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Abstract: This paper proposes a multipurpose reinforcement learning based low-level multirotor
unmanned aerial vehicles control structure constructed using neural networks with model-free
training. Other low-level reinforcement learning controllers developed in studies have only been
applicable to a model-specific and physical-parameter-specific multirotor, and time-consuming
training is required when switching to a different vehicle. We use a 6-degree-of-freedom dynamic
model combining acceleration-based control from the policy neural network to overcome these
problems. The UAV automatically learns the maneuver by an end-to-end neural network from fusion
states to acceleration command. The state estimation is performed using the data from on-board
sensors and motion capture. The motion capture system provides spatial position information and a
multisensory fusion framework fuses the measurement from the onboard inertia measurement units
for compensating the time delay and low update frequency of the capture system. Without requiring
expert demonstration, the trained control policy implemented using an improved algorithm can be
applied to various multirotors with the output directly mapped to actuators. The algorithm’s ability
to control multirotors in the hovering and the tracking task is evaluated. Through simulation and
actual experiments, we demonstrate the flight control with a quadrotor and hexrotor by using the
trained policy. With the same policy, we verify that we can stabilize the quadrotor and hexrotor in
the air under random initial states.

Keywords: quadrotor; reinforcement learning; unmanned aerial vehicle

1. Introduction

Multirotor vehicle controllers traditionally provide control on two levels. The high-
level outer loop provides mission-level control, such as way-point navigation or trajectory
planning and tracking. By contrast, the low-level inner loop ensures system stabiliza-
tion and motion control. When using a control-theoretic-based method for stabilizing a
multirotor, parameter tuning [1–3] or model identification has often been needed [4–6].
Such tuning requires some domain knowledge or the construction of precise kinematical
and dynamical models by performing substantial setup and experiments for feedback
linearization control [7,8], robust control [9,10], model predictive control [11,12], or sliding
mode control (SMC) [13–15].

Recently, studies solved many complicated multirotor control problems using re-
inforcement learning (RL). The RL controller design does not require a predefined con-
troller structure, which limits the regulation or tracking performance of an controller.
Greatwood et al. [16] introduced the reinforcement learning that enables autonomous nav-
igation by providing high level path planning decisions for navigation of previously
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unexplored spaces. The method uses online optimization within a model predictive con-
trol (MPC) for navigation and control of quadrotors within a non-convex obstacle field
framework, flight test experiments demonstrate within a two dimensional control scenario.

In studies of Hwangbo et al. [17] and Pi et al. [18], they have introduced learning
algorithms and implemented a control policy through RL training; this was shown to
fully control a quadrotor by using a neural network to perform low-level stabilization and
position control directly from the state quadrotor to four motor outputs. In Pi et al. [19], a
reinforcement learning with disturbance compensation was proposed using end-to-end
manner to compensate wind gusts in outdoor environment. Through introduction of
a compensator into the RL control policy, the hovering accuracy and robustness were
significantly increased in experiment. These studies obtained results through simulation
and in real world environments. Although RL control policies have been hugely successful
and obtained results that can compete with those obtained using traditional controllers, the
RL controller can only apply the same model as that obtained from the training process,
and the multiusability of the trained policy is a problem that remains to be solved. This
leads to a neural network control policy that fits only the model-specific quadrotor; another
control policy must be created for different quadrotors. The neural network training is time
consuming and difficult to perform in general usage situations. To resolve this problem,
Wang et al. [20] used a deterministic policy gradient algorithm with integral state to
compensate for the varying weight of the quadrotor. Molchanov et al. [21] proposed a
method through adjusting the output gain according to the weight of the quadrotor and
implemented the method for three quadrotors. The quadrotors remained stable even when
their size and weight were different under certain conditions. However, the moment of
inertia cannot vary too much in their method, and the command of each motor is still
determined directly, meaning that the trained policy can only be applied to one type of
multirotor because of the fixed number of rotors during the training process. Dai et al. [22]
proposed a control policy which generates moment and force command, which improves
the flexibility of the training based RL controller. However, the force and moment control
commands depend on the multirotor dynamics in learning process and has difficulties
when applied to different vehicles with physical parameters.

