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Abstract: Assistant devices such as meal-assist robots aid individuals with disabilities and support 

the elderly in performing daily activities. However, existing meal-assist robots are inconvenient to 

operate due to non-intuitive user interfaces, requiring additional time and effort. Thus, we devel-

oped a hybrid brain–computer interface-based meal-assist robot system following three features 

that can be measured using scalp electrodes for electroencephalography. The following three pro-

cedures comprise a single meal cycle. (1) Triple eye-blinks (EBs) from the prefrontal channel were 

treated as activation for initiating the cycle. (2) Steady-state visual evoked potentials (SSVEPs) from 

occipital channels were used to select the food per the user’s intention. (3) Electromyograms (EMGs) 

were recorded from temporal channels as the users chewed the food to mark the end of a cycle and 

indicate readiness for starting the following meal. The accuracy, information transfer rate, and false 

positive rate during experiments on five subjects were as follows: accuracy (EBs/SSVEPs/EMGs) 

(%): (94.67/83.33/97.33); FPR (EBs/EMGs) (times/min): (0.11/0.08); ITR (SSVEPs) (bit/min): 20.41. 

These results revealed the feasibility of this assistive system. The proposed system allows users to 

eat on their own more naturally. Furthermore, it can increase the self-esteem of disabled and elderly 

peeople and enhance their quality of life. 

Keywords: meal-assist robot; brain–computer interface; electroencephalogram; Steady-state visual 

evoked potential; eye-blink; electromyogram 

 

1. Introduction 

The population of elderly and disabled individuals is increasing worldwide [1,2]. 

Currently, these individuals experience challenges in their lives without therapists. In 

particular, their self-esteem decreases if they cannot even perform basic activities such as 

walking and eating, which consequently increases their helplessness. Recently, robots 

have been actively developed for applications in healthcare [3], such as home-assist robots 

[4], exoskeleton robots [5], and meal-assist robots [6]. These robots have progressed from 

being directly controlled to completely automatic applications. However, the application 

of completely automatic methods may not be user friendly [7]. Thus, many researchers 

have conducted studies based on human–computer interactions (HCIs) [8,9]. There are 

various studies on healthcare robots based on augmented/virtual reality (AR/VR) [9], 

voice [7], and electroencephalograms (EEG) [5,6]. 

Non-invasive brain–computer interfaces (BCIs) are HCI methods based on non-inva-

sive measurements such as EEG [10,11]. Several scholars have studied the daily-life ap-

plication of non-invasive BCIs: assist robots [5,12], smart home [13–15], emotion detectors 

[16], and wheelchairs [17]. In particular, BCI-based assist robots are expected to be in prac-

tical application for the disabled and elderly population. Typically, the methods used for 

transferring human intentions include motor imagery (MI), event-related potential (ERP), 
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and steady-state evoked potential (SSVEP) [5,13,15]. Research based on MI is advanta-

geous for intuitively controlling the devices. However, the MI method requires consider-

able training, and increasing the number of classes is a challenging task. Unlike MI, ERP 

and SSVEP are not intuitive, i.e., they have to associate meaning to stimuli. Although the 

number of stimuli in ERP and SSVEP is greater than that in MI, these methods deliver 

more accurate results in general cases [18,19]. The SSVEP-based methods generally re-

quire no training sessions, unlike ERP [20,21]. As above, each BCI method has its own set 

of advantages and disadvantages. 

Nevertheless, the BCI system requires an activation for its initiation, which accounts 

as a significant disadvantage [19]. Therefore, a system that uses only EEG can yield un-

natural usage. For instance, the stimulus must be turned on at all times to utilize the ERP 

or SSVEP. Moreover, additional actions must be performed to activate the operation of 

MI. Recently, several BCI systems have been constructed by combining EEG and other 

signals [12,13,22]. Park et al. (2020) used eye blinks to set the initiation point of the stimu-

lus [13]. Gao et al. (2017) combined MI and EMG to set the initiation point for stimuli [12]. 

Such hybrid-BCI studies have considered the practical convenience of using BCI systems. 

