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Abstract: Freehand exercises help improve physical fitness without any requirements for devices or
places. Existing fitness assistant systems are typically restricted to wearable devices or exercising
at specific positions, compromising the ubiquitous availability of freehand exercises. In this paper,
we develop MobiFit, a contactless freehand exercise assistant using just one cellular signal receiver
placed on the ground. MobiFit passively monitors the ubiquitous cellular signals sent by the base
station, which frees users from the space constraints and deployment overheads and provides
accurate repetition counting, exercise type recognition and workout quality assessment without any
attachments to the human body. The design of MobiFit faces new challenges of the uncertainties not
only on cellular signal payloads but also on signal propagations because the sender (base station)
is beyond the control of MobiFit and located far away. To tackle these challenges, we conducted
experimental studies to observe the received cellular signal sequence during freehand exercises.
Based on the observations, we constructed the analytic model of the received signals. Guided by the
insights derived from the analytic model, MobiFit segments out every repetition and rest interval
from one exercise session through spectrogram analysis and extracts low-frequency features from
each repetition for type recognition. Extensive experiments were conducted in both indoor and
outdoor environments, which collected 22,960 exercise repetitions performed by ten volunteers
over six months. The results confirm that MobiFit achieves high counting accuracy of 98.6%, high
recognition accuracy of 94.1% and low repetition duration estimation error within 0.3 s. Besides,
the experiments show that MobiFit works both indoors and outdoors and supports multiple users
exercising together.

Keywords: cellular signal; freehand exercise; wireless sensing; mobile sensing; cellular sensing

1. Introduction

Freehand exercise, with its advantage of convenience, has become one of the most
popular physical activities to improve fitness, reduce weight and keep in shape [1]. The
assistant to track and assess freehand exercises helps improve fitness quality. However,
existing fitness assistants based on cameras, wearable devices or RFIDs have various
limitations. Camera-based systems are sensitive to lighting conditions and may introduce
privacy issues [2]. Wearable devices attached to the body might cause discomfort during
exercises [3–5]. Besides, some studies have shown decreased adherence to wearable devices
over time [6]. RFIDs have been used to track workouts when attached to dumbbells, which
is inapplicable to freehand exercise monitoring [7].

A more promising alternative for fitness assistants is to capture human motion through
wireless sensing [8–10], e.g., using Wi-Fi and RFID backscatter signals [11–14]. However,
existing wireless sensing approaches exhibit three limits. First, the signal transmitters must
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transmit periodic sinusoid signals, so the wireless channel has to be dedicated to sensing
and is not compatible with any data communication. Second, users must exercise within a
specific area (such as the first 8–12 Fresnel zones) between a pair of RF signal transceivers
[11,14]. Third, they cannot support multiple users exercising together in one room, due to
the mutual interference on signal reflections among users.

To overcome the above limits, we propose a cellular-based freehand exercise assistant
system, MobiFit. Since the base stations are widely distributed by commercial cellular
operators, the user can use MobiFit anywhere just by placing a cellular signal receiver on
the ground. MobiFit traces freehand exercises by monitoring the received cellular signals
and provides exercise quality indicators, including repetition number, exercise type and
duration for each exercise repetition. MobiFit faces two new challenges: (1) The cellular
signals transmitted by the base station are beyond MobiFit’s control, which are interwoven
with both control messages and traffic data. MobiFit has to extract the signals affected by
exercises through uncontrollable and unpredictable cellular signals. (2) The long signal
propagation distance between the base station and the receiver leads to the time-variant
propagation paths, which eliminates the applicability of Doppler analysis.

Figure 1 illustrates the typical application scenario (MobiFit Demo: https://youtu.
be/Dupmc1LAWTU (accessed on 14 July 2020) and https://www.bilibili.com/video/BV1
5p4y1S7As/ (accessed on 14 July 2020)), where we conducted the experimental study. We
observed that the envelope of the recorded signal sequence fluctuates periodically with
the ups and downs of the torso motions during freehand exercises, as shown in Figure 1b.
Based on the observation, we construct an analytic model of the received signals and
demonstrate the torso block effect on signal propagation as the primary cause for the
periodic fluctuations. The analytic model also points out that low-frequency components
can help in exercise repetition segmentation and type recognition. Guided by the insights,
MobiFit exploits the spectrogram analysis on the received signals and realizes real-time
segmentation of exercise repetitions. MobiFit then applies Fast Fourier Transform (FFT)
and Discrete Wavelet Transform (DWT) to extract the low-frequency coefficients from
each repetition sequence and applies the Support Vector Machine (SVM) for exercise type
recognition.

(a) Squats indoor (b) Trace during squats

Figure 1. Application scenario of MobiFit and the collected data trace during ten squats with segmentation result [15].

MobiFit tackles the challenges by focusing only on the low-frequency coefficients for
repetition counting and type recognition. The frequency band and data rate of cellular
signals are high and independent of low-frequency coefficients. Thus, MobiFit does not
require an exclusive channel for sensing, solving the first challenge. Since the block effect on
signal propagation comes from the torso motion nearby the receiver, the signal propagation
path diversity from the base station to the receiver becomes negligible. It not only solves
the second challenge but also implies the possibility of providing exercise assistance for
multiple users exercising together in the same room.

https://youtu.be/Dupmc1LAWTU
https://youtu.be/Dupmc1LAWTU
https://www.bilibili.com/video/BV15p4y1S7As/
https://www.bilibili.com/video/BV15p4y1S7As/
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We implemented the prototype of MobiFit on USRP-1 and RFX900 sub-board to trace
the GSM signal and output 100 Hz down-sampled signal sequence for freehand exercise
tracking. We deployed MobiFit under three typical scenarios, both indoors and outdoors.
We collected 22,960 exercise repetitions of six freehand exercise types performed by ten
volunteers over six months. The results confirm that MobiFit counts repetitions with an
error ratio as low as 1.4% per exercise session, across all volunteers and exercise types.
Overall, 98% of the repetition duration estimation error is within 0.3s.

Moreover, only using the SVM can accurately recognize each exercise repetition with
94.1% accuracy under five-fold cross-validation on all traces. Besides, MobiFit’s recognition
is permanent, i.e., robust across two weeks. What is more, MobiFit provides counting and
type recognition of every exercise repetition with only 5 s delay, instead of after the whole
session required by existing works. Finally, the experiments demonstrate the feasibility of
MobiFit supporting multiple users exercising together and exercising both indoors and
outdoors.