Based on these aforementioned studies, we are interested in designing a single RL
control policy that can be applied to various multirotor vehicles with arbitrary axis and
physical parameters and not require manual tuning to provide stabilization and position
control functions. Herein, we propose a controller design method using RL neural network
policy with multiusability; the method can resolve the aforementioned RL controller prob-
lem noted in previous studies. Multirotor-type UAVs with different weights or different
structures and numbers of motors (e.g., quadrotor, hexrotor, and octorotor UAVs) which
have differing propeller distributions, and rotation directions can be used to stabilize and
exert control through our RL control policy in only a single training session. Such a control
structure can be widely used for multirotors of different sizes or several types of vehicle. We
demonstrate the recovery and stability performance of the trained control policy obtained
using our RL algorithm for a quadrotor and hexrotor, which have different weight and
size, both by conducting simulations with arbitrary initial states and real flights. To the
best of our knowledge, our work is the first to simulate a low-level attitude-stabilizing
RL controller based on multiuse, multirotor neural network policy and demonstrate the
feasibility of the controller in real flight.

Section 2 provides a brief introduction of the dynamics of a multirotor. Section 3
introduces the RL theorem and presents our neural structure and control method for multi-
rotors. Section 4 details our experimental results in simulation and real-world experiments.
Finally, conclusions are drawn in Section 5.

2. Background

In this section, we describe the multirotor dynamic model used in the simulation envi-
ronment. The multirotor is considered to have a 6-degrees-of-freedom (6DoF) rigid body,
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which is governed by the Newton–Euler equations. The vehicle translational dynamics are
given by Equation (1):

ẋ = v

v̇ = m−1(Tbz + fext)− g,
(1)

where m is the mass of vehicle; x, v and v̇ are the position, velocity vectors and acceler-
ation vector, respectively; T is the total thrust from the actuators and fext is the external
disturbance term including aerodynamic drag force in flight. R = [bx by bz] ∈ SO(3) is
the rotation matrix from the body frame to the inertia reference frame, and g = [0, 0, g]T is
the gravitational acceleration.

The rotational dynamics are given by Equation (2):

q̇ = 0.5 · q⊗
[

0
Ω

]T

Ω̇ = J−1(M−Ω× JΩ).

(2)

To prevent gimbal lock in computation, we use a quaternion representation on quadro-
tor attitude. J is the moment of inertia matrix of the vehicle, q = [q0, q1, q2, q3]

T is the
quaternion vector used to express the orientation of the vehicle, ⊗ is the quaternion multi-
plication, Ω and Ω̇ are the angular velocity and angular acceleration, and M is the moment
generated by the actuators. The rotation transformation between the quaternion q to the
rotation matrix R can be expressed as Equation (3):

R =

1− 2(q2
2 + q2

3) 2(q1q2 − q3q0) 2(q1q3 + q2q0)
2(q1q2 + q3q0) 1− 2(q2

1 + q2
3) 2(q2q3 − q1q0)

2(q1q3 − qyq0) 2(q2q3 + qxq0) 1− 2(q2
1 + q2

2)

 (3)

The thrust generated from motors are assumed to be aligned to the z-axis of the
multirotor. External disturbance and drag force are neglected on the dynamic model of the
vehicle in simulation environment in training process and regard as the uncertainties to
the control policy. For different multirotors, the mapping from thrust T to the moment is
different and dependent on the placement of the rotors. Figure 1 shows the two types of
multirotor, the quadrotor and hexrotor, that were used in our real world experiment. They
have the same thrust force direction applied to the body frame z-axis but different moment
from each rotor.