In this study, we developed a healthcare robot, more specifically, a meal-assist robot 

in an EEG-based hybrid-BCI system, which utilizes only the signals obtained from the 

scalp electrodes. The preview of the final system is stated as follows: (1) triple eye-blinks 

(EBs) from the prefrontal channel were used as an activation for initiating a single meal 

cycle; (2) SSVEPs from occipital channels were used to select the food per the user’s inten-

tion; and (3) EMGs were recorded from temporal channels as the users chewed their food, 

indicating the end of the cycle and the readiness to start the following meal. In order to 

verify the feasibility of this system, we measured the performance of algorithms by con-

ducting experiments on five subjects. The proposed system allows users to eat their meals 

more naturally, unlike conventional systems that require assistance. 

2. Materials and Methods 

2.1. Experiment for Measuring Performance 

2.1.1. System Configuration 

The system for experiments used two computers: one (Intel CPU i7-8565U 1.80 GHz, 

RAM 16 GB) for measuring the EEG, and another (Intel CPU i7-8550U 1.80 GHz, RAM 24 

GB) for using E-Prime 3.0 (Psychology Software Tools, Pittsburgh, PA, USA) to control 

the LED and present experimental instructions. In addition, each computer communi-

cated over the TCP/IP. Moreover, Active Two (Biosemi S. V., Amsterdam, Netherlands) 

and 64 channels of pin-type active electrodes were used to measure the EEG signals. The 

data acquisition software was a lab streaming layer (LSL) [23] and MATLAB (2020a, Math-

works Inc., Natick, MA, USA). A data acquisition (DAQ) board (USB-6501, National In-

strument Corp., Austin, TX, USA) was used as well. The discussed experimental setup 

and its devices are presented in Figure 1. 
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Figure 1. Experimental setup. (A) Device for EEG acquisition (EEG amplifier and 64 channels pin-type electrodes). (B) 

Monitor for instruction, a tray with five LEDs connected to digital acquisition board. (C) Monitor for observation. 

2.1.2. Experimental Protocol 

Prior to the start of the experiment, the subjects were presented with instructions for 

the EB, observing the indicated LED for SSVEP, and chewing gum for EMG. One cycle of 

an experiment is given as follows. Initially, the monitor displayed the message: “Do triple 

blinking” for 3 s, and the subjects conducted EB within 3 s as a fixation (+) appeared. Fol-

lowing, the monitor displayed a picture of a particular food on the tray for 3 s, and the 

subjects were required to look at the target LED for 5 s as the fixation (+) appeared. Finally, 

the monitor displayed the message: “Chew gum” for 3 s, and the subjects chewed gum 

for 5 s when the fixation (+) appeared. According to the five types of SSVEP stimuli, the 

five distinct cycles were conducted in a random order. Five cycles were comprised under 

a single trial, and the subjects had a rest period of 10 s between trials. In total, six trials (30 

cycles) of experiments were conducted. Moreover, the SSVEP stimuli were identical to 

those of the real-time system (rice 1, side dish 4), and the five stimuli were selected as 7.4, 

8.43, 9.8, 11.7, and 13.7 Hz. The experimental paradigm is illustrated in Figure 2. The ex-

perimental video (single cycle) is enclosed with the current article as a supplementary file 

(Supplementary Video S1), which can be found at https://youtu.be/CfVYz_cMFto as well 

(accessed on 24 May 2021). 

 

Figure 2. Schematic diagram of experimental protocol. 
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2.1.3. Participants 

We recruited five healthy males (age: 29.40  3.13) to participate in the experiment. 

None of the subjects have ever participated in an LED-based SSVEP experiment. After 

participating in the experiment, we rewarded the participants with monetary remunera-

tion. This experimental study was approved and reviewed by the Institutional Review 

Board (approval number: 2019-032) of the Korea Institute of Science and Technology 

(KIST). 

2.1.4. Data Processing and Analysis 

Figure 3 shows the procedures for the processing and detection of EBs, SSVEPs, and 

EMGs using the sample data (subject 2). The sampling rate for all the signals was 512 Hz. 

