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Abstract: The sparse data in PM2.5 air quality monitoring systems is frequently happened on large-
scale smart city sensing applications, which is collected via massive sensors. Moreover, it could
be affected by inefficient node deployment, insufficient communication, and fragmented records,
which is the main challenge of the high-resolution prediction system. In addition, data privacy in
the existing centralized air quality prediction system cannot be ensured because the data which are
mined from end sensory nodes constantly exposed to the network. Therefore, this paper proposes a
novel edge computing framework, named Federated Compressed Learning (FCL), which provides
efficient data generation while ensuring data privacy for PM2.5 predictions in the application of
smart city sensing. The proposed scheme inherits the basic ideas of the compression technique,
regional joint learning, and considers a secure data exchange. Thus, it could reduce the data quantity
while preserving data privacy. This study would like to develop a green energy-based wireless
sensing network system by using FCL edge computing framework. It is also one of key technologies
of software and hardware co-design for reconfigurable and customized sensing devices application.
Consequently, the prototypes are developed in order to validate the performances of the proposed
framework. The results show that the data consumption is reduced by more than 95% with an error
rate below 5%. Finally, the prediction results based on the FCL will generate slightly lower accuracy
compared with centralized training. However, the data could be heavily compacted and securely
transmitted in WSNs.

Keywords: federated compressed learning; data privacy; smart city sensing

1. Introduction

With the increasing air pollution in recent years, especially in industrialized countries,
toxic substances attached to the particulate matter have entered the human body through
the respiratory system. The Health Effects Institute (HEI) reported in 2018 that the over
95 percent of the world’s population is breathing unhealthy air. In 2018, long-term exposure
to air pollution contributes to the deaths of 6.1 million people with strokes, heart attacks,
lung disease, and lung cancer [1]. One of the air pollutants is particulate matter (PM)
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with a size below 2.5 µm (PM2.5). These micro particles are the most dangerous forms
of air pollution because they can penetrate deep into the lungs [2]. For every 10 µg/m
increase in PM pollutants, the risk of lung cancer increases by 22% [3]. To combat urban air
pollution, scientists need long-term efforts in collecting pollution data to build an accurate
air pollution prediction system. The effort includes the implementation of the ideal smart
city. The concept of the ideal smart city allows microelectronic devices to be installed
in urban areas to collect environmental pollution data accurately. This concept needs
sensory nodes that are spread massively, evenly, and integrated into the sensor network
system. However, the sparse data and missing records are always found in this extensive
network [4–6]. These problems appear due to the massive node deployment with uneven
and inefficient distribution, the data losses during the transmission process, and the failure
nodes. The accuracy of the prediction system decreases due to duplicated, corrupted, and
unbalanced data in the data mining process. Therefore, the massive sparse sensory data
affected by inefficient node deployment, insufficiency of communication, and fragmented
records become the main challenge of a high-resolution prediction system.

Recently, more and more scientists have started to utilize edge computing technology
to solve the main challenge [7–9] mentioned above. The edge computing technology allows
centralized computing to be distributed to smaller nodes on the edge of networks [10]. This
technology can be implemented in air quality prediction systems that perform measure-
ments over thousands or even millions of sensory nodes. The implementation is realized
by using micro-sensor nodes, e.g., Internet of Things (IoT) nodes, which are connected
to cloud servers via the Internet. In addition, IoT technology opens up new possibilities,
especially for the development of sensor nodes that are smart, energy-efficient, and easy to
be implemented, although at the expense of higher data latency and smaller computing
resources [11]. However, the more sensor variants and the denser the sampling rates, the
more congested the data traffic, the higher the use of processing resources and the power
consumption in a WSN. Compressed sensing (CS) techniques can generate an efficient
amount of data while maintaining data integrity in the WSN [12–14]. Meanwhile, in an
established prediction system (i.e., Airbox system), centralized servers record the user’s
address, geolocation, timestamp, PM concentration, temperature, and humidity data to
generate predictions and visualizations. A system owned by the government monitors
urban air quality using many sensors, but with a lower resolution. On the other hand, with
the support from the community, the existing system offers a more massive spread of sen-
sory nodes with a higher sampling rate. However, with a higher sampling rate, the existing
system generates a lot of data which sometimes does not contribute much to prediction
accuracy and increases the possibility of serious data leaks, e.g., side-channel attack. There
is a significant risk for the users related to privacy issues with the large number of nodes
that record all activities and conditions at their residential areas [15,16]. The previous study
has shown that a simple piece of information can be used as knowledge material for third
parties, e.g., the microenvironmental concentration of PM2.5 is strongly influenced by user
activities [17,18]. The current system is also prone to be misused by certain parties, such
as during the mayoral election, where data representing the government’s performance
becomes very valuable. The proposed scheme allows the public to be a cross-validator
for the condition of their city without exposing their identity while educating residents to
implement efforts to reduce air pollution levels. Therefore, efficient data generation and
privacy issues are the main concerns in the development of smart city sensing.