Figure 1. Single trained RL controller from 6DoF model with thrust T and moment M to different-
configuration multirotors.
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3. Reinforcement Learning Algorithm and Implementation

In this section, we present our policy training method and the structure of the experi-
ment verification for different multi-axis rotors. The experimental results are discussed in
Section 4.

3.1. Algorithm

The RL is usually implemented in conjunction with the a Markov decision process
(MDP). The MDP is defined by the tuple (S ,A, P, r), where S is the state space, A is the
action space, P : S ×A× S → R+ is the state transition probability, and r : S ×A → R is
the reward function. The goal of the MDP is to determine the optimal decision, whereas
the purpose of RL is to solve the MDP problem through a learning process and propose the
optimal policy π : S ×A → R+.

The value function indicates the performance of a policy by the total expected reward
with a discounted factor γ ∈ (0, 1) and was written as Equation (4):

Vπ(s) = E
[

∑
t≥0

γtrt

∣∣∣s0 = s, a ∼ π

]
, (4)

and the learning process involves increasing it to as large as possible. To update to a
better policy π, we start from the equation of the difference between policy π and another
policy µ:

Vπ(s)−Vµ(s) = ∑
x∈S

ρπ
s (x) ∑

a∈A
[π(a|x)− µ(a|x)]Aµ(x, a), (5)

where ρπ
s (x) is the state visited frequency with discount, Aµ(s, a) is the advantage, Qµ(s, a)

is the the state-action value and can be written as following equations respectively.

ρπ
s (x) = ∑

t≥0
γtP(st = x

∣∣∣s0 = s, a ∼ π) (6)

Aµ(s, a) = Qµ(s, a)−Vµ(s) (7)

Qµ(s, a) = E
[
rt + γVµ(st+1)

∣∣∣st = s, at = a
]

(8)

According to Equation (5), it shows that if Equation (9) holds

[π(a|x)− µ(a|x)]Aµ(x, a) ≥ 0 (9)

implies the Equation (10):
Vπ(s) ≥ Vµ(s), (10)

and this indicates that the policy π is better than policy µ on state s. Equation (5) shows
that a better policy can be constructed using Equation (9) by adjusting the probability of a
specific state-action pair according to the advantage function (7).

3.2. Implementation

The relation between Equations (9) and (10) implies that given a policy µ, a better
policy π can be constructed by satisfying the inequality of Equation (9). Therefore, the
proper estimation of Aµ in Equation (9) is the major topic and the approach in this work is
based on [18].

In the typical model-free RL approaches, the value estimation is based on minimizing
the squared Bellman error as Equation (11):

L[V̂] = E[|rt + γV̂(st+1)− V̂(st)|2|(st, at) ∼ µ], (11)

where V̂ is an approximated value function Vµ. This approach is known as temporal
difference learning [23]. In this study, we use a variance temporal difference learning
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method, or called V-trace [24] to replace the fitting target rt + γVµ(st+1) in Equation (11).
The value and advantage function can be rewritten as following equations,

Vtrace
t = V̂(st) + min

(
1,

π(at|st)

µ(at|st)

)
Atrace

t (12)

Atrace
t = At + γ min

(
1,

π(at+1|st+1)

µ(at+1|st+1)

)
Atrace

t+1 , (13)

At = rt + V̂(st+1)− V̂(st). (14)

Therefore, the objective in our value fitting is to minimize Equation (15):

Lvalue = E[
(
Vtrace

t − V̂(st)
)2
]. (15)

For improving the policy, an ideal approach is to construct a new policy π that
satisfies Equation (9). However, without the preliminary of the model, there is no efficient
way to do so. On the other hand, in the context of machine learning, this problem is treated
by empirical risk minimization. For instance, we minimize Equation (16):

Lpolicy = ∑
(s,a)∈B

max
{

0, ε− Atrace(s, a) log
π(a|s)
µ(a|s)

}
, (16)

where ε > 0 is a predefined parameter called margin, B is the buffer that stores the
sampled transition. The loss in Equation (16) comes from the state-action pairs that failed
to satisfy Equation (9) in B. We optimize both Equations (11) and (16) by a variance
stochastic gradient descent, Adam [25].