The main contributions of this work can be summarized as follows:

• This work proposes and verifies the feasibility of applying cellular signals for passive
freehand exercise tracking, which sheds light on a new kind of wireless signals for
motion sensing, especially at the advent of 5G.

• We propose an analytic model to quantify the impact on the received cellular signals
when humans conduct freehand exercise nearby. The analytical model provides two
insights for other motion tracking research with cellular signals.

• We propose a real-time freehand exercise repetition segmentation scheme and several
low-frequency features for type recognition, which may be further applied in motion
repetition counting and recognition with cellular signals.

• We implemented the prototype of MobiFit and evaluated it with extensive experi-
ments, both indoors and outdoors. The results confirm that MobiFit achieves high
accuracy in counting and type recognition for freehand exercises.

The rest of the paper is organized as follows. In Section 3, experimental studies are
presented to verify the feasibility of MobiFit. In Section 2, we survey the related works and
analyze the limitations of existing studies. In Section 4, the analytic model is introduced
and used to guide system design. We present the proposed freehand exercise assistant
system, MobiFit, in Section 5 and evaluate it in Section 6, followed by the conclusions in
Section 7.

2. Related Work

We divide and review the existing wireless sensing work into two categories: cellular
signal-based and non-cellular signal-based motion sensing systems. The authors of [16–18]
used the mobile phone as a body-attached cellular signal sensor. Sohn et al. [16] applied
the mobile phone to measure and record the surrounding GSM radio environment. Then,
they inferred whether the user is walking, driving or staying stationary from the variance
of measured signals and counted the step number. Shakra [17] used an Artificial Neural
Network to analyze GSM signal strength to estimate whether the user is walking, driving
or staying stationary. Anderson et al. [18] also employed the patterns of signal strength
fluctuations and changes to the current serving cell and neighboring cells to distinguish
between various states of movement such as walking, driving and remaining stationary.
Unlike the above research, MobiFit does not require the user to attach their mobile phone
to the body during exercises, which is often cumbersome and may cause unwanted motion
changes. At the same time, the existing studies based on cellular signals do not count the
motions, so it cannot provide a complete exercise monitoring for users.

Recently, LTE-based passive radar [19] achieves moving target detection via Doppler
resolution. Chen et al. [20] recognized dynamic hand gesture interaction by analyzing
CSI extracted from LTE signals. SpiderMon [21] performs keystroke monitoring using the
cellular signals transmitted by commercial base stations. Furthermore, a few 5G prototype
systems are proposed and applied to human sensing. For example, Gholampooryazdi et al.
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[22] enabled crowd-size detection and walking speed recognition. However, these studies
only realize motion detection but do not provide motion counting. Thus, they cannot be
applied as freehand exercise assistants.

Existing wireless sensing systems with other RF signals can be further classified into
dedicated device based, RFID based and WiFi based. For the first category, RF-Capture
[23], RF-Pose [24] and DFAR [25] use dedicated wireless devices to scan RF reflections,
which can recognize and count user’s actions. For the second category, FEMO [7] attaches
passive RFID tags on dumbbells and measures the Doppler shift profile of the backscatter
signals to count and recognize repetitions of arm exercises. Motion-Fi [26] deploys two
USRPs to measure the backscattered signal of passive RFID tags to count and recognize
free-weight exercises.

WiFi-based motion tracking relies on RSSI or the more detailed CSI to realize activity
detection [13,27–31], gesture recognition [32–34] and tracking [35–40]. WiFit [41] enables
people to practice three kinds of freehand exercises with the body on the line-of-sight
between Wi-Fi transceivers. Guo et al. [14] also exploited Wi-Fi to count and recognize
repetitions for free-weight exercises. Zhang et al. [42–45] designed Fresnel zone-based
methods to sense and count human activities.

Existing wireless sensing systems study the signal reflection profile by the body, which
requires the sender to emit periodic sinusoid signals on the sensing channel. Different from
these systems, MobiFit does not take any control of the sender, whose receiver directly
makes use of the cellular signals transmitted from the nearby mobile station. Hence,
MobiFit does not need a wireless channel exclusively used for sensing.

3. Experimental Study

In this section, we first give a brief introduction to GSM signals. Then, we describe the
setup, process and observation of the experimental study.

3.1. GSM Background

The Global System for Mobile communications (GSM) describes the protocols for
cellular networks used by mobile devices such as mobile phones and tablets [46]. GSM
uses a cellular network structure to achieve frequency band reuse between cells. To ensure
the stability of communication, the size of the cellular is determined by the density of the
base station deployed by the operator. GSM only stipulates the maximum cell radius of 35
km. To meet the increasing demand for communication, the base station density is usually
at kilometers level. Cellular signal propagation paths are more dynamic than those of Wi-Fi
due to the longer distance.

The base station uses both FDMA and TDMA to embed logical channels. The base
station uses frequency division multiplexing on the physical frequency bands. Each
physical band is further divided into eight time slots for time-sharing, grouped as a TDMA
multi-frame. The time slot is the basic unit to embed one logical channel.

Each base station has a predefined physical frequency band called Beacon Channel, as
shown in Figure 2. The control messages and data payloads are interwoven among slots.
Beacon Channel loads the control logic channels in Slots 0–2. Slots 3–7 are loaded with
data traffic. The base station repeatedly broadcasts TDMA multi-frame over the Beacon
Channel.
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Figure 2. Multi-frame structure on Beacon Channel.

The mobile terminal obtains the access information of the base stations in a cell by
analyzing their corresponding BCCHs. It selects one base station to access according to
the signal strength. After the mobile terminal associates with one base station, it keeps
monitoring the Beacon Channel for changes in BCCH or controlling messages such as calls
to itself. The continuous broadcast feature of Beacon Channel makes it possible for cellular
signals to track freehand exercises. However, it also brings two challenges.

3.2. Setup

To explore the feasibility of using GSM signals to monitor freehand fitness, we con-
ducted experiments in the corridor shown in Figure 3. Since mobile phones do not provide
any API to access the cellular signals, the prototype of MobiFit with a USRP-1 and an
RFX900 sub-board was used to simulate the whole procedure of receiving GSM signals
on the smartphone and output 100 Hz down-sampled sequences for exercise tracking.
The receiver continuously received the cellular signal sequence on the Beacon Channel
and outputted the signal sequence down-sampled to 100 Hz. The volunteer performed
freehand exercises such as squats at a distance of 60 cm around the receiver, which was put
on the ground.