We used the signal obtained from the electrodes (FPz) to acquire the eye blinks. Some 

previous studies used data obtained from FPz for eye-blinks [22,24,25]. The data were 

smoothed and the DC components were removed using an elliptic infinite impulse re-

sponse (IIR) bandpass filter (high cut-off frequency: 5 Hz, low cut-off frequency: 0.5 Hz) 

in MATLAB [26]. We found the peaks using the toolbox of MATLAB (“findpeaks”). The 

detected peaks were screened to avoid a mistake-blink (very fast blinking) on the basis of: 

(1) were the numbers of the condition peak value > threshold (mean amplitude of each 

subject/2) three?; (2) 0.3 s < peak-to-peak interval < 0.8 s; (3) if there was no EB, we used 

continuous wavelet-transform and found peaks; and (4) we repeated steps (1) and (2). 

Thus, an EB was reported upon detection, if these conditions were satisfied. 

 

Figure 3. Procedure of processing and detection of triple eye-blink (EB), steady-state evoked potential (SSVEP), and elec-

tromyogram (EMG). Extension to multivariate synchronization index (EMSI). 
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Moreover, the channels in the occipital region (O1, Oz, and O2) were used to measure 

the SSVEP, and the data were re-referenced by subtracting the Cz signal. In addition, an 

elliptic IIR bandpass filter (high cut-off frequency: 54 Hz, low cut-off frequency: 2 Hz) was 

used (frequency of line noise in South Korea: 60 Hz). The SSVEP was detected using the 

extension to the multivariate synchronization index (EMSI) [21], as several studies have 

applied this method for SSVEP-based BCI systems [4,13]. 

The channels in the temporal region (T7 and T8) were used to measure the EMG, and 

an elliptic IIR highpass filter (low cut frequency: 0.5 Hz) was used to remove the DC com-

ponents. (1) The moving average was evaluated after considering the absolute value; (2) 

the differentiation was performed; (3) the moving average was determined after account-

ing for the absolute value; and (4) counting the number of samples that satisfied the con-

dition processed data value > threshold (50% of median value of each subject). If the 

counted samples (instances) were greater than 1024 samples (2 s), we reported that EMG 

was detected. 

The performance of the developed system was verified by calculating the accuracy 

(unit, %) of the eye-blink/SSVEP/EMG, information transfer rate (ITR) (unit, bit/min) of 

SSVEP, and false positive rate (FPR) (unit, times/min) during the entire experimental pe-

riod (10.5 min). The ITR is the standard method for measuring the performance of com-

munication in control systems, especially for BCI-based systems. The ITR denotes the 

amount of information transferred per time. Detailed descriptions and equations for ITR 

are stated in Appendix A as well. 

2.2. Real-Time System 

2.2.1. System Configuration 

The proposed system used two computers: one (Intel CPU i7-8565U 1.80 GHz, RAM 

16 GB) for measuring EEG and another (Intel CPU i7-7700HQ 2.80 GHz, RAM 16 GB) to 

control the LED and meal-assist robot, wherein each computer communicated over 

TCP/IP. The EEG measurement device was identical to that used in the experiment for 

measuring performance. However, in the real-time system, 64 channels were not used. A 

total of seven flat-type active electrodes (FPz, T7, O1, Oz, O2, CMS, and DRL) were used. 

The meal-assist robot, “Caremeal,” used in this study was manufactured by NT robot 

(2004; Seoul, Korea) [27]. Caremeal comprised a spoon (2-axis motor) and a grab (5-axis 

motor) arm. In addition, the DAQ board for LED control was identical to that in the ex-

periment for measuring performance. For real-time data acquisition, we used the Open-

Vibe [28] acquisition server with LSL, and the acquired data were analyzed using the 

OpenVibe designer with MATLAB. Figure 4 illustrates the devices and settings of the real-

time system. 
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Figure 4. Devices for real-time system. (A) Components of meal-assist robot and related parts. (B) Devices for EEG acqui-

sition. 