In order to calculate Equation (12), the state-action pairs need to be a time sequence
(trajectory) thus we solve Equations (1) and (2) by numerical integration, i.e., Euler method,
in N steps. In each step n ∈ [0, N − 1], we sample single action from the current policy
and estimate the next state every simulated duration 0.01 s. For the case of n = 0, the
state is generated by random sampling from the interesting control region. In practice, we
set this region by a square space in position, velocity, angular velocity, and arbitrary unit
quaternion in orientation. The state st and action at in Equation (12) are represented as
following equations,

st =
(
x v q Ω

)T
t ,

at =
(
Ω̇, v̇

)
t.

(17)

The state transition is determined by Equation (18):


x
v
q
Ω


t+1

=


x
v
q
Ω


t

+


vt

m−1Tbz − g

0.5 · qt ⊗
[

0
Ωt

]
J−1(M−Ωt × JΩt)

∆t (18)

[
M
T

]
=

[
J 0
0 m

]
a +

[
Ω× JΩ

0

]
−
[

0
g

]
(19)

The outputs of policy function π are the mean α and standard deviation σ of the
Gaussian distribution, which is defined as the probability density function of the normal-
ized angular and translational acceleration generated by the rotors. The π function can be
written as Equation (20):

π(a|s) = 1√
2πσ2(s)

e
− (a−α(s))2

2σ2(s) . (20)
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The gravitational acceleration g is added and considered as the feed-forward term to
directly compensate for take-off weight.

We store all trajectories into the memory buffer B with fixed size. Once the buffer is
filled, the oldest data are removed, freeing space for new data. The training samples for
optimizing Equations (15) and (16) are sampled from this buffer. The Algorithm 1 presents
the pseudo code of RL agent training.

Algorithm 1 Learning Algorithm

1: Initialize policy and value function parameters θπ , θV
2: Set the maximum episode N and maximum step T
3: repeat
4: for i in [0, N − 1] do
5: Randomly initialize the states s0 of vehicle
6: for t in [0, T − 1] do
7: Making a decision at according to π(a|st)
8: Evaluate st+1 according to (18)
9: Collect Dt = {st, at, π(at|st), rt, st+1}

10: Save trajectory τi = {D0, D1, ..., DT−1} to memory buffer B
11: Randomly sample M trajectories {τ} from B
12: for τ in {τ} do
13: set tmp = 0
14: for j = T − 1 to 0 do
15: Qj = rj + γV̂(sj+1)

16: Aj = Qj − V̂(sj)

17: Atrace
j = Aj + γ× tmp

18: tmp = min
(

1, π(at |st ;θ)
π(at |st ;θold)

)
Atrace

j

19: Vtrace
j = V̂j + tmp

20: ĝpolicy = 1
T ∑T−1

j=0 ∇Lpolicy,j
21: Update θπ using Adam optimizer by ĝpolicy

22: ĝvalue =
1
T ∑T−1

j=0 ∇Lvalue,j
23: Update θV using Adam optimizer by ĝvalue

24: until training success

The neural networks are composed of artificial neuron node layers, and each layer
processes affine transformation and non-linear mapping by using an activation function,
expressed as Equation (21):

z[i] = W[i]a[i−1] + b[i]

a[i] = κ
(

z[i]
) (21)

where a[i] is the output of layer i; a[i−1] is the input (vehicle state or output from previous
layer); W, b ∈ θ are the weight and bias of the neural network, respectively; and κ is the
activation function.