Figure 3. Corridor deployment for experimental study.

In the corridor, a volunteer completed ten squats in front of the signal receiver,
recorded by video. Figure 4a shows an example of the signal sequence received. Its
envelope presents periodic fluctuation. Figure 4b shows a zoom-in view of the signal
sequence of the box marked in Figure 4a. The squat exercise can be divided into four
phases in sequence: resting, concentric contraction, dropping and eccentric contraction,
labeled in Figure 4b as P1–P4 through video analysis. Every phase of freehand exercises
lasts a certain time to train muscle groups. Figure 4b shows that the fluctuation of the
signal sequence coincides with the four phases of squat exercises.

The torso moves up and down once during repetition because body weights are the
only resistance to work multiple muscle groups in freehand exercises. The periodic torso
motion in the consecutive squats will cause periodic impact, which in turn exhibits periodic
change on the signal sequence envelope. Thus, the fluctuation period of the sequence
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envelope will be the same as the exercise repetition period. Figure 4c exhibits the amplitude
distributions of the signal sequences in these four phases of squat exercises. Concentric
contraction and eccentric contraction have similar distributions in Figure 4c, whose signal
sequences are also symmetric with time in Figure 4b. Both resting and dropping phases
have normal distributions, but the mean amplitude in the dropping phase is lower than
that of resting.

(a) Signal sequence with two squats
labeled out

(b) Phase decomposition
of two squats

(c) Amplitude distributions of four
phases

Figure 4. Down-sampled signal sequence while squatting [15].

3.3. Experiments on Different Positions

To evaluate the effect of the exercise position to the receiver, a volunteer conducted
squats on four orthogonal locations of one circle.

Figure 5 shows the recorded corresponding signal sequences during squatting at
Positions B–D. The envelopes of the three sequences also exhibit the phenomenon of ups
and downs consistent with the squat. Thus, our observation is extended to: during indoor
squatting, the envelope of down-sampled cellular signal sequence shows periodic ups and
downs consistent with the squat repetition.

(a) Positon B (b) Positon C (c) Positon D

Figure 5. Down-sampled signal sequence recorded while squatting at different positions.

As shown in Figures 4a and 5, all starting parts of the received sequences correspond
to the volunteer in the resting phase (P1). For squats at Positions A and D, the sequence
envelope first falls and then rise back from phase P1 to phase P4. The sequences obtained
at Positions B and C show the opposite process of change.

We queried the actual location of the connected base station, which was located in the
northwest direction to the receiver. Thus, the cellular signals propagated from the base
station to the receiver in the southeast direction. Thus, the difference between Positions A
and D and Positions B and C lies in whether the cellular signals arrive first at the volunteer
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or the receiver for Positions A and D. Thus, the torso may block a larger portion of the
cellular signals from reaching the receiver during the action phase than in the resting phase.
This may result in a decrease in the amplitudes of the received signals during phases P2–P4.
For Positions B and C, after some portion of cellular signals passes over the receiver, they
will be reflected back to the receiver by the torso during phases P2–P4. Thus, the sequence
envelope will be higher during the action phase than during the resting phase.

3.4. Experiments on Different Exercises

We further carried out experiments on other types of freehand exercises, including
push-ups, crunches and sit-ups. Figure 6 shows three segments of the recorded signal
sequences when a volunteer carries out corresponding exercises at Position A. Since there
is also the block effect during the action phases of these three exercises, the sequence
envelopes are consistent with the proposed observation.

(a) Push-up (b) Crunch (c) Sit-up

Figure 6. Signal sequences of three different freehand exercises.

As a summation, we observed empirically that the envelope of the recorded signal
amplitude sequence fluctuates periodically, consistent with the exercise cycle of ups and
downs of torso motions during freehand exercises. The observation is confirmed by
the proposed analytic model in the next section. The scenario is expanded to outdoor
environments in the evaluation section.

4. Analytic Model

In this section, we construct the analytic model for the received signals. The analytic
model begins with multi-path analysis. Although cellular signals can transverse walls,
there are some proportion of signals reflected by the walls and other objects. Hence, cellular
signals propagate from the transmitter (base station) to the receiver (mobile terminal) via
multiple reflections, especially when the receiver is indoors. The received signals are the
superposition of the signals from all the propagation paths.

As the human body is a good reflector of cellular signals, during freehand exercises,
the multi-path propagations of cellular signals arriving at the receiver will be changed
according to the torso motion. Figure 7 shows a schematic diagram of cellular signal
multi-path propagation under two decomposed phases during squats.

Figure 7a,b corresponds to the resting and dropping phases of squats, respectively.
The solid line represents a propagation path unaffected by the torso motion; the dotted line
represents the dynamic reflection path created by the torso motion; and the dash-dotted
line indicates the block effect on the cellular signal propagation related to the torso motion.
Under the resting phase, the cellular signals propagating along the red dash-dotted line
can reach the receiver, while the ones propagating along the blue dash-dotted line and the
dotted line cannot reach the receiver. Under the dropping phase, the signals propagating
along the dotted line are reflected by the torso to reach the receiver. The cellular signals
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propagating along the blue dash-dotted reach the receiver because there is no blocking.
Moreover, the cellular signals propagating along the red dash-dotted line are reflected
away from the receiver. In Figure 7, we use the shadow metaphor to describe the variation
of the blocking effect of the torso on cellular signal propagation.

(a) Resting phase (b) Dropping phase

Figure 7. Impact of human motion on signal propagation [15].

To analyze the received signals, we first divided the signal propagation paths based
on whether they are affected by human exercise or not, called dynamic and static paths
[12,42,47], as shown in Equation (1). ys( f , t) represents the cellular signal propagating
along the static paths not affected by the human motion. ys( f , t) does not contain the
low-frequency components corresponding to our observation, because the payloads are at
10s kbps, and the modulated frequency is over 900 MHz for GSM.

yd( f , t) represents the superposition of cellular signals propagating along the dynamic
paths. yd( f , t) can be further divided into two terms, as shown in Equation (2). yr( f , t)
represents the superposition of signals reflected by the torso during exercises, shown in
Equation (3). Pr indicates the path set whose signal propagation distance changes with
body motion. ap( f , t) is the complex-value representation of attenuation along with path p.
x(t) is the symbol transmitted within time t. c denotes the speed of light and f represents
the beacon channel frequency. dp denotes the distance of the path p. The reflected path
change will cause the frequency or phase shift in yr( f , t). Wi-Fi- or RFID-based exercise
assistants focus on extracting Doppler frequency shift or phase shift for exercise recognition.
For MobiFit, the propagation paths of cellular signals are on the kilometer level, much
longer than the 10 m level under Wi-Fi or RFID. More reflection exists during cellular
signal propagation except for human motion. Thus, yr( f , t) also does not account for
low-frequency fluctuation of the observation.

