li, L.; Feng, Z.; Qu, R. A Survey of Deep Learning-Based Object Detection. IEEE Access 2019, 7,
128837–128868. [CrossRef]

13. Cengil, E.; Çinar, A.; Güler, Z. A GPU-based convolutional neural network approach for image classification. In Proceedings of
the 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), Malatya, Turkey, 16–17 September 2017;
pp. 1–6.

14. Reuther, A.; Michaleas, P.; Jones, M.; Gadepally, V.; Samsi, S.; Kepner, J. Survey of Machine Learning Accelerators. In Proceedings
of the 2020 IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA, USA, 22–24 September 2020;
pp. 1–12.

15. Duan, L.; Sun, W.; Zhang, X.; Wang, S.; Chen, J.; Yin, J.; See, S.; Huang, T.; Kot, A.C.; Gao, W. Fast MPEG-CDVS Encoder with
GPU-CPU Hybrid Computing. IEEE Trans. Image Process. 2018, 27, 2201–2216. [CrossRef] [PubMed]

16. Yin, H.; Jia, H.; Zhou, J.; Gao, Z. Survey on Algorithm and VLSI Architecture for MPEG-Like Video Coder. J. Signal Process. Syst.
2017, 88, 357–410. [CrossRef]

17. HDMI Licensing Administrator, Inc. Available online: https://www.hdmi.org (accessed on 21 February 2021).
18. Frederick, W.; Sandy, M. VESA Display Stream Compression; VESA: Milpitas, CA, USA, 2014.
19. Cummiskey, P.; Jayant, N.S.; Flanagan, J.L. Adaptive quantization in differential PCM coding of speech. Bell Syst. Tech. J. 1973, 52,

1105–1118. [CrossRef]
20. Yamagiwa, S.; Hayakawa, E.; Marumo, K. Stream-Based Lossless Data Compression Applying Adaptive Entropy Coding for

Hardware-Based Implementation. Algorithms 2020, 13, 159. [CrossRef]
21. Hussain, A.; Al-Fayadh, A.; Radi, N. Image compression techniques: A survey in lossless and lossy algorithms. Neurocomputing

2018, 300, 44–69. [CrossRef]
22. Adams, M.D.; Ward, R. Wavelet transforms in the JPEG-2000 standard. In Proceedings of the 2001 IEEE Pacific Rim Conference

on Communications, Computers and Signal Processing, Victoria, BC, Canada, 26–28 August 2001; Volume 1, pp. 160–163.
23. Favalli, L.; Mecocci, A.; Moschetti, F. Object tracking for retrieval applications in MPEG-2. IEEE Trans. Circuits Syst. Video Technol.

2000, 10, 427–432. [CrossRef]
24. Sullivan, G.J.; Ohm, J.; Han, W.; Wiegand, T. Overview of the High Efficiency Video Coding (HEVC) Standard. IEEE Trans.

Circuits Syst. Video Technol. 2012, 2, 1649–1668. [CrossRef]
25. Salah, M.; El-Shweky, B.; ElKholy, K.; Helmy, A.; Ismail, Y.; Salah, K. HEVC Implementation for IoT Applications. In Proceedings

of the 2018 30th International Conference on Microelectronics (ICM), Sousse, Tunisia, 16–19 December 2018; pp. 295–298.
26. Blau, Y.; Michaeli, T. Rethinking lossy compression: The rate-distortion-perception tradeoff. In Proceedings of the 36th Interna-

tional Conference on Machine Learning (PMLR 97), Long Beach, CA, USA, 9–15 June 2019; pp. 675–685.
27. Silvestre-Blanes, J. Structural similarity image quality reliability: Determining parameters and window size. Signal Process. 2011,

91, 1012–1020. [CrossRef]
28. Flynn, D.; Marpe, D.; Naccari, M.; Nguyen, T.; Rosewarne, C.; Sharman, K.; Sole, J.; Xu, J. Overview of the Range Extensions for

the HEVC Standard: Tools, Profiles, and Performance. IEEE Trans. Circuits Syst. Video Technol. 2016, 26, 4–19. [CrossRef]
29. Wu, C.H.; Irwin, J.D.; Dai, F.F. Enabling multimedia applications for factory automation. IEEE Trans. Ind. Electron. 2001, 48,

913–919.
30. Sector, I.T.S. 40, 32, 24, 16 kbit/s Adaptive Differential Pulse Code Modulation (ADPCM); ITU: Geneva, Switzerland, 1990.
31. Sullivan, J.R. A New ADPCM Image Compression Algorithm and the Effect of Fixed-Pattern Sensor Noise. In Proceedings of the

OE/LASE’89, Digital Image Processing Applications, Los Angeles, CA, USA, 15–20 January 1989; Volume 1075, pp. 129–139.
32. Kumar, A.; Kumaran, R.; Paul, S.; Parmar, R.M. Low complex ADPCM image compression technique. In Proceedings of the Third In-

ternational Conference on Computational Intelligence and Information Technology (CIIT 2013), Mumbai, India, 18–19 October 2013;
pp. 318–321.