In this paper, we have two neural networks: one used for state value estimation and
another for determining the actions, as illustrated in Figures 2 and 3. The value function is
used for neural network approximation; the function consists of two hidden layers with
128 nodes in hidden layer. Rectified linear unit activation function is used in hidden layer
and output layer. The inputs of the function are the states of vehicle (position, velocity,
quaternion, and angular velocity), and the output is the estimated value of state V(s).
The policy neural network approximation structure consists of two hidden layers with
32 rectified linear unit nodes in each layer. The policy neural network outputs the mean α
and standard deviation σ of the Gaussian distribution to generate the control command.
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The sinusoidal function is used as the activation function in the output layer to ensure the
output is bounded, and scales are applied to delimit the desired acceleration range.

Figure 2. Value function using neural network approximation; the function consists of two hidden
layers with 128 rectified linear unit nodes in each layer. The input is the state of vehicle, where x, v, q
and Ω are the position, velocity, quaternion, and angular velocity, and the output is the estimated
value of state V(s).

Figure 3. Policy neural network approximation structure, consisting of two hidden layers with
32 rectified linear unit nodes in each layer. The neural network outputs the mean α and standard
deviation σ of the Gaussian distribution to generate the control command.

4. Experiments and Verification

In this section, we present our proposed control structure and training method for
control policy. After the policy is successfully trained and verified in the simulation
environment, the control policy then is applied to multiple types of multirotor. In our
experiment, we use a quadrotor and hexrotor with differing physical parameters (detailed
in Table 1) and test them in both simulation and real world environments by using the
control closed-loop structure presented in Figure 4.
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Figure 4. Closed-loop control system for a multirotor UAV, where α is the mean output, M is the
total moment, T is the total thrust, and s is the vehicle’s state.

Table 1. Physical properties of vehicles. Diag(a) is the 3× 3 diagonal matrix with entries that are the
three elements of vector a.

Quadrotor Hexrotor

Mass 0.673 1.089(kg)
Inertia diag(27, 33, 52) diag(83, 91, 151)

(kgcm2)
Arm Length (m) 0.126 0.180

Rotor Diameter (m) 0.127 0.127

4.1. Reinforcement Learning Training

On the basis of the algorithms discussed in Section 3, we define our value network to
have two layers and 128 nodes in each layer. The policy network also uses two layers but
has 32 nodes in each layer to shorten the computation time when applied onto the on-board
flight computer. The Tensorflow framework [26] is used for implementing the RL training
algorithm described in Section 3 under the Python environment. The version of Tensorflow
is r1.13. Both the neural networks take the states of the 6DoF rigid body (position, velocity,
quaternion of rotation, and angular velocity) and the control policy π(a|s) outputs angular
and translational acceleration command. The output command is the translational and
rotational acceleration of the multirotor and is limited as v̇ ∈ [−40, 9.8] m/s2 and Ω̇ ∈
[−100, 100] rad/s2. The maximum translational acceleration cannot exceed 9.8 m/s2 due
to the rotor can only generate negative direction thrust force on body z-axis, while the
acceleration on the positive direction can only given by the gravity.

For reinforcement policy training, we design the reward function as following equations:

reward = −
[
w1 w2 w3

][
‖ qe ‖ ‖ pe ‖ ‖ Ω ‖

]T , (22)

qe = qdq−1 (23)

pe = xd − x (24)

where qd, xd, and Ω are the desired quaternion, desired position, and angular velocity,
respectively, and w1 to w3 are the weights of these errors which are all set to 0.002. The
quantities of w1 and w2 need greater than zero while the magnitude determines the
priority of reducing position error and heading error. The number w3 penalizes the angular
velocity. A smaller w3 implies a more aggressive control policy. We analyzed the necessity
of different items in the RL training reward function (22) to simulate the flight performance
of the quadrotor. We are interested in simpler reward function with fewer hyperparameters.
The reward is normalized into [0,−1] to ensure convergence speed. The training takes
approximately 10 million steps to train a control policy that achieves steady hovering at
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a designated position and the training curve of accumulate reward is shown in Figure 5.
The training progress of the neural network navigates the vehicle to the designed target,
and the accumulated rewards come to stable after around 70,000 episodes. In the following
30,000 episodes, the evaluation of reward does not show any significant progress, and the
training can be stopped at this time. Figure 6 shows the block diagram of the training
process. The Dt are the data generated by the dynamic model which include the state of the
dynamic model st, st+1, action at determined by the policy function, the policy probability
π(at|st), and the reward rt. The generated data are collected as the trajectory sample in the
memory buffer and used in the optimization algorithm to update the weight of policy and
value network θπ , θV .