To overcome these problems, a new framework named Federated Compressed Learn-
ing (FCL) is presented in this study to generate data efficiently while maintaining data
privacy. By implementing compressed sensing, the networks’ data traffic can be signifi-
cantly reduced. Meanwhile, federated learning ensures that raw data are not exposed to
the network. In contrast to the centralized learning model, FCL inherits the basic ideas of
compression technique, regional joint learning, and also considers the secure data exchange.
FCL can leave the training data distributed on the secure fog coordinators and learn a
shared model by aggregating compressed parameters locally. This proposed framework
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covers system architecture from end devices to cloud servers. At the low level, several sen-
sor nodes record data, apply compression techniques, and send the compressed data to the
coordinator. At the mid-level, several coordinators work together on an aggregated training
scheme to produce a shared knowledge that could be used by the prediction model. Finally,
at the top level, cloud servers (i.e., aggregation servers) manage the federated learning
process and provide a prediction interface to the end users.

The novelties and contributions of this paper are summarized as follows. First, a
novel framework based on Wi-Fi and ZigBee protocols is proposed to serve thousands of
sensor nodes connected in smart cities. The ZigBee network is used at the lower network
to cover more nodes in a broader area. Meanwhile, the Wi-Fi network is used to link
the coordinators with the aggregation server. Second, end devices (i.e., sensor nodes) are
required to transmit data continuously from a low-powered wireless network (i.e., ZigBee)
to a high-powered wireless network (i.e., Wi-Fi) without sacrificing data error rates. A
hybrid device that bridges these two communication protocols is designed. Third, the
CS technique is implemented to reduce the data collected from the edge of the network.
Meanwhile, data savings on the upper network are carried out by aggregating local model
(i.e., a collection of weights) in FL scheme. Fourth, federated learning is implemented
to reduce the network congestion while maintaining data privacy. Each small network
under a coordinator node only sends its local model to the aggregation server. This
aggregation scheme ensures significant information leakage (i.e., raw data) is not exposed
on the networks. Finally, this study uses LSTM networks to generate predictions of PM2.5
concentrations. A comparative experiment is carried out to evaluate the performance of
the scheme. In addition, the reconstructed and forecasted data is presented in the results.

The remainder of this paper is organized as follows. Section 2 provides an overview of
the works related to the WSN-based prediction system in the centralized and decentralized
scheme. In Section 3, the proposed prototypes are described in detail, including the data
compression technique. Section 4 describes the edge computing scheme by using federated
learning. Furthermore, evaluation scores and descriptions of the results are presented in
Section 5. Section 6 provides discussion and, finally, a brief conclusion is presented in
Section 7.

2. Related Works
2.1. Compressed Sensing

Recently, WSN has been developed into intelligent computing nodes that could be
deployed massively by considering its scalability and power-saving capabilities. With the
increasing number of nodes in WSNs, it is challenging to maintain the nodes that have been
distributed in a large area over a long period of time. There is a possibility of performance
degradation in several nodes or even crashes. Researchers used many approaches to make
the WSN system easily implemented, especially in smart city sensing [19,20]. The sensor
nodes with Wi-Fi capability are mostly used on WSN that are widely already available in
urban areas. Although this technology is limited to its smaller coverage services, it can be
quickly implemented as many devices already support this protocol. WSN can be expanded
by using several protocols, e.g., Bluetooth, ZigBee, LoRa, NB-IoT, or even LTE networks.
This study introduces a hybrid topology to expand the WSN service area by combining
ZigBee-based sensory node and Wi-Fi-based edge computing technology. By using ZigBee
networks, a larger number of nodes and a longer distance can be achieved better than by
using Wi-Fi networks. A ZigBee network can serve clients up to 224 devices in a mesh
configuration with a range of up to 100 m in urban area and up to 1 km outdoor. However,
with the massive deployment of sensor nodes, there are possibilities that incomplete records
and information leaks emerge due to the large amount of data being transmitted in the
network. A compressed sensing technique can be implemented on WSNs to generate a
small amount of data without sacrificing data fidelity [21,22]. Furthermore, the higher the
data fidelity, the more accurate the performance of the AI model in predicting or making
decisions [23].
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Various CS techniques have been developed to achieve various WSN requirements,
and many of them are considered lossy compression. As described in [22], the CS is a
technology that utilizes fewer data (than those in the Nyquist–Shannon theorem [24]) to
reconstruct the original data, as long as the data is compressible in particular transform the-
orem. The classical transform theorems (i.e., lossy compression) include Fourier transform,
Hadamard transform, discrete cosine transform, and discrete wavelet transform are proven
to be used to reduce communication overhead. Lossy compression can reduce data size
significantly with a small error rate [25,26]. In some previous applications, the compression
often shows small data changes even, quite sharp deformations appear in a small data area.
In observation applications such as climate data analysis [27], a meaningful analysis can be
investigated from the reconstructed data. The results reveal a small difference in average
error rate using the compression rate of up to 80% of the original data. It can be seen from
the reconstructed signal that is statistically indistinguishable from the original.

2.2. Privacy Issues in Smart City Sensing

Privacy is a big issue in smart city sensing because residents’ personal data is precious,
and it will be more vulnerable with the increasing number of monitoring sites. These
valuable data is associated with the personal information or location of resident. In a
centralized system, a huge amount of raw data from end devices is collected by central
servers [28] and protected by using trust-based service management protocol [29], e.g.,
IoT-HiTrust [30]. However, the system transfers data over the network, allowing the
leakage of critical data [31] and the increasing risk of side-channel attack [32]. The edge
computing framework utilizes federated learning technology, prevents direct access to the
data, moves the compute resource to the edge, and prevents the raw data exchange to the
central server [33–36]. For example, a smartphone that collects location data allows weather
forecasting applications to directly access the user’s location, which violates information-
based privacy. On the other hand, by using FL scheme, applications are only allowed to
access the machine learning (ML) model without compromising data privacy. With this
technology, every edge computing node in different areas contributes to the model training
globally, while keeping the training data locally. In this study, every edge computing node
(i.e., coordinator node) trains its local model by using a local dataset instead of uploading
the dataset to central servers.