y( f , t) = ys( f , t) + yd( f , t) (1)

yd( f , t) = yr( f , t) + yb( f , t) (2)

yr( f , t) = ∑
p∈pr

ap( f , t)x(t−
dp − v(t)

f

c
)e−j2π f (t−

dp−
v(t)

f
c ) (3)

yb( f , t) represents the superposition of cellular signals related to block effect, calcu-
lated in Equation (4). Pb indicates the signal propagation path involved in the block effect.
Here, the periodic block effect of the torso on signal propagation is represented with a
square wave function γp(t), defined as Equation (5). T represents the repetition cycle of
freehand fitness; t1 and t2 mark the start and end timestamp of the block effect on signal
propagation along with path p. Figure 8 shows two examples of switch functions with
different duty cycles.

yb( f , t) = ∑
p∈pb

γp(t)ap( f , t)x(t−
dp

c
)e−2π f (t− dp

c ) (4)
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γp(t) =

{
0 t1 < t mod T < t2

1 otherwise
(5)

Figure 8. Block effect function of γp(t) with different duty ratio.

The frequency of freehand exercise is quite low (≤1 Hz), referring to experimental
observation. yb( f , t) is the only possible factor which can introduce low-frequency com-
ponents. First, γp(t) of all paths share the same cycle T of freehand exercise repetition.
Second, yb( f , t) accounts for a large proportion of change of y( f , t) due to the larger area of
the torso to block signal propagation. Previous research [26] confirmed that the influence
of limbs on wireless signal propagation is far less than that of the torso. Third, the torso’s
size is larger than the cellular signal’s wavelength, and the torso is near the receiver. Thus,
most of the blocked propagation paths will share similar phases, creating the aggregated
fluctuation after superposition. Thus, the switch function γp(t) leads to the ups and downs
of the amplitude envelope of y( f , t). The analytic model explains and verifies the experi-
mental observation, i.e., the torso motion causes periodic ups and downs on the received
signal sequence’s envelope with its frequency the same as exercise repetition.

To this end, we summarize the key insights of the analytic model as follows: (1) Each
component in yb( f , t) shares the same cycle T of freehand exercise repetitions. By sifting
out the low-frequency component near the frequency T−1, we may cut out the exercise
repetitions from each session. (2) Different kinds of freehand exercises contain different
procedures of torso motions, which in turn creates different kinds of block effects. Then,
γp(t) for each involved propagation path will have different duty circle ratio ( |t2−t1|

T ) for
various exercises. Different duty cycle ratio in square wave γp(t) will create various low-
frequency components. These low-frequency components correspond to the characteristic
of the torso motion among different types of freehand exercises, which are potential features
for exercise type recognition. These two insights form the basis of MobiFit design.

5. System Design

MobiFit counts and recognizes the exercise repetitions by processing the down-
sampled cellular signals. As shown in Figure 9, MobiFit consist of five modules: signal
receiving, segmentation, feature extraction, classification and output. The signal receiving
module monitors cellular signals and outputs a signal sequence down-sampled to 100
Hz. The segmentation module cuts the signal sequence into exercise repetitions and rest
intervals. From the signal sequence of each repetition, the feature extraction module ex-
tracts the low-frequency features. Then, the SVM classifier recognizes the type of current
repetition. The output module presents the number of repetitions for each exercise type
and the duration distribution of exercise repetition and rest intervals. This section focus on
the details of the segmentation and feature extraction module.

5.1. Segmentation

The segmentation module cuts in real-time the down-sampled cellular signal sequence
into the sequences of exercise repetitions and rest intervals between two continuous repeti-
tions. The challenge of segmentation lies in the nonuniform rest intervals, which directly
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limits the applicability of template matching. During exercises, ordinary users cannot
control the rest intervals between exercise repetitions due to the lack of fitness ability and
experience. Thus, there may be short or long intervals between two repetitions. Figure 10
shows a volunteer’s ten consecutive squats, which has a long rest interval between the
sixth and seventh squats.

Figure 9. MobiFit framework with an example of a squat session [15].

Figure 10. A session of squats performed by a volunteer with red lines and number marking the
ground truth of each repetition.

Inspired by Insight 1 from the analysis model, each exercise repetition has a similar
primary frequency corresponding to the exercise repetition cycle. MobiFit performs spectro-
gram analysis on the cellular signal sequence to study the amplitude changes on the primary
frequency for exercise repetition segmentation, which consists of the following three steps
shown in Algorithm 1 (Segmentation Code: https://github.com/TGL-Silver/MobiFit
(accessed on 26 June 2021)).

https://github.com/TGL-Silver/MobiFit
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(1) Calculate the amplitude curve corresponding to the primary frequency. MobiFit
applies STFT with a sliding window of 512 samples (5.12 s) to cover a single exercise
repetition completely in one window. Because most repetitions of the freehand exercise
lie within 3–5 s [1], the sliding step is set to 8, corresponding to a time resolution of 0.08
s. Figure 11a shows the spectrogram of the signal sequence in Figure 10. It shows that
the highlighted parts of the low-frequency components are consistent with the repetitions.
Figure 11b illustrates the amplitude curve of the primary frequency in Figure 11a with a
solid black line. Comparing to Figure 10, the peaks on the amplitude curve correspond to
the midpoints of each exercise repetition during squats. However, there is an error peak in
the long rest interval (32–35 s), which does not correspond to an exercise repetition.

Algorithm 1: Segmentation.