Figure 5. Accumulated reward training curve of each episode in RL controller optimization and is
sampled every 100 steps update. The solid line indicates the average value. The training takes approxi-
mately 10 million steps to train a control policy that achieves steady hovering at a designated position.

Figure 6. Block diagram of the training process. The Dt are the data generated by the dynamic model
which include the state of the dynamic model st, action at determined by the policy function, the
policy probability π(at|st), and the reward rt. The generated data are collected as the trajectory
sample and used in the optimization algorithm.

Despite the fact that RL is a model free learning algorithm, sampling the training
batch episodes from the real multirotor is impractical. The multirotor is an unstable
system without proper controller. The multirotor would fail too many times before the RL
control policy learned to maintain its flight. The whole training process is completed in a
simulation environment.

4.2. Mapping Strategy

For implementing our trained policy with various vehicles, we apply the closed-
loop system 6DoF dynamic model presented in Figure 4 to the quadrotor and hexrotor
described in Table 1. The RL trained policy generates the translational and rotational
control acceleration command with inputs of vehicle position, velocity, rotation, and
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angular velocity. Then, the outputs from the control policy are converted to the rotation
speed ωrotor of each rotor in each vehicle. The thrust force from the rotor speed is given as
Equation (25),

Mrotor z = cdω2
rotor + Jrotorω̇rotor

Trotor = c f ω2
rotor

(25)

where and c f , cd are the coefficients of the generated force and z-axis moment, respectively.
The Jrotor is the rotor and propeller moment of inertia. We only consider the drag force
term on z-axis moment in the training process due to the Irotorω̇rotor is relative small.

For the quadrotor model, Equation (26) gives the conversion from the propeller rota-
tion speed of quadrotor ωquad = [ω1, ω2, ω3, ω4] and hexrotor ωhex = [ω1, ω2, ω3, ω4, ω5, ω6]

to force T and moment M. The ωquad
2 and ωhex

2 represent the element-wise square of
the vector. [

M
T

]
=


−lc f lc f lc f −lc f
lc f −lc f lc f −lc f
cd cd −cd −cd
c f c f c f c f

ωquad
2 (26)

The hexrotor conversion would be Equation (27):

[
M
T

]
=


−lc f lc f lc f /2 −lc f /2 −lc f /2 lc f /2

0 0
√

3lc f /2 −
√

3lc f /2
√

3lc f /2
√

3lc f /2
−cd cd −cd cd cd −cd
c f c f c f c f c f c f

ωhex
2. (27)

where l is the arm length of the vehicle.
However, to calculate the inverse transformation from force T and moment M to

motor thrust for the hexrotor, we add two additional restrictions as Equation (28) for
solving the solution of ωhex:[

0
0

]
=

[
c f c f −c f −c f 0 0
0 0 c f c f −c f −c f

]
ωhex

2 (28)

We design these additional constraints for the hexrotor to divide the six rotors into
three pairs, namely [(ω1, ω2), (ω3, ω4), (ω5, ω6)] ∈ ωhex, as illustrated in Figure 7. This
ensures that each motor pair generates equal thrust. The constraints distribute the desired
total thrust to each motor evenly and prevent the saturation of motor thrust.