2.3. PM2.5 Prediction System

There is a risk to the population’s health because of industries’ development with
their residual products that pollute the air [37]. Taiwan has installed 77 climate stations
to monitor air pollutants. These stations are assisted by thousands of small sensor nodes
installed throughout Taiwan to generate precise measurements. A study indicates that the
rate of pollutant distribution varies depending on the season, wind direction, condition
of the industrial area, and how wide the area is monitored [38]. A large number of data
is generated during the data acquisition, and the temporal patterns appear in the process.
To gather the temporal data that has a strong correlation, i.e., structurally related in some
specific temporal moments, a large number of sensory nodes require to be installed with an
identical distribution. An integrated sensor network is needed to measure data efficiently
without sacrificing the data precision. Data with temporal characteristics present temporal
dependencies, in which instances are not independent or identically distributed. It means
that samples can be structurally related in some specific temporal moments. The instances
change their class attribute depending on time. Thus, traditional prediction methods cannot
be used in processing the data with temporal characteristics. These methods result in poor
performance and misleading interpretation [39]. This study proposes a new framework to
predict air quality related to PM2.5 by using a compressed dataset collected by coordinator
nodes in a WSN. Each coordinator node receives compressed data from sensor nodes.
Furthermore, a federated learning scheme is combined with compressed sensing to gather
the data efficiently and securely. Federated learning ensures that the original data is not
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exposed from the outside network because only models are sent to the aggregation server.
The neural network model (i.e., LSTM network) is utilized in this framework. LSTM has
been shown to generate better prediction than other neural network models, especially on
sequence data [40,41]. Finally, this study presents a system architecture for a massive-scale
WSN that combines CS and FL in an FCL scheme to support smart city sensing.

3. Designing of Sensor Nodes Based on Compressed Sensing

Wi-Fi-based sensory nodes are easily implemented in urban areas. However, these
nodes are difficult to implement in suburban areas that are not covered by Wi-Fi signals.
In fact, the source of air pollution not only comes from industrial areas and city traffics,
but also from areas outside the city. The source of PM pollution also comes from carbon-
burning smoke, especially during forest fires. The PM measurements over a wider area
provide the PM propagation from time to time from its sources to residential areas. A new
scheme to deploy the PM monitoring nodes is introduced in this section by considering
the smart city concept. This scheme uses a combination of ZigBee and Wi-Fi network
technology to increase its coverage area. The ZigBee protocol provides a low latency link
that allows hundreds of nodes to be connected in a mesh network; thus, it can deal with
data with a finer sampling rate. This protocol is easier to be implemented in cluster-tree
WSNs and compatible with distributed computing schemes. The details of the proposed
scheme are seen in Figure 1, where several sensor nodes are served by a coordinator node
by using the ZigBee network. Several coordinators are connected to an aggregation server
in the FL scheme via Wi-Fi network and they will contribute to the aggregated learning.
This section describes the CS algorithm, hardware design, and pseudocode, which are
afterwards implemented on sensor nodes.
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3.1. Compression Algorithm

A signal in Discrete Cosine Transform (DCT) is represented as a sum of a sinusoid of
varying magnitudes and frequencies. The DCT is one of the lossy compression techniques.
This study uses DCT compression because it has very strong energy compaction proper-
ties [25,42]. As shown in Figure 2, by applying the DCT-II variant, more data will be stored
in the lower frequency vectors. A large amount of information is compacted in a very
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low-frequency component of a signal and the rest (i.e., the higher frequency components)
can be removed. This information is stored by using very few bits. The DCT vectors with a
higher value than the energy concentration threshold, are saved because they significantly
impact the data reconstruction.

Figure 2. A sample of one-day measurement of PM2.5 collected and processed using DCT
compression.

The stages of the DCT compression algorithm include the following steps:

1. Convert the data from the spatial domain into the frequency domain, the DCT formula
is used as follows:

yi = ωi

J

∑
j=1

xjcos
(

π(j + 0.5)i
J

)
(1)

where ω, x, y, j, i, J denote the scaling factor, the original data, the DCT vector, index
of data x, the DCT vector index, and the length of the data x, respectively. The scaling

factor is defined as ωi =
1√

J for i = 1; otherwise ωi =
√

2
J .

2. Calculate energy concentration among the DCT vector to define the frequency thresh-
old for distinguishing values. The DCT vectors y are sorted in descending order
which is denoted as: y = {yn, yn−1, yn−2, . . . , y1}. Define i, which determines how
many frequencies that are required to represent the amount of the energy in the signal
by using energy concentration threshold (σ), where 0 < σ < 1.

norm(y[1 : i])
norm(y[1 : N])

< σ (2)

where the norm(·) is calculated by the Euclidean normalization (p-norm, p = 2) of y.
3. Apply an IDCT formula to reconstruct the data from the remaining DCT vectors,

defined as follows:

x′ i = ωi

J

∑
j=1

yj cos
(

π(i + 0.5)j
J

)
(3)
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where ω, y, x′, j, i, J denote the scaling factor, the remaining DCT vector, the recon-
structed data, index of the DCT vectors, index of the reconstructed data and the length
of data y.