Input: a[] //received amplitude sequence
Output: S[], E[] //timestamps of the start and end for each repetition

1 αr = 0.8; αa = 0.75; β = 1.5 //scale factor for time and amplitude criterion
2 w = 512, l = 8, d = 4; //STFT window, sliding step, differentiating interval
3 for each window i do
4 F[i]=STFT(a[t− w : t], Hamming);//create spectrogram with Hamming

Window
5 D(i) = A[i]− A[i− d];//calculate differentiation on primary frequency
6 //judge start
7 if peak(D(i)) then
8 //duration criterion and amplitude criterion
9 if (i− en−1) > αrδr and (Sn = null or D(i) > D(Sn)) then

10 Sn = i;
11 end
12 end
13 //judge stop
14 if valley(D[i]) then
15 //duration and amplitude criterion
16 if (i− Sn) > αaδa and (A(Sn, i)) > β(A(En−1, En)) then
17 if En = null then
18 En = i; n ++;
19 end
20 //update criterion
21 if (i− En−1) < αrδr and D(i) < D(En−1) then
22 En−1 = i;
23 end
24 end
25 end
26 end

(2) Find the potential timestamps corresponding to the start and end of each exercise
repetitions, shown on Lines 7–22. Although the peak of the solid black line in Figure 11b is
located near the midpoints of each exercise repetition, MobiFit needs to find the specific
timestamps at which each exercise repetition starts and ends. At the beginning of the
exercise repetition, the human body changes from the static state to the exercise state, so
the amplitude curve of primary frequency changes significantly at this moment. Similarly,
at the end of the exercise repetition, the amplitude curve of the primary frequency will also
exhibit great change. MobiFit finds the start and end of each repetition by calculating the
change rate of the amplitude curve on the primacy frequency, as shown in Equation (6).
A(p) is the amplitude of the primary frequency at sliding window p, and d is the interval
for calculating the change rate, set as 4. D(p) is the change rate at sliding window p. The
red dotted line in Figure 11b shows the change rate of the black line. Each extremum pair
from the maximum to the minimum on the change rate curve marks the boundary of one
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squat repetition in Figure 10, except two extremum pairs around 13 and 33 s, labeled with
blue circles. The extremum pair around 13 s may exist due to noise, while some relaxing
actions may cause the other pair in the long rest interval. These two extremum pairs do
not correspond to the exercise repetition and require further processing.

D(p− d) = A(p)− A(p− d) (6)

(3) Eliminate the false-positive extremum pairs. MobiFit double-checks whether each
maximum and minimum are the start or end timestamps of an exercise repetition. For
maximum check, the duration criterion is applied to check whether the time length from
the end of the last exercise repetition to the current maximum is longer than δr, which
represents the shortest rest interval, shown on Line 9. When multiple consecutive maxima
satisfy the duration criterion, MobiFit selects the maxima with the larger value as the start
of the current repetition.

(a) STFT result (b) 0.2Hz coefficients with change rates

Figure 11. Spectrogram analysis for segmentation [15].

MobiFit judges a potential end by the duration and amplitude criteria. The duration
criterion for the potential end is that the time length from the start of current repetition to
the minimum should be longer than δa, which represents the shortest repetition duration.
If the duration criterion is satisfied, MobiFit then evaluates the amplitude criterion, i.e., the
average amplitude of the signal sequence from the start to the minimum should be higher
than the average amplitude of previous rest interval, shown on Line 16 in Algorithm 1.

MobiFit applies the end updating criterion when one new minimum appears. Here,
the current repetition already has a start and an end. The updating criterion checks whether
the current minimum is close to the end of current repetition and its value is smaller, shown
on Line 21 in Algorithm 1. If so, MobiFit updates the end of current exercise repetition to
this minimum.

Through double-check, MobiFit can eliminate the wrong extremum pairs. We take the
process of the ten squats shown in Figure 10 as an example. For the extremum pair around
13 s in Figure 11b, when the first maximum appears, marked with the first blue circle, it
satisfies the duration criterion and will be saved as the start of the current repetition. When
the minimum of the second blue circle appears, it does not satisfy the duration criterion
on end judging and is ignored. When the second maximum with the red circle appears,
MobiFit updates the start of current repetition to this maximum because it satisfies the
duration criterion and has a larger value. Hence, the extremum pair around 13 s can be
eliminated.

For the extremum pair in the rest interval around 32–35 s, the first maximum, marked
with a blue circle, satisfies the duration and amplitude criteria to judge the start, which
will be saved as the start of current repetition. The minimum around 35 s, marked with a
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blue circle, satisfies the duration criterion to judge an end but fails the amplitude criterion.
Thus, the minimum around 35 s is ignored. Then, the current repetition only labels its
start as the maximum around 32 s, while it has no end yet. When the maximum around 37
s appears, it is updated as the start of current repetition because it satisfies the duration
criterion, and its value is larger than the maximum at 32 s. Therefore, MobiFit eliminates the
error extremum pair around 32–35 s. The elimination process ensures that all the detected
extremum pairs represent the starts and ends of exercise repetitions, which realizes the
repetition segmentation.

Nest = size(ts) (7)

DAest[i] = te[i]− ts[i], i = 1, ..., Nest (8)

DIest[i] = ts[i]− te[i− 1], i = 2, ..., Nest (9)

After segmentation, MobiFit records two arrays ts and te, which store the start and
end of each repetition, respectively. Based on these two arrays, MobiFit calculates three
exercise indicators using Equations (7)–(9). Nest represents the repetition number of one
exercise session, which evaluates whether one session satisfies the fitness requirement of
the repetition number. DAest and DIest indicate the duration of each exercise repetition and
rest interval, respectively. The distribution of DAest shows the stability of each repetition
and whether the duration of each repetition satisfies the time length requirement; the
distribution of DIest shows the stability of rest intervals.

For the 10 squats in Figure 10, Figure 12a shows the duration distribution of each
squat repetition and rest interval after segmentation. The ten squats were all completed in
2–4 s, reaching the fitness standard. However, there is one long rest interval after the sixth
repetitions, reminding the user to control the rest interval in future training.

(a) Repetitions, interval duration (b) Segmentation on mixed types

Figure 12. Repetition analysis results of MobiFit [15].

One further question for segmentation is that there may be exercise type switching
inside one session, where extra actions may cause counting errors. For example, Figure 12b
shows that volunteer v1 tries two consecutive deficit deadlifts, two squats, two sit-ups and
two crunches in one session. The red lines and numbers show the segmentation results
of MobiFit, which correctly cut out eight repetitions. However, a false positive repetition
appears inside the process of changing from the standing posture to the lying posture. For
reducing false positives, existing studies [7,26] require that each session should contain at
least three consecutive repetitions of one type to distinguish between exercise and non-
exercise actions. MobiFit revises this rule to eliminate non-exercise repetition, whose type
is different from previous or subsequent repetitions, called segmentation refinement.