(a)Quadrotor (b)Hexrotor

Figure 7. Top-down view of (a) quadrotor and (b) hexrotor models with propeller thrust pairs
[(ω1, ω2), (ω3, ω4), (ω5, ω6)]. Motors are indexed in the opposite direction starting from the T1

motor, which generates thrust force T1.
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4.3. Simulation Verification

To verify the result of control policy training on the multirotor, the controller is tested
in the simulation environment. We create the dynamic models according to Equations
(1) and (2), and the physical parameters are presented in Table 1. The hexrotor has 50%
more weight and 3 times more moment of inertia than the quadrotor to verify the control
strategy applied on different vehicles. Notice that the rotor dynamics is not included in the
dynamic model of simulation for RL control agent training. To verify that our proposed RL
policy controller structure could be implemented with multirotors, we conduct 20 flight
tests starting from arbitrary initial conditions in a 4 m × 4 m × 4 m space, velocity, and
angular velocity between ±1 m/s and ±1 rad/s with both the quadrotor and hexrotor
vehicles detailed in Table 1 for the simulation environment.

Here, we combine sensors and thrust noise to hover the quadrotor at a fixed point,
record its attitude for 60 s, and report the RMS position error. When applying the RL
controller from the training section to the multirotors, the trained control policy network is
extracted and only the mean of the policy action (translational and rotational acceleration) α
is chosen as the output command to the mapping strategy without using the randomization
from standard deviation σ. Figure 8 illustrates the flight results of the simulation. The
vehicles return to their point of origin and hover successfully in all randomly initialized
hovering trials.

(a)Quadrotor

(b)Hexrotor

Figure 8. Simulation response of the (a) quadrotor and (b) hexrotor models, which achieved hovering
capability within 8 s with 20 random initial states in the simulation flight test (position, velocity,
attitude, and angular velocity).

4.4. Real-World Verification

After the vehicle showed successful flight in the simulator, we transfer our algorithm
to a real world flight test. In this test, our trained policy and control structure are imple-
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mented using a Pixracer flight control board (mRobotics, Chula Vista, CA, USA), which has
an STM32F427 micro-controller clocking at 180 MHz and WiFi connection ability for wire-
less communication, enabling motion capture position feedback. The state estimation is
performed using the on-board sensor and motion capture with extended Kalman filter. The
on-board computation is conducted at 250 Hz, whereas the feedback from the OptiTrack
motion capture system is provided at 120 Hz 3D precision in 0.5 mm. Consumer-grade
standard parts (motors and propellers) are selected when building the multirotors. Each
propeller can generate a maximum of 8 N. A consumer-grade electronic speed controller
(ESC) mapping function of speed command to rotor thrust is built through experiment
measurement. Figure 9 shows the system diagram used for the experiments. The p denote
the desired goal, x, v is the estimated position and velocity from local estimator. Quaternion
q, and angular velocity Ω in body frame represent measurements from flight controller
on-board sensors. ωrotor is thrust force in newton and rotor speed in rad/s.

Figure 9. The motion capture framework (OptiTrack Prime 13, 1.3 MP Resolution, 240 FPS) for
real-world verification is exploited to interface with the vehicles. The trained policy and control
structure are implemented using Pixracer flight controller and WiFi connection to achieve position
feedback with wireless communication.

In the RL controller validation experiment, we perform three experiment to assess the
RL performance. (1) A remotely piloted task is performed, starting from 20 random initial
positions in a 2 m × 2 m × 2 m space, velocity, and angular velocity between ±0.2 m/s
and ±0.4 rad/s. The vehicle is set to fly back and hover at its point of origin. A smaller
site is used because of the limitation of the environment. The results of this experiment
are illustrated in Figure 10. The three-dimensional position plot presents the hovering
positioning performance of both the quadrotor and hexrotor. (2) We analyze the steady
state hovering performance calculating the root mean square error (RMSE) on each axis for
vehicles in one minute and are listed in Table 2. The z-RMSE on hexrotor is two times larger
than the quadrotor, especially in the steady hovering which can be observed on Figure 10.
We believe this is due to the imperfection of the rotor thrust mapping function. (3) We
also demonstrate the way-point following capability of the RL controller and compare the
behavior and flying trajectory of the two vehicles. Figure 11 shows that the quadrotor and
hexrotor track a 1.5-m-wide square path with velocity command 0.3 m/s. The tracking
RMS error is 0.11 m and 0.16 m of quadrotor and hexrotor separately. The figure shows the
two vehicles have similar behavior and trajectory in spite of having different structure and
physical parameters.
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(a)Quadrotor

(b)Hexrotor

Figure 10. Experimental result of the (a) quadrotor and (b) hexrotor models, which achieved hovering
capability within 8 s with 20 random initial states in the simulation flight test (position, velocity,
attitude, and angular velocity).