2.2.2. Data Acquisition and Processing 

In the real-time system, the sampling rate of all channels, the high/low cutoff fre-

quency of the bandpass filter, and the epoching time were the same for efficient pro-

cessing. The sampling rate was 128 Hz, and an elliptic IIR bandpass filter (0.5–55 Hz) was 

used. The signal window was of 4 s, and the sliding period was 1 s. Algorithms detecting 

EBs, SSVEPs, and EMGs were identical to that in the experiment for measuring perfor-

mance. Figure 5 depicts the data acquisition and processing procedure in a real-time sys-

tem. 

 

Figure 5. Procedure of EEG acquisition and processing in real-time system. Elliptic infinite impulse response filter band-

pass filter, BP filter; steady-state evoked potential, SSVEP; electromyogram, EMG; extension to multivariate synchroniza-

tion index, EMSI. 
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3. Results 

3.1. Experimental Result 

First, we analyzed the SSVEP based on the following conditions: (1) one channel: Oz, 

epoch period: 3 s (average accuracy (%): 71.33, average ITR (bit/min): 18.46); (2) three chan-

nels: O1/Oz/O2, epoch period: 3 s (average accuracy (%): 70.67, average ITR (bit/min): 

17.47); (3) one channel: Oz, epoch period: 4 s (average accuracy (%): 77.33, average ITR 

(bit/min): 17.26); and (4) three channels: O1/Oz/O2, epoch period: 4 s (average accuracy 

(%): 83.33, average ITR (bit/min): 20.41). The detailed results are presented in Table 1. The 

SSVEP results of (4) are depicted in Figure 6, which is the most suitable and accurate 

among the EB and EMG results. The average accuracy (%) of the EB was 94.67 and that of 

the EMG was 97.33. The averages of the FPRs during the complete experimental period 

were 0.11 times/min for EB and 0.09 times/min for EMG. The detailed results are presented 

in Table 2. We made the preprocessed data (five samples) and classification codes (EB, 

SSVEP, and EMG) public at https://github.com/devhaji/HBCI_MAR_Sample (accessed on 29 

Jun 2021). 

Table 1. Performance (Accuracy, ITR 1) of steady SSVEP 2 according to conditions (used number of 

channels, epoch period). 

Condition SSVEP S1 S2 S3 S4 S5 Average 

1 channel 

3 s 

Accuracy (%) 60.00 60.00 86.67 73.33 76.67 71.33 

ITR (Bit/min) 11.02 11.02 29.78 19.04 21.43 18.46 

3 channels 

3 s 

Accuracy (%) 60.00 73.33 76.67 70.00 73.33 70.67 

ITR (Bit/min) 11.02 19.04 21.43 16.81 19.04 17.47 

1 channel 

4 s 

Accuracy (%) 66.67 63.33 93.33 83.33 80.00 77.33 

ITR (Bit/min) 11.06 9.61 27.53 20.08 18.00 17.26 

3 channels 

4 s 

Accuracy (%) 83.33 73.33 93.33 83.33 83.33 83.33 

ITR (Bit/min) 20.08 14.28 27.53 20.08 20.08 20.41 
1 ITR: Information transfer rate. 2 SSVEP: Steady state visual evoked potential. 

Table 2. FPR 1 during whole experimental time of EB 2 and EMG 3. 

FPR S1 S2 S3 S4 S5 Average 

EB (times/min) 0.19 0 0 0.19 0.19 0.11 

EMG (times/min) 0.19 0 0 0.1 0.1 0.08 
1 FPR: False positive rate. 2 EB: Triple eye-blink. 3 EMG: Electromyogram. 

3.2. Simulation of the Proposed System 

A single cycle of meal can be stated as follows: (1) EB was detected; (2) five LED 

flickers appeared and the SSVEP response was induced; (3) the grabbing arm of the meal-

assist robot moved to select the food based on the SSVEP results; (4) the grabbing arm 

transferred food onto the spoon, and the spoon arm fed the subject; (5) the subject chewed 

the food, and the EMG was detected. The meal was considered to have ended after 10 s if 

the EMG was not detected; and (6) the spoon arm returned to the original position, and 

the system was ready for the following meal or ended. EBs can be detected when the sys-

tem is ready for the following meal. Thus, EBs were not detected during meals. Figure 7 

illustrates a schematic of the real-time system. The demo video (single meal cycle) is en-

closed with this article as a supplementary file (Supplementary Video S2) and can be 

found at https://youtu.be/CfVYz_cMFto as well (accessed on 24 May 2021). 