5.2. Feature Extraction

From the signal sequence of each exercise repetition, MobiFit extracts the low-frequency
features representing different types of exercises according to Insight 2 from the analytic
model. (1) Insight 2 illustrates that different freehand exercise may have different γp(t)
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of the human block effect during exercising. (2) We apply two frequency analysis tools,
FFT and DWT, to calculate the low-frequency features from the repetition traces. Be-
fore frequency analysis, MobiFit resamples every repetition to 512 using Cubic Spline
Interpolation.

FFT decomposes a signal into a frequency spectrum. Because the major frequency of
freehand exercises lie in the range of 0.2–1 Hz, we take the normalized coefficients from the
second to the fifth lowest frequencies. This frequency range corresponds to 0.4–1.0 Hz. We
omit the basic frequency of 0.2 Hz, because all exercise types share the same cycle, which is
used in segmentation.

Since FFT loses time resolution, MobiFit applies DWT to measure the low-frequency
components with specific time resolution. Different exercises may have different frequency
components in the start, middle and end phase of an exercise repetition. For example,
sit-ups have more low-frequency components than crunches in the middle phase, as shown
in Figure 6. MobiFit decomposes the signal sequence into seven levels, using the low-
frequency coefficients of the seventh level and the high-frequency coefficients of the fifth to
seventh levels as features. The frequency ranges of these four groups of wavelet coefficients
are 0–0.78, 0.78–1.56, 1.56–3.13 and 3.13–6.25 Hz. Figure 13 shows the signal sequences and
corresponding features of six exercise types, which exhibit some differences among these
features for various types.

Figure 13. Features extracted from repetitions of six exercise types.

Note that MobiFit cut out one repetition only with a delay of one sliding window.
The feature extraction is carried out immediately after segmentation, and then the SVM
classifier is called to recognize the exercise type of current repetition. The features used
in SVM are the second to fifth low-frequency coefficients extracted by FFT and the low-
frequency coefficients of the seventh and high-frequency coefficients of the fifth to seventh
levels extract by DWT. MobiFit realizes real-time repetition counting and recognition.
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6. Evaluation

In this section, we present the implementation, deployment and experiment process.
Then, we evaluate MobiFit’s counting error, recognition accuracy and duration estimation
of exercise repetition and rest intervals, comparing to Motion-Fi [26]. We also evaluate the
feasibility of using MobiFit for multiple people exercising together and outdoors.

6.1. Setting and Process

We conducted experiments in a corridor, a public room and the observation deck on
campus, as shown in Figure 14. Our experimental studies show that the envelope of the
received signal sequences exhibit the same periodic ups and downs when a volunteer
squats at four different locations nearby. Besides, as we do not require the users to know
the position of the cellular base station. The volunteer conducted freehand exercises at the
different locations in the room for a long period (over six months). The key to segment
and classify each exercise repetition lies in the analysis of low-frequency features from
the received signal sequence. Because the low-frequency features are not affected by
the locations where volunteers exercise, the proposed system can count and recognize
repetitions for different exercises. The only requirement on deployment is that the receiver
should be put on the ground and the user exercise at a position about 60 cm away from the
receiver.

(a) Corridor (b) Public event space (c) Outdoor

Figure 14. Evaluation scenarios [15].

Ten volunteers were recruited to participate in the experiments, whose age and body
parameters are shown in Table 1. In general, the volunteers recruited have low BMIs, i.e.,
they are thin. MobiFit counts and recognizes exercise repetitions majorly through analyzing
the block effect of the torso on cellular signal propagation, so thin bodies increase the
difficulty for MobiFit. There are no restrictions on clothes for volunteers. After discussing
with ten volunteers on exercise difficulty and quality, we chose six kinds of freehand
exercises: squats, lunges, sit-ups, deadlifts, crunches and push-ups (Figure 15). Considering
upper limb strength, the females conducted knee push-ups. We hired a fitness instructor to
explain and demonstrate the motion mechanism for each type of freehand exercise and
guide the volunteers during the experiments.
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Table 1. Detailed parameters for ten volunteers [15].

Volunteer Gender Height Weight BMI Age Session Repetition

v1 male 184 72 21.3 24 249 2670
v2 male 180 75 23.1 23 224 2307
v3 male 177 70 22.3 22 216 2246
v4 male 175 67 21.9 23 222 2375
v5 famale 166 55 20.0 24 192 1971
v6 famale 165 50 18.4 22 195 1988
v7 male 170 65 22.5 26 222 2298
v8 male 173 70 23.4 25 219 2276
v9 male 176 78 25.2 23 230 2532
v10 male 178 85 26.8 24 217 2297

Figure 15. Six kinds of freehand exercises [15].

In order to ensure fitness improvement and avoid possible physical injury, we set the
minimum requirement of 10 repetitions for an exercise session. The volunteer was allowed
to increase the repetition number in one session based on her/his physical condition. An
exercise session could include different kinds of freehand exercises. In the first two weeks,
we required the volunteers to complete at least one session for each kind of freehand
exercises per day. After two weeks, volunteers exercised in the corridor or public space
according to their own exercise frequency. After each session, the volunteers recorded the
meta-data, including name, exercise type and repetition number. The whole experiment
lasted over six months. The final session and repetition numbers for each volunteer are also
shown in Table 1. All volunteers completed 22,960 repetitions. To evaluate the duration
accuracy of each exercise repetition and rest interval, we recorded the first 100 squats with
cameras for each volunteer.

6.2. Results

Existing studies except for Motion-Fi [26] exploit MIMO information from the receiv-
ing signals, while MobiFit only monitors single cellular band. Hence, we compared the
results with Motion-Fi. Note that Motion-Fi cannot distinguish between exercise repetitions
and rest intervals, which are all combined as exercise repetitions.

6.2.1. Repetition Counting

For all the traces collected indoors, Figure 16 shows the comparison on counting error
ratio between MobiFit and Motion-Fi for every exercise type and each volunteer. Here, the
counting error ratio is defined in Equation (10). Nest is the estimated repetition number
for one session and Ntruth is the repetition number recorded by a volunteer. The counting
error ratio of MobiFit is the result without applying the refinement from exercise type
recognition. It shows that most counting error ratio of MobiFit is less than 2%, except for
push-ups practiced by two females (v5 and v6). We show one typical error session of v5
in Figure 17 with its corresponding spectrogram. There is one missed repetition around
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Sample 2250. There are two factors that cause the counting miss. First, Volunteers v5 and
v6 are both petite females, whose torso is relatively small. Second, they practiced knee
push-ups, whose motion is also lower comparing to push-ups done by male volunteers.
For this particular situation, a closer distance between the petite females and the receiver
would decrease counting error, which introduces more variation on the block effect. v5 and
v6 further conducted knee push-ups at 40 cm to the receiver, whose counting error ratios
are 0.6% and 1.3%, respectively, as shown in Figure 17c.