3.2. Design of Hardware Prototype

A small network consisting of four prototypes attached in Figure A1 includes of a
coordinator node and three sensor nodes. There are three main parts that build the system
architecture, i.e., sensor node, coordinator node, and aggregation server. The sensor node
is developed using 8-bit microcontrollers AT-mega 32u with a clock speed of 16 Mhz. Each
sensor node is equipped with a PMS5003 particulate matter sensor which is connected to a
microcontroller via a serial interface. These sensors can measure several sizes of particulate
matter (i.e., PM1.0, PM2.5, PM10), temperature, and humidity. Another serial interface is
used to connect the microcontroller with XBee Pro S2C module. This module provides
wireless connection capability (i.e., ZigBee network), to the microcontroller. To balance the
voltage level between interfaces, an IC 74AC245DW is used as a level shifter. To convert
the voltage to 3.3 V on the system, IC MIC5219 is applied. The sensor node is supplied by
an external power supply from a 5 V battery. Each sensor node is capable of performing the
DCT compression on a small sequence of data. These nodes also have the ability to enter
sleep mode. The sleep mode is activated to save processing power leading to a decreasing
in energy consumption. Meanwhile, the coordinator node is powered by Raspberry Pi 3
B+ and XBee Pro S2C module to collect the compressed data from the sensor nodes, then
transmit it to the aggregation server. Finally, the coordinator uses Wi-Fi or Gigabit LAN
port to connect to the server via an Internet router.

3.3. Software Development

The lossy compression technique is suitable to be applied to data generated by IoT
sensors, especially related to weather monitoring, where the data is relatively and periodi-
cally stable with a low level of randomness. A data transmission framework is needed to
maintain the data communication efficiently in WSN, described in Algorithm 1. The user
interface to monitor the processes is also created and shown in Figure A2. A coordinator
provides services for several sensor nodes in a ZigBee network. Furthermore, the data are
transferred in a compressed format to provide efficient data transmission while reducing
missing records and maintaining data integrity.

First, the coordinator will send a message (c) in the ZigBee network to read data on
one of the nodes. All sensor nodes via the interrupt mechanism will receive the message.
Only the corresponding node gives the response back, meanwhile, the other nodes remain
in sleep mode. The corresponding node will start the data recording process. A 30 s
delay is required before the PMS sensor module provides stable measurement results.
Measurements are made using sampling rate (N). After reaching N samples, i.e., specified
by the coordinator, the sensor node converts the data x into y by using the DCT, compresses
it, and then sends it to the coordinator via the ZigBee network. After the data y are sent, the
sensor node enters the sleep mode again. Meanwhile, the coordinator receives the data y
periodically from each node and uses it on an aggregate learning scheme, i.e., coordinated
by an aggregation server. After that, all of the coordinator nodes send the learning model
simultaneously to the aggregation server via the Internet. Finally, the prediction results ŷ
can be monitored from user interface that is provided by the server.
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Algorithm 1 Compressed Sensing

Input: Command (c)
Output: Compressed Data (y)
function Compression ()
Serial.interrupt ()
if (Serial.read (c) == true)

sleep (false) # activate the node
PMS5003.sleep (false) # activate the sensor
x = PMS5003.read{x1, x2, x3, . . . , xN} # read the sensor
y = dct(x) # compress the data
PMS5003.sleep (true)
sleep (true)

end if
return: y

4. Privacy-Preserving Prediction Model with Federated Learning

This section describes the concept of federated learning that preserves data privacy on
a WSN network. This scheme is performed by coordinators and an aggregation server. The
neural network model (i.e., long-short term memories) is constructed on every distributed
compute unit (i.e., coordinator); meanwhile, the central server organizes the FL scheme
that aggregates the learning model from the coordinators.

4.1. LSTM for PM 2.5 Prediction

It has been shown that Long-Short Term Memories (LSTMs) can be used prediction
systems to forecast sequence data [43,44]. In order to construct the proposed model, several
layers of LSTMs are compiled as shown in Figure 3. In this model, the data xN are extracted
from PMS5003 sensor with a data rate of N. Afterwards, the data are converted into
compressed data yt; then they are used as the LSTM input layer. The number of N varies
up to 50 depending on the length of the compressed data, which can be smaller if the data
can be compacted more densely. The LSTM uses two gates to control the content of the
cell state c. One is the forget gate, which determines how much of the cell state ct−1 at
the previous time is retained to the current time ct. The other is the input gate, which
specifies the amount of network input yt; at the current moment it is saved to the unit state
ct. The LSTM uses output gates to control how much of the unit state ct, i.e., output to the
current output value ht. In each round of the LSTM network update, the cell accepts the
hidden state ht−1 and input yt of the previous cell in the cell sequence. The cell controls
whether or not to discard a certain calculation process which defines the output. ft of the
forgetting gate is shown in Equation (4), where ζ is the sigmoid activation function; W f is
the forgetting gate weight matrix; b f is the forgetting gate bias term.