Table 2. Root mean square error of 1 min hovering of quadrotor and hexrotor at the point of origin.

x-RMSE y-RMSE z-RMSE
(cm) (cm) (cm)

Quadrotor 3.61 5.41 1.05
Hexrotor 2.82 4.17 1.95

In the real world flight test, a back and forth movement through which the vehicles ap-
proach a set point on the x, y axes is observed before they reach their point of origin, unlike
in the simulations. First, we attribute this to the imperfect inverse transform between the
desired thrust and ESC command. In the simulator training process, only gravity and the
forces generated by the motors were considered to construct the simplest dynamic model.
We do not employ motor speed as feedback or identify motor dynamics when implement
to real multirotors. How the ESC regulates the motor speed is unknown. This unknown
gives an inaccurate angular acceleration to the frame and affect the transient movement
of multirotors. Second, the simulation environment does not include the measurement
noise of on-board sensors and the communication delay in sensor feedback, especially in
wireless communication on motion capture position feedback that influence the controller
performance. However, the experimental results indicate that our RL controller structure
can nonetheless stabilize the multirotors and regulate the set point.
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Figure 11. The quadrotor and hexrotor track a 1.5-m-wide square path with waypoint moving in
0.3 m/s.

5. Conclusions

In this article, we proposed a RL controller design method in which a well-trained
control strategy can be applied to UAVs with varying physical parameters or even of
different types. Starting from constructing a 6DoF rigid body model and used in the RL
training. The trained control policy can be applied to different types of multirotors through
the mapping strategy without manual parameters tuning. The method’s adaptability
for multirotor UAVs is demonstrated. By contrast, the trained RL controllers presented
in [17,18,21] can only be used for a specific multirotor with the same physical structure and
parameters. In our method, the policy neural network output can be converted for each
actuator unit according to the dynamic model of various geometric characteristics of the
vehicle. Furthermore, the proposed strategy keeps the advantage of high robustness to
harsh initial conditions as in previous studies of RL quadrotor controllers.

The simulation and experimental results show that our controller works for both a
quadrotor and hexrotor when starting from randomly initialized states (position, velocity,
orientation, and angular velocity) in a 2-m-wide cubic space. The hexrotor has 50% more
weight and 3 times more moment of inertia than the quadrotor. Our method demonstrates
the control policy can be applied onto the vehicles with wide derivation physical parameters
using a single trained controller. The waypoint following experiment also shows that
the two vehicles have similar behavior and flight trajectory in spite of having different
structure and physical parameters. Through a single RL policy function from training, the
controller stabilizes the attitude of the vehicle and regulates the set position successfully.
The experiments also demonstrate the robustness of the RL controller to the unknown
dynamics of motor ESC and the latency of the sensors feedback especially in motion capture
wireless communication, which are not included in the RL control policy training process.
Our method opens wide possibilities for directly applying the RL controller to various
custom-built multirotors without the need to perform a redundant training process.

The applications for the urban flight application, the wind gust is the first challenge
that would affect the flight performance. A disturbance compensator can be combined
with the RL controller to reduce the wind gust effect and improve the flight performance.
Another work would be improving the mapping for actuators output. The RL controller
was trained under the constraint of maximum translational and rotational acceleration to
simulate the thrust limitation of rotors that can generate. The rotors thrust commands may
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have better solution using the mapping strategy for better application requirement, which
would be another topic to discuss in future work.
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