Counting Error Ratio = |Nest − Ntruth
Ntruth

| × 100% (10)

(a) MobiFit (b) Motion-Fi

Figure 16. Counting error ratio comparison.

(a) Cutting results (b) STFT results (c) Counting Error Ratio of
knee- type push-ups at different
distances

Figure 17. Experiment about knee-type push-ups conducted by volunteers.

Figure 16b shows the counting error ratio of Motion-Fi on the same traces. Except
for the count error ratio of 3% of v1, all the other volunteers bear the counting error ratio
of over 4%. Motion-Fi uses a template-matching approach for repetition segmentation,
requiring the repetition to be stable in a session. However, it is difficult for users who lack
exercise experience to keep the workout stable, especially with rest intervals. Figure 18
compares segmentation using MobiFit and Motion-Fi for a squat trace performed by v6.
MobiFit correctly segments the long rest interval between the second and third squats.
However, Motion-Fi does not distinguish the exercise repetition and rest interval, which
wrongly counts the long rest interval as two repetitions, as shown in Figure 18b.

When volunteers repeat exercise repetitions at least twice for each type, MobiFit uses
type recognition to reduce the counting error ratio. Figure 19a compares the false positive
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rate of counting with/without the refinement. The results are improved after applying
refinement, which removes the non-exercise actions during exercise type switching. Be-
cause most wrongly counted actions come from switching between standing and lying
postures, they do not happen repeatedly. After refinement, the average counting error ratio
is reduced to 1.4%.

After segmentation, MobiFit also outputs the duration of each exercise repetition and
rest interval. The duration distribution shows the stability of volunteers during freehand
exercises, which is an indicator of the quality of freehand exercises. Figure 19b shows the
cumulative distribution function (CDF) of repetition duration on squats for ten volunteers.
Volunteer v1 exhibits the most stable repetition duration, with over 65% of their squats
being between 3 and 3.5 s. Figure 19b also shows that female Volunteers v5 and v6 have the
shortest duration, which needs to be prolonged to achieve the exercise effect of squats.

(a) MobiFit (b) Motion-Fi

Figure 18. Counting comparison with checks labeled repetitions.

(a) Counting with/out refinement (b) Repetition duration (c) Start, end and duration error

Figure 19. Segmentation results [15].

To evaluate accuracy on the duration estimation, we recorded the first 100 squats
for each volunteer. The video rate is 30 frames per second. We manually analyzed the
video and selected the start and end frames for each squat, recording the corresponding
timestamp as TStruth and TEtruth. We calculated the start, end and duration error for each
squat repetition, using Equations (11)–(13), respectively. Figure 19c shows the CDF of
estimation error on start, end and duration. The start and end errors are within 0.21 and
0.27 s, respectively. Overall, 98% of the duration error is within 0.3 s.

Start Time Error = |TSest − TStruth| (11)

End Time Error = |TEest − TEtruth| (12)
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Duration Error = |(TEest − TSest)− (TEtruth − TStruth)| (13)

6.2.2. Recognition Classification

We evaluated the recognition accuracy of MobiFit with two procedures and compared
the results of Motion-Fi. The first took all traces for five-fold cross-validation and then
selected the best combination of features and classifiers. The second used the traces of the
first week to train the model. Then, the recognition accuracy was evaluated day by day
with the traces in the second week and after three months to show recognition permanence,
i.e., the recognition accuracy does not decline quickly with time.

Cross-validationon Features and classifier: For feature combinations, we exploited
the classifier of Cubic SVM, whose results are shown in Table 2, compared with Motion-Fi.
The first two rows indicate that the low-frequency features outperform the time domain
features of Motion-Fi, which confirms Insight 2 in the analytic model. After adding the FFT
coefficient, the mean recognition accuracy across all volunteers is 94.1%. There are two
reasons Motion-Fi’s is inferior to MobiFit. First, Motion-Fi does not distinguish the exercise
repetition and rest interval, increasing the difficulty of recognition. Second, all the features
used in Motion-Fi are time-domain features, which are affected by the variance of payload
traffic contained in cellular signals.

Table 2. Recognition comparison of MobiFit, Motion-Fi [15].

Features Volunteer 1 2 3 4 5 6 7 8 9 10 Mean

Motion-Fi 83.5% 80.2% 81.4% 84.2% 82.9% 82.1% 82.6% 80.7% 81.3% 83.6% 82.3%
Wavelt 92.4% 91.3% 87.3% 91.7% 91.4% 90.7% 91.4% 90.6% 91.5% 91.8% 91%

Wavelt+FFT 94.3% 93.4% 95.2% 94.6% 94.2% 95.2% 95.3% 92.7% 93.6% 92.4% 94.1%

We further dug into the confusion matrix of v3, as shown in Figure 20. Motion-Fi
misclassifies 33% of lunges to deadlifts, and its classification accuracy of sit-ups is only
82%. On the contrary, MobiFit achieves high classification accuracy on lunges. For MobiFit,
the highest classification error is misclassifying 8% of sit-ups as push-ups, as sit-ups are
harder to complete stably.

(a) MobiFit (b) Motion-Fi

Figure 20. Comparison on confusion matrix of type recognition for Volunteer v3.

With the best feature combination, we evaluated recognition accuracy on different
classifiers, as shown in Table 3. The table shows that all the classifiers with high-order
kernels achieve above 90% accuracies, reflecting that the characteristics of low-frequency
features are in high orders. The best classifier is the SVM with the cubic kernel. Therefore,
MobiFit chooses the low-frequency features from FFT and DWT and applies the Cubic
SVM as the classifier.
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Table 3. Classification comparison of classifiers of MobiFit

Method Tree Ensemble KNN SVM:Cubic Linear Quadratic Gaussian

Accuracy 80.6% 89.7% 82.4% 94.1 % 88.6% 91.4% 90.2%

Permanence: To verify the permanence of MobiFit on recognition, we used the first-
week traces to train the classifier. The data traces in the second week were used to test the
accuracy day by day, and we further used the data traces after three months for verification.
We did the same permanence evaluation with Motion-Fi. Table 4 shows the permanence
results across all volunteers. MobiFit’s classification accuracy decreases slowly over time,
remaining above 92% within one week and dropping to 81% after three months. The
drop after three months may come from the seasonal clothing changes that cause action
distortion during exercises. Motion-Fi’s classification accuracy decays more quickly over
time than that of MobiFit.