The basic idea of this LSTM network is to determine the retained information through
a layer containing an activation function and then generate the cell state ct at the current t.
The estimation process is considered as a combination of the following two calculations.
Equation (5) calculates what information in the current cell input yt needs to be saved to the
current state ct of the long-term and short-term memory network cells. The sigmoid layer
of the input gate layer determines which information needs to be updated. In addition, in
Equation (6), the tanh layer generates a vector which is the alternative content to update.
Finally, the final output ŷ of this LSTM network is the prediction of the next sensory
value xN+1.

ft = ζ
(

W f ·(ht−1, yt) + b f

)
(4)

it = σ(Wi·(ht−1, yt) + bi) (5)

c̃t = tanh(Wc·(ht−1, yt) + bc) (6)
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Figure 3. The proposed PM2.5 prediction system utilizes LSTM model on compressed datasets.

4.2. Federated Learning for PM2.5 Prediction

Federated compressed learning is based on compressed sensing and distributed
learning, and its parameters updating method is similar to the basic idea of federated
learning. In this paper, the federated compressed learning is focused on the top layer of
the framework near the central server to train the prediction model. At first, the lower
layer (i.e., near the edge) transmits the compressed data to the regional micro cloud or the
fogs. The aggregation learning is provided by the coordinators and the aggregation server
by updating global model regularly based on the local training models. FL architecture
in its basic form consists of a curator or server that is coordinates training activities with
the aggregate nodes (i.e., the coordinators). Clients are mostly fog devices that can reach
thousands. These devices communicate at least twice with the server per training iteration.
In Figure 4, the aggregation server initiates the global model (1). Then, each client receives
the current global model weight from the server (2). Then, each client trains it on each
of its local data (3) to generate updated parameters which are then uploaded back to the
server for aggregation (4). This communication cycle continues until a predetermined
number of periods, or an accuracy condition is reached. In this scheme, the aggregation is
performed using the averaging operation. Algorithm 2 describes the pseudocode of the
training process in this scheme.
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The initialization process is started by randomizing the weights at k = 0 as a global
model wk=0. Then, the global model is distributed to each coordinator. Each coordinator
has collected compressed dataset from each sensor node in the lower layer of a local dataset
(yn, ŷn). By using this local dataset, each coordinator trains (optn) the LSTM model using
mean absolute error function (MAE) to generate a new local model wk

n. In the end, the
aggregation server generates and distributes a new global model wk+1 by averaging all
local models wk

n; n = 1, 2, 3, . . . , N. Therefore, the communication on the central network
does not involve data from the edge, but only collections of aggregated models which have
no direct correlation with the dataset.

Algorithm 2 Federated Learning for PM2.5 prediction with Federated Average (FedAvg)

Input:
- Dataset di = (yn, ŷn)
- N number of the client (NB-IoT Sensor Node Coordinator)
- Number of communication round K
- Initial Global Model w
Output: Final Global Model
function Federated_Learning ()
wk=0 = {w1, w2, . . . , w3} ← randomize parameters # initialize global model (1)
for k = 1 to K do

for n = 1 to N do
wk

n = wk # deploy global model (2)

wk
n = optn

(
MAE

(
f wk

n(yn, ŷn)
))

# train local model (3)

end for
wk = 1

N ∑N
n=1 wk

n # update global model (4)
end for
return: a global model wk

5. Experiments and Results

In this section, the datasets are analyzed statistically. Then, the compression parameter
is tuned to achieve a lower data saving ratio with a lower error rate. By using the tuned
parameter, a performance comparison for each FL scheme is provided. Finally, the security
analysis is presented at the end of the section. In addition, the experimental results are
performed by using prototypes with hardware specifications defined in Table 1.

Table 1. The specifications of the prototypes used in the experiments.

Properties Sensor Node Coordinator Node Aggregation Server

Processor Single Core
ATmega 32u

Quad Core Broadcom
BCM2837B0

Dual 20-Core Intel Xeon
E5-2698 v4

Architecture 8-bit AVR ARMv8 x86-64
Clock speed 16 MHz 1.4 GHz 2.2 GHz

RAM 2.56 KB 1 GB 256 GB

Network interface Serial XBeePRO S2C
Serial XBeePRO S2C

Wi-Fi 2.4 GHz
Gigabit LAN

10 Gigabit LAN

Storage EEPROM 1 KB MicroSD 32 GB SSD 1.92 TB
PM Sensor Plantower PMS5003 - -

Power consumption (watt) 0.9 3.6 1600

5.1. Evaluation

The following metrics are used to evaluate the CS performance: data saving ratio and
error rate. Meanwhile the FL performance is measured using mean absolute error.
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1. Data saving ratio (ς): The smaller the data saving ratio, the more effective the compres-
sion algorithm is. The data saving ratio is performed by using the following equation:

ς =
{X} − {Y}
{X} (7)

where {X} is the size of original data x and {Y} is the reduced size of DCT vectors.
2. Error rate (ε): The smaller the error rate, the more effective the compression algorithm

is. The error rate calculation performed to a set of reconstruction data, is given by:

ε =
1
I

I

∑
i=1

|yi − x′ i|
x′ i

(8)

where x is the original data, x′ is the reconstructed data, and I is the index of the data.
3. Mean absolute error (MAE): is a loss function on neural network model that can be

applied to data with large outliers. This value is calculated as the average of the
absolute difference between the actual and the predicted values. The model can be
updated to use the MAE loss function. The MAE performed by each FL variants, is
given by:

MAE =
1
I

I

∑
i=1

∣∣∣ŷtarget(i) − ŷpredicted(i)

∣∣∣ (9)

where ŷtarget(i) is the target data, ŷpredicted(i) is the prediction data, and i is the index of
the data.