https://youtu.be/CfVYz_cMFto
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Figure 6. Results of the experiment. Performances of steady state visual evoked potential (SSVEP) were used for three 

channels and 4 s of data. (A) Accuracy of triple eye-blink (EB), SSVEP, and electromyogram (EMG). (B) Information trans-

fer rate (ITR) of SSVEP. 

 

Figure 7. Schematic of hybrid brain–computer interface-based meal-assist robot system. (A) Graphical flow chart for used 

devices. (B) Flow chart for actual process including triple blink, Electroencephalogram (EEG) for steady-state evoked po-

tential (SSVEP) and electromyogram (EMG). 

4. Discussion 

This study implemented a hybrid BCI-based meal-assist robot, wherein the accuracy 

of the algorithm was examined, based on an experiment to verify the feasibility of a real-
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data, and the ITR was higher than 20 bit/min. Finally, we decided that the suitable time 
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and usability. Therefore, we used three flat-type electrodes and 4 s for the SSVEP in the 

real-time system. According to the experiment, EBs and EMG exhibited exceedingly high 
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accuracy. The same algorithms were conveniently applied in a real-time simulation as 

they did not require considerable computational load. 

In a real-time system, stability is as equally important as accuracy. We calculated the 

FPR of the EB and EMG, in which extremely low average FPRs were reported. However, 

these FPRs were not zero. Han et al. (2020) developed a BCI toggle switch with very low 

FPR (0.02 times/min) and high accuracy (100%) using respiration-modulated photople-

thysmography [29]. If the EBs are not detected during meals, the FPR of our system may 

be almost zero, as in the previous study. Likewise, almost zero FPR for EMG is possible if 

the EMG can be detected only during the operation of the spoon arm. Nonetheless, the 

descent of the spoon could be more dangerous if the EMG was incorrectly measured than 

to start eating when the EB was incorrectly measured. Therefore, we included a slightly 

stricter criterion for the real-time system. In the experiment, we decided that the “EMG 

was detected” if the EMG was maintained for > 2 s. In the real-time system, the criterion 

required the maintenance of EMG for more than 2 s, which must be detected three times. 

The spoon arm returned to its original position after 10 s if the EMG was not detected. 

There is a similar study based on the proposed system, in which Perera et al. (2016) 

suggested the concept of a meal-assist robot with an SSVEP-based BCI [6,30]. However, 

the current study differs from the previous study on certain measures. (1) The meal-assist 

robot used in their research comprised a single robot arm, whereas that used in our study 

comprised two robot arms, because we decided that two robot arms are required to feed 

the Korean-style meal [27]—one as the grab arm for grabbing the food, and the other as a 

spoon arm for feeding. (2) Their study used three LED-based stimuli, but this study used 

five LEDs. Although this study reported the precise performance of all measurements in 

the experiment, the performance of their study could not be reported clearly. (3) Their 

study was for offline systems, and not for online systems, because their system was based 

on asynchronous BCI as the algorithm could not distinguish between the idle and control 

state without aid. There have been numerous prior research studies aiming at the devel-

opment of highly accurate asynchronous BCI [31,32]. Therefore, several recent studies on 

real-life BCI [5,13], including the current study, used eye-blink as an activation mecha-

nism. (4) The proposed system used EMG for real-life purposes to detect chewing a mor-

sel, on which the system determined the end of the user’s a single meal cycle. Thus, the 

proposed system can be stabilized if the spoon arm only moves to its original position 

after the user finishes a single meal cycle. Therefore, Perera et al. (2016) were the first to 

suggest the concept of a meal-assist robot. This study focused on a hybrid BCI-based meal-

assist robot for real-life applications. 