Table 4. Classification permanence of MobiFit, Motion-Fi [15].

Day Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 After 3 Months

MobiFit(%) 96.5 95.9 95.2 94.7 93.6 93.4 92.7 81
Motion-Fi(%) 93.4 90.3 87.2 85.4 80.6 82.4 80.2 43.5

We evaluated and compared the performance of MobiFit and Motion-Fi in terms
of counting accuracy, activity recognition accuracy and permanence in the evaluation
section. Through comparison, we first confirm that the proposed repetition segmentation
scheme outperforms the template matching algorithm of Motion-Fi on the accuracy of
repetition counting. Second, we show the proposed low-frequency features are better than
time-domain features extracted by Motion-Fi for type classification.

6.3. Parameter Evaluation

In this section, we evaluate the deployment parameters, including the distance be-
tween the receiver and the volunteer, the deployment height of the receiver and the sliding
window size of spectrogram analysis. Finally, we evaluate the feasibility of using MobiFit
outdoors and for multiple people exercising together.

The distance between user and receiver affects the block effect of the torso on signal
propagation. The receiver will fall to capture the block effect due to large distances. We
studied the impact of different distances between user and receiver on repetition counting.
On account of the stability during freehand exercises, we selected Volunteer v1 to carry out
squats at 40, 60, 80, 100 and 120 cm away from the receiver. Figure 21a shows that MobiFit
achieves counting error ratio below 3% within 80 cm. When the distance reaches 120 cm,
the counting error is over 50%. It reveals that the user should exercise at a distance of 40–80
cm from the receiver. During the deployment of MobiFit, the distance of 60 cm is taken
as default. It also suggests the possibility to support multiple people exercising together
when they are more than 120 cm apart.
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(a) Impact of distance (b) Standard deviation of signal sequence when
squatting at 40–120 cm and standing still at

140 cm

Figure 21. Impact of different distances and heights.

To further explore the block effect beyond 120 cm, we collected the signal sequence
when v1 stands stationary at 140 cm for about 50 s. Figure 21b compares the signal
sequences’ standard deviations when v1 squats at five positions and stands at 140 cm. The
standard deviation of signal sequence when squatting at 120 cm is close to that of the static
sequence at 140 cm, which confirms that the receiver cannot capture freehand exercises
beyond 120 cm.

When volunteers perform different freehand exercises, their torsos experience different
heights during workouts, so we evaluated the impact of different heights to put the receiver
on counting error. We placed the receiver at 0, 30, 60 and 90 cm above the ground. v1
carries out six types of freehand exercises for each receiver’s height. Figure 22a shows the
counting error ratio. Push-ups are mostly affected by different heights, because the torso
is close to the ground when doing push-ups, undoubtedly limiting the variation of block
effect for high receiver height. For the receiver’s height of 60 cm, the crunch and sit-up
errors also increase clearly, as the highest point of the torso is no more than 100 cm for most
people during these two workouts. The squat counting error is relatively small because the
lowest point of the torso is at least 40–50 cm. In general, the recommended deployment of
MobiFit is to place the receiver on the ground, taking a step back and practicing in front of
the receiver for most freehand exercises.

The spectrogram analysis uses a sliding window; therefore, the choice of the window
size is critical to the counting result. Since MobiFit only deals with 100 Hz down-sampled
signals, we cannot observe the frequency components below 1 Hz when the window
length is smaller than 100. On the contrary, when the window is too large, such as 1000, a
window may contain more than one repetition because the exercise repetition is usually
within 3–5 s. To evaluate the impact of STFT’s window size on counting, we increased
the window size from 100 to 1000 with steps of 100. We used Volunteer v1’s 100 squats
for evaluation. Figure 22b depicts the minimum count ratio achieves at window size 500.
Since the window size is recommended to be a power of 2 when performing DWT, MobiFit
selects the window size as 512.
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(a) Impact of heights (b) Impact of Window size

Figure 22. Impact of different deployment heights and window sizes.

Exercising together: Figure 23a shows the photo when v3 and v4 are squatting to-
gether. Both volunteers work out in front of their corresponding receivers. We set three
distances between two volunteers at 60, 120 and 180 cm. v3 only carried out squats, while
v4 conducted three types of activities, squat, sit-up and limb exercises, such as raising arms
or kicks. The counting errors of v3 are shown in Figure 23b. When the two volunteers are
60 cm apart, the squats and sit-ups of Volunteer v4 has more effect on the counting error of
v3, compared to when v4 was conducting limb exercises. Here, v4 was about 85cm from
v3’s receiver, which is still not far enough to avoid his interference. It also reveals that
the torso has a more significant impact on cellular signal propagation than limbs. When
the two volunteers were 120 cm apart, the count error of v3 is below 2%. It confirms that
MobiFit supports multiple users exercising together, if they are 120 cm apart.

Outdoor: v1 and v2 conducted squats on the observation deck on campus, as shown
in Figure 14c. v1 and v2 exercised in front of their receiver and collected 150 repetitions
each. Figure 23 shows the counting error ratio of 1.3% and 2% for v1 and v2, respec-
tively, consistent with the results indoors, which confirms the feasibility of using MobiFit
outdoors.

(a) Photo (b) Exercise together (c) Counting error outdoor

Figure 23. Results of exercising together and outdoors [15].

7. Conclusions

In this paper, we study the feasibility of using ubiquitous cellular signals to help users
perform effective freehand exercises. MobiFit works in a contactless manner, which can
automatically count and recognize six freehand exercises and provide exercise repetition
and rest interval distribution for each session to evaluate workout quality. To build
MobiFit, we study the relationship between freehand exercises and received down-sample
cellular signal sequence, formulate the torso block effect on cellular signal propagation
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and construct the analytic signal model. Moreover, we propose a spectrogram analysis
method to segment the exercise repetition and rest interval of each repetition and count
the repetition number. Based on the segmented phases of each repetition, we extract low-
frequency features to classify different types of freehand exercises. MobiFit achieves an
accuracy of 98.6% in repetition counting, 94.1% in exercise classification and low repetition
duration estimating error within 0.3 s. Moreover, the experiments confirm the feasibility of
MobiFit both indoors and outdoors and to support multiple users exercising together.
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