5.2. Dataset Characteristic

The compressed sensing algorithm is evaluated by using datasets that were recorded
during September 2020. The datasets consist of a large dataset obtained from the Airbox
system, which includes 1000 devices that spread across Taiwan and a small dataset, col-
lected from the prototype. For this experiment, five variables (i.e., generated by PMS5003
sensor module) are measured from the prototype in a suburban district, Wufeng in Taiwan,
i.e., consisting of PM1.0, PM2.5, PM10, temperature, and humidity. The dataset is collected
with a time sampling of 5 min. The shorter the sampling time, the more the data that will
be generated. Moreover, statistical assessments are used to evaluate the characteristics for
each type of dataset.

Table 2 presents statistical properties consisting of standard deviation (SD), normalized
standard deviation (NSD), skewness, and kurtosis from the open dataset. The NSD is the
statistical assessment that is used to determine how the data is scattered in the sample
and how close the individual data points are to the mean value. Skewness is a value that
shows the asymmetry degree of a dataset distribution. Skewness over 1 and below −1
indicates that the data is highly skewed. Meanwhile, kurtosis is the level of distortion in
a distribution. A kurtosis i.e., higher than 3 or lower than −3 in a set of data, indicates
that the data have heavy outliers. If a dataset has a high kurtosis value, an investigation is
needed to find the cause of these many outliers. This might indicate an incorrect data entry
or data sparsity because of the system’s weaknesses.

In the datasets that are collected from the Airbox system, different statistical char-
acteristics are observed for all metrics, and it can be divided into two groups, namely
the PM datasets and the non-PM datasets. The PM1, PM2.5, and PM10 datasets have a
much higher skewness value compared to the other datasets. For those three datasets,
the kurtosis highly deviates from 3 when compared with the other two datasets. The
distribution of those three datasets has values that change more sharply than those of
the normal distribution. However, the kurtosis for temperature and humidity datasets is
lower than 3, which indicates that the data distribution is closer to normal distribution.
It can be concluded that the PM datasets obtained from the Airbox sensor network are
distorted and fragmented. On the other hand, in the dataset that is recorded by using the
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prototypes, similar statistical characteristics are detected for all metrics. The prototypes
are able to collect data with skewness and kurtosis value under 1 and 3 respectively. The
data distribution in the datasets is not too deviated. The system is made only on a small
scale. Thus, it minimizes the occurrence of fragmented sparse data. The larger the network,
the more potential for sparse data to appear. Therefore, the weaknesses of complex and
massive WSN are minimized by implementing the FCL method.

Table 2. Statistical characteristics of dataset that is used for experiments.

Dataset Variable SD NSD Skewness Kurtosis

Airbox
(1000 nodes 78.5 MB)

PM1.0 12.315 0.018 3.173 78.599
PM2.5 17.513 0.022 3.184 76.301
PM10 22.947 0.021 1.969 42.091

Temperature 3.401 0.074 0.142 0.853
Humidity 13.192 0.167 0.117 −0.374

CS Prototype
(4 nodes 437 KB)

PM1.0 1.949 0.452 0.897 0.546
PM2.5 1.845 0.223 0.692 0.980
PM10 2.345 0.167 0.622 0.977

Temperature 6.385 0.336 0.210 0.649
Humidity 17.060 0.247 1.044 0.336

5.3. Tuning Energy Concentration Threshold

Energy concentration threshold (σ) determines a series of signal properties that have a
significant impact to redefine the signal. The energy concentration is calculated from its
DCT vectors using Equation (2). From its energy concentration series, several threshold
values are chosen: 0.7, 0.8, 0.9, 0.99, and 0.999. The data with energy concentration below
the threshold represents a value that has no significant impact and can be ignored. This
value is removed so that the DCT vector series will be drastically reduced. From the
remaining DCT vector values, the signal is reconstructed. To evaluate the data fidelity, the
original data is compared with the reconstructed data. The smaller the errors, the more
efficient the compression algorithm. As shown in Figure 5a, from the five variables tested,
the error rates look similar. The differences are not too far and look almost the same when
the higher energy concentration threshold is used. The error rate starts to decrease below
5% when the energy threshold is set to greater than 0.9 for all data variables.