This study only reported experimental results for five male subjects. Although the 

EB and EMG results did not vary between the sexes, a previous study has reported that 

the SSVEP was detected better in males [33]. Therefore, we conducted the experiment only 

on men, and applying the results of this study on women should involve caution. The 

experiments with the disabled are more important for a BCI-based meal-assist robot. In 

future, this system will be used to conduct research that can be applied to the disabled, 

and the accuracy of SSVEP and FPR of EB and EMG will be calculated to verify the real-

time system. Recently, several studies of SSVEP-based BCIs for robot control reported 

higher accuracy and ITR [34–36]. We discussed the reason for the low accuracy obtained 

in this study in comparison to previous studies. When the subject watched the LEDs on 

the tray, a certain amount of light reflected on the tray owing to LED interference. How-

ever, the purpose of this system is to intuitively eat meals. The operation of this hybrid 

BCI-based meal-assist robot requires approximately 10 s longer if a joystick is used for a 

single meal cycle, considering that the joystick user has not made any mistakes and the 

BCI is 100% accurate. Thus, this system can aid disabled and elderly individuals if the 

process is natural and not uncomfortable for its intended users. However, the problem 

regarding the interference of the reflected light should be resolved because the user will 

want to eat as per his/her desire. Overall, the impact of reflection will be diminished if the 



Sensors 2021, 21, 4578 10 of 12 
 

 

position and the height of LEDs are considered. Alternatively, the AR can provide an ad-

equate solution to this problem, which is similar to other applications [13,37,38]. As a fu-

ture scope of research, we will modify previous system or alter the LED-based stimuli as 

AR-based stimuli. 

This study was conducted at the laboratory level as a preliminary study to test the 

hybrid-BCI system-based meal assist robot on the disabled and elderly. For practical use, 

the system had the following characteristics: (1) a signal for detecting EBs (FPz), signals 

for detecting SSVEP (O1, Oz, O2), and signals for detecting EMG (T7, T8) from a single 

device were measured. (2) We used algorithms requiring no training. (3) We limited when 

the system can detect EBs and EMG to increase the FPR. Nevertheless, there will be addi-

tional considerations for this system to be applied in practice. One of these considerations 

is, like previous assistant devices, the need of a caregiver or a therapist for switching the 

system on/off and device-setting. In this study, the EMG was measured by chewing gum. 

In actual use, since EMG can appear differently depending on the food eaten [39], input 

parameters for thresholding may be required. The user may urgently need to stop the 

system, and EEG may be exposed to various artifacts. In future studies on the disabled 

and elderly, therefore, the preparation process for use will also be an important consider-

ation. In addition, tests of various situations will be required to compare laboratory-level 

parameters with those for practical use. Functions such as strategy for artifact removal to 

ensure the accuracy of the system and an emergency stop to increase stability should be 

also considered. 

5. Conclusions 

The SSVEP-based BCI delivered high accuracy and generally did not require any 

training [20,21]. Therefore, the proposed hybrid BCI-based meal-assist robot was based 

on the SSVEP. We used eye-blink from the prefrontal area and EMG from the temporal 

area, which have been considered as artifacts in previous BCI systems. In particular, the 

proposed system only used EMG to detect chewing a morsel. Based on these signals, the 

user could eat their meals naturally using the meal-assist robot. Thus, the proposed sys-

tem can increase the self-esteem among disabled and elderly individuals and enhance 

their quality of life. 
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Appendix A. Equation of Information Transfer Rate (ITR) 

𝐵 (
𝐵𝑖𝑡

𝑇𝑟𝑖𝑎𝑙
)  = log2 𝑁 + 𝑃 × log2 𝑃 + (1 − 𝑃) × log2 (

1 − 𝑃

𝑁 − 1
) 

𝑄 (
𝑇𝑟𝑖𝑎𝑙𝑠

𝑀𝑖𝑛
) =

𝑆

𝑇
 

𝐼𝑇𝑅 (
𝐵𝑖𝑡

𝑀𝑖𝑛
) = 𝐵 × 𝑄 

where B denotes the information transferred in bits per trial, N represents the number of 

targets, P indicates the classification accuracy, and Q denotes the average classification 

time in minutes. 
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