33. Kumar, A.; Kumaran, R.; Paul, S.; Mehta, S. ADPCM Image Compression Techniques for Remote Sensing Applications. Int. J. Inf.
Eng. Electron. Bus. 2015, 7, 26–31. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2020.2982411
http://dx.doi.org/10.1109/JSSC.2007.914337
http://dx.doi.org/10.1109/TIE.2010.2049711
http://dx.doi.org/10.1109/ACCESS.2019.2939201
http://dx.doi.org/10.1109/TIP.2018.2794203
http://www.ncbi.nlm.nih.gov/pubmed/29432101
http://dx.doi.org/10.1007/s11265-016-1160-3
https://www.hdmi.org
http://dx.doi.org/10.1002/j.1538-7305.1973.tb02007.x
http://dx.doi.org/10.3390/a13070159
http://dx.doi.org/10.1016/j.neucom.2018.02.094
http://dx.doi.org/10.1109/76.836288
http://dx.doi.org/10.1109/TCSVT.2012.2221191
http://dx.doi.org/10.1016/j.sigpro.2010.10.003
http://dx.doi.org/10.1109/TCSVT.2015.2478707
http://dx.doi.org/10.5815/ijieeb.2015.03.04

Sensors 2021, 21, 4602 24 of 24

34. Weinberger, M.J.; Seroussi, G.; Sapiro, G. LOCO-I: A low complexity, context-based, lossless image compression algorithm. In
Proceedings of the Data Compression Conference—DCC’96, Snowbird, UT, USA, 31 March–3 April 1996; pp. 140–149.

35. Wu, X.; Memon, N. CALIC-a context based adaptive lossless image codec. In Proceedings of the 1996 IEEE International
Conference on Acoustics, Speech, and Signal Processing Conference Proceedings, Atlanta, GA, USA, 9 May 1996; Volume 4,
pp. 1890–1893.

36. Yamagiwa, S.; Kuwabara, S. Autonomous Parameter Adjustment Method for Lossless Data Compression on Adaptive Stream-
Based Entropy Coding. IEEE Access 2020, 8, 186890–186903. [CrossRef]

37. Ziv, J.; Lempel, A. A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 1977, 23, 337–343. [CrossRef]
38. Yamagiwa, S.; Marumo, K.; Kuwabara, S. Exception Handling Method Based on Event from Look-Up Table Applying Stream-

Based Lossless Data Compression. Electronics 2021, 10, 240. [CrossRef]
39. FOURCC, YUV Pixel Formats. Available online: https://www.fourcc.org/yuv.php (accessed on 1 July 2021).
40. Huynh-Thu, Q.; Ghanbari, M. Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 2008, 44, 800–801.

[CrossRef]
41. Li, H.; Forchhammer, S. MPEG2 video parameter and no reference PSNR estimation. In Proceedings of the 2009 Picture Coding

Symposium, Chicago, IL, USA, 6–8 May 2009; pp. 1–4. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2020.3029705
http://dx.doi.org/10.1109/TIT.1977.1055714
http://dx.doi.org/10.3390/electronics10030240
https://www.fourcc.org/yuv.php
http://dx.doi.org/10.1049/el:20080522
http://dx.doi.org/10.1109/PCS.2009.5167426

	Introduction
	Background and Definitions
	Visual Data Compression
	Visual Lossless Compression Methods
	ADPCM
	Stream-Based Lossless Data Compression
	Discussion

	Visually Lossless Data Compression Applying Variable Bit-Length ADPCM
	System Modelling
	ADPCM with Variable Bit-Length Control
	Application Examples with Variable Bit-Length ADPCM

	Experimental Evaluation
	Experimental Setup
	Evaluation for Variable Bit-Length ADPCM Encoding
	Evaluation for Video Transfer System with ADPCM-VBL

	Conclusions
	References