In the next experiment, the data saving ratio is evaluated by changing the energy con-
centration threshold, shown in Figure 5b. The data saving ratio represents the comparison
between the amount of compressed data and the amount of original data. The smaller the
ratio, the better the compression algorithm used. This means that the original data can
be compacted into smaller series of data. In other words, the storage capacity which can
be saved is even greater. By changing the energy concentration threshold to its savings
ratio, it produces linear results. The lower the energy concentration threshold, the smaller
the data saving ratio. Moreover, by using the maximum data saving ratio, i.e., 0.999, the
DCT could save storage a little bit. Furthermore, it is necessary to observe the effect of the
data storage ratio on the error rate. The best parameters for the five variables should be
observed to provide the most optimal compression results. The results are optimal if the
data storage ratio is low and followed by a low error rate. In Figure 5c, the variation of
data results for several different energy compaction thresholds is displayed. The optimal
value is obtained for each variable is σ = 0.9, which achieves a low data saving ratio of
around 95%. Meanwhile, by using a higher energy concentration threshold, (e.g., 0.99) the
error rate decreases more but it sacrifices the data saving ratio. It means the amount of data
that could be saved is not too much. Finally, this compressed data with σ = 0.9 will be used
in further experiments related to the FCL scheme. As a comparison, another CS technique,
i.e., discrete wavelet transform (DWT) is used to evaluate the efficiency of CS performance.
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Figure 5. Comparison between (a) error rate and (b) data saving ratio with various σ on the recon-
structed data. Meanwhile (c) evaluates the optimal value of σ that achieves efficient data generation
while maintaining data fidelity.

5.4. FCL Performance

From Figure 6, first, when the number of aggregate nodes is compared, even if the
size of the epoch increases, it has an effect on reducing the reconstruction errors, i.e.,
evaluated by using MAE loss. Therefore, in the FL scheme, defining a number of nodes is
an important key that affects the accuracy of the prediction system. Then, the prediction
errors of the several algorithms are compared, i.e., Centralized Learning (CL), Centralized
Compressed Learning (CCL), federated learning with 10 and 100 aggregate nodes (FL
10, FL 100), and federated compressed learning with 10 and 100 aggregate nodes with
DCT-based and DWT-based algorithm (FCL 10–DCT, FCL 100–DCT, FCL 10–DWT, FCL
100–DWT). The overall MAE loss after 50 epochs for each algorithm is 2.05, 0.61, 1.97, 0.49,
6.54, 2.83, 6.36, 2.79, 6.39, and 2.78, respectively. Compared with the CL algorithm as a
baseline, the MAE loss of FL 10 and FL 100 algorithm is increased by 29.8% and 65.7%,
respectively. The more nodes involved in the FL scheme, the higher the MAE loss given
by the training algorithm. In general, there is no significant difference between FCL using
the DCT or DWT technique in term of training performance. However, the DCT variant
generates a more compact data than the DWT variant. Meanwhile, when comparing the
MAE loss of CL scheme with those of FCL 10 and FCL 100, the training losses increase by
around 100% and 120%, respectively. Thus, even under different network configurations,
the FCL algorithm increases prediction errors and decrease data reconstruction accuracy.
However, the decline in training performance has not shown the general performance of
the prediction system. These results are only a raw description of the declining training
loss of the FCL scheme compared with the centralized training.
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For a deep understanding of system performance in predicting the PM2.5 concentra-
tions, an inference procedure is performed on the dataset by using the best performance
(i.e., CL) and the worst performance (i.e., FCL) achieved by the training scheme based on
Figure 6. Finally, the prediction performances are shown in Figure 7. In general, all of the
FL-based schemes produce a slight reduction compared to the results achieved using the
CL scheme. Qualitatively, the prediction results still show good results even though the
accuracy decreases. It can be seen that the data prediction resembles the ground truth.
This is understandable because the difference in MAE loss is not too big, only in the range
of 0.01. The results show a slightly decreasing 0.564 in the RMSE between both of them.
However, the FCL scheme still has benefits in terms of data privacy.
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5.5. Security Analysis

The privacy protection capabilities of the proposed framework are described from
the following standpoints. From the data access standpoint, the proposed framework, i.e.,
developed based on the FL, can protect the original data by only sending the prediction
model parameters through the network. The core idea is to distribute the training mecha-
nism to the edge networks performed by the smaller nodes. As long as the original data
from the end nodes are not exposed to the network, the chances of being eavesdropped on
can be minimized. Specifically, the federated model achieves a slightly lower accurate pre-
diction of PM2.5 concentration compared with the centralized one; however, it guarantees
information-based data privacy. From the data generation standpoint, the experimental
results show that the performance of the proposed framework (i.e., the FCL) is comparable
to the centralized model (i.e., the CL). The CL scheme needs to aggregate a massive amount
of original data to achieve high-precision prediction of PM2.5 concentrations. Meanwhile,
the FCL only collects compressed data from a smaller edge network and aggregates the
parameters (i.e., not contain the original data) to the server. The FCL performs comparable
results to a CL approach under the constraint of privacy preservation and it provides
drastically data reduction over the conventional ones. The FCL also reduces the number of
neurons that are needed to build the prediction model, which incurs a remarkable decrease
in the local training time as well as the aggregated training time. Moreover, the chance of
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sparse data appear because of system complexity, can be reduced by using the denoising
feature on the DCT technique.

6. Discussion

With the increasing number of variables being measured, a massive centralized WSN
is not suitable for use in this case. An approach is needed to transfer a massive amount
of data efficiently while maintaining data privacy. As shown in Figure 8, the proposed
scheme is capable of transferring and reconstructing data with a small amount of data.
The differences between the reconstructed and the original data by using FCL were not
very significant compared with that of using CL. In order to develop a federated learning
scheme to adapt to ever-changing situations, it is necessary to conduct model training on a
wider network over a longer time span. With the training that covers a broader network,
the spatial features are better captured. Meanwhile, with the training on a longer dataset,
(e.g., a year) temporal features could be better extracted. However, the larger and the
longer the dataset, the more the data, the layers, and the parameters. This will increase the
training period and increase transmission costs. Therefore, an edge-computing architecture
is a solution. It means that every end device is equipped with a compute module that is
capable to process a small-scale FL scheme. Furthermore, the training process is carried out
in several stages, starting from the nodes near the edge, leading to FL in fog, until reaching
the cloud. Finally, this scheme effectively avoids network problems such as data overload
and inefficient training by utilizing a more compact and a more robust dataset.
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A set of data sequences, i.e., collected from 1000 nodes in the Airbox system, is used
to simulate the amount of data generation on more complex systems. This simulation
calculates the amount of data that is generated for each scheme. The data generation is
calculated by supposing that the maximum sampling period in an hour is up to 144 data.
During this period, a sequence of data is recorded by each sensor node and each of them
will contribute to the increasing number of data that is generated in the WSN. The greater
the amount of data, the greater the chance that sparse data will appear, and the longer the
time that is required to complete the process. This simulation is carried out by calculating
the amount of data that is generated at the edge of the network (e.g., from the sensor node)
and the number of parameters produced during aggregated training. The results are shown
in Figure 8, where the greater the data rate used, the more data will be produced.
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A slightly different pattern is generated by all schemes that use compressed sensing
techniques. There is a significant reduction in the amount of data when using the CCL
and FCL schemes. The difference becomes greater when using a larger data rate. This is in
accordance with the results in previous tests where the CS method was able to provide a
compression ratio of up to 95%. It is interesting to note that the DCT-based FCL scheme
provides more compact data generation than the DWT-based FCL scheme. As described
in [25,26], the DCT performs a higher compression rate rather than other techniques but,
sacrifices a slight error rate. However, when faced with federated learning problems, both
CS techniques (i.e., DCT and DWT) produce nearly identical learning features. These
similar features are generated by the neural network, which simply translates the input
into vectors that correspond to the targets. A small differentiation of the input vectors will
not significantly affect the training performance. In addition, the FCL will greatly reduce
computation time as well as network traffic. This scheme uses the CS method to compress
data and the FL scheme to provide efficient federation training at the expense of a slight
decrease in the accuracy of the prediction system. The proposed scheme has the potential
to reduce data traffic and power consumption in WSNs, especially in a massive scale smart
city sensing. In summary, Figure 8 shows that:

(1) WSN data generation is significantly compacted by the CS in comparison to conven-
tional approaches without the CS. The efficiency of the CS in reducing the data is the
key factor in the computation efficiency of the FCL.

(2) Data privacy is guaranteed by the FCL scheme at the top layer, while security at the
bottom layer is maintained by the CS techniques.

The analysis process needs to be carried out carefully by identifying and positioning
the performance metrics and trade-offs in relation to each other before concluding gener-
alizations. The target is therefore to generate a cost and trade-off model that takes into
account the following indicators, i.e., MAE loss vs. communication round, data genera-
tion vs. sampling resolution, and execution time of training vs. inference. Based on the
experiments, the FCL generates a slightly higher error rate (i.e., measured with MAE) than
the other schemes. However, as proof of concept, this scheme offers more efficient data
generation and privacy preserving. Moreover, the proposed scheme produces an efficient
amount of data with increasing number of data sampling resolutions. Theoretically, the
greater the data processed, the more time required by the system to complete the training.
The simulation notes that the execution time per epoch at the training stage for the CL, CCL,
FL 10, FL 100, FCL 10–DCT, FCL 100–DCT, FCL 10–DWT, FCL 100–DWT scheme is 13 s, 3 s,
285 s, 2460 s, 207 s, 1845 s, 245 s, and 1985 s, respectively. These execution periods are corre-
lated to the number of input dataset that have been compressed. Generally, all of the FCL
schemes generate a longer execution time than the centralized scheme, but shorter than the
conventional FL schemes. In a real-time application, only the inference engine contributes
to the processing speed while generating prediction results. The execution time depends
on hardware variations, the number of nodes, and communication delay. However, the
processing speed of the inference engine will not differ too much for all schemes because
basically, the inference engine only processes one-time forward propagation in neural
networks. Finally, other practical considerations regarding the implementation feasibility
of these machine-learning models are parallelization over multiple cores or nodes and the
availability of hardware-accelerated infrastructure.



Sensors 2021, 21, 4586 17 of 20

7. Conclusions

In this paper, the FCL framework in which the core idea inherits compressed sensing
combined with federated learning is proposed to reduce data sparsity. Based on that, an
edge-computing architecture to develop an inference framework for smart cities sensing is
provided. This architecture could easily and simultaneously solve the problems of node
deployment, communication efficiency, and fragmented records while preserving data
privacy. The proposed framework could be implemented by using the WSN nodes and
built from a small low-powered compute unit, i.e., an IoT application suitable for a smart
city. This study also extends the FL scheme to the FCL scheme for broader application
scenarios with thousands of the end devices. In the future, the multi-layer LSTM in the
FCL scheme will be developed and used to solve the distributed prediction problem in
more application fields.
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Figure A1. (a) The schematic of the prototype. (b–d) The deployment of the sensory nodes during real-time measurements.
(e) The prototype that is used in data acquisition process involving a coordinator node (white) and three sensor nodes (blue).
The sensory nodes use ATmega 32u microcontrollers while the coordinator nodes use Raspberry Pi 3 B+.
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