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Abstract: In many Internet of Things (IoT) environments, the lifetime of a sensor is linked to its power
supply. Sensor devices capture external information and transmit it. They also receive messages with
control commands, which means that one of the largest computational overheads of sensor devices
is spent on data serialization and deserialization tasks, as well as data transmission. The simpler
the serialization/deserialization and the smaller the size of the information to be transmitted, the
longer the lifetime of the sensor device and, consequently, the longer the service life. This paper
presents a new serialization format (PSON) for these environments, which simplifies the serializa-
tion/deserialization tasks and minimizes the messages to be sent/received. The paper presents
evaluation results with the most popular serialization formats, demonstrating the improvement
obtained with the new PSON format.
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1. Introduction

The next generation of telecommunications networks (fifth generation or 5G) aims
to redefine the rules of the game in connectivity in many respects. The capabilities of
the new generation are overwhelming: data rates of up to 10 Gbps (10–100 times better
than the current 4 and 4.5G networks), latencies of 1 millisecond, network availability of
99.999%, 100% coverage, 90% reduction in network power consumption, and increased
capacity of simultaneously connected users are expected [1]. Beyond improved speed,
or latency, 5G is expected to unleash a massive IoT (Internet of Things) ecosystem [2] in
which networks can meet the communication needs of billions of connected devices with
the right capabilities [3].

The 5G specifications and use cases go far beyond mobile communication, the ser-
vice experienced by the end user. Specifically, the new 5G standard defines different
operational scopes or categories, which are eMBB (enhanced Mobile Broadband), URLLC
(Ultra-Reliable Low-Latency Communications), and mMTC (massive Machine Type Com-
munications) [4].

The aim of eMBB is to substantially improve the bandwidth of mobile communications
with moderate latency and thus provide a solution for emerging applications related to
virtual reality, augmented reality, UltraHD quality applications, 360° video streaming, etc.,
which will be further enhanced in the future; for example, it will be boosted in 2021.

On the other hand, URLLC [5] refers to ultra-reliable communications with very low
communication latency. URLLC will support a range of advanced services for latency-
sensitive connected devices to enable applications across a wide spectrum, such as factory
automation, autonomous driving, industrial internet, remote surgery, and smart grids,
among others.
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In addition, within the proposed 5G specification, mMTC services [4], which are
massive machine-to-machine communications, are also defined. These are specifications
focused on providing a cost-effective and robust connection to billions of devices without
overloading the network. It will serve devices whose typical use case is to send small
amounts of information on a regular basis, enabling optimal use of the power of IoT devices,
as the vast majority of IoT devices are battery-powered.

Within the Internet of Things, 5G’s mMTC technology is being postulated as an
unprecedented connectivity solution for the development of connected products and
services [6,7]. The specification sets requirements around networking devices with up to
10 years of battery life, coverage penetration of 164 dB with a capacity of 160 bits per second,
coverage density to support up to one million connected devices per square kilometer,
communication latencies of less than 10 s for 20 bytes of data, and a crucial element for
massive scaling: very inexpensive hardware [4]. In addition, this specification states that
5G networks and mMTC should support more features and applications over time, such as
positioning, mobility, or multicast communication capability, among others. The mMTC
will rely on two network standards, NB-IoT (Narrowband-IoT) and LTE-M, which are
3GPP specifications particular to IoT [8].

NB-IoT and LTE-M are part of LPWANs (Low-Power Wide-Area Networks), such as
Sigfox, ZigBee, and LoRa [9], which are technologies that offer ranges of several kilometers
and low power consumption. They mitigate the shortcomings of WPANs (Wireless Per-
sonal Area Networks), such as WiFi and Bluetooth, which, although still widespread [10],
have limitations with respect to their range (only a few tens of meters) and their power
consumption [11], which is why they cannot be extensively used in IoT contexts. The main
advantage of the LPWAN approach in 5G compared to other technologies is that they are
within the licensed spectrum (so they are immune to interference) and use the infrastructure
of telephony networks, so there is no need to deploy their own infrastructure. Moreover,
because it is a standardized technology, LPWAN is supported by a global ecosystem that
allows interoperability between different market players and production scales of these
solutions, which will reduce the cost of the technology once it is consolidated [12].

As discussed above, the massive growth of IoT solutions will require the use of devices
with limited capabilities [13,14]. Although technological advancement is ongoing, due to
the limited resources available in a typical sensor device, and in order to achieve lower
power consumption at the nodes, it is important to reduce the amount of data exchanged.
Various initiatives have been developed to improve energy consumption in sensor networks.
Some of them aim to optimize energy by designing routing protocols [15,16]. Other work
has focused on the development of Wireless Power Transfer (WPT) technology [17–21] or
Energy Harvesting (EH) [22]. However, the focus of this research work is on the efficient
transfer of data from devices to the server-side. In this way, the processing power, available
memory, and battery life of IoT devices, which are mostly limited in these aspects [23,24],
will be optimized.

For the transmission of information in both directions, that is, between the device
and the server, serialization formats are used. Serialization is the process of translating
data structures or object states into a format that can be transmitted and reconstructed
later. Therefore, serialization is the conversion of an object into a sequence of bytes,
whereas deserialization is the reconstruction of an object from a sequence of bytes. Serial-
ization/deserialization processes are critical for devices with limited on-board energy, such
as those in an IoT network. The smaller the size of the serialized object and the shorter the
execution time involved, the more efficient the format. Any reduction in processor time for
transaction serialization/deserialization contributes to an increase in the deployed lifetime
of an IoT device. There are a number of different serialization formats, as is discussed
further below. In IoT environments, where many devices are expected to be connected
to the server, the importance of selecting a serialization format is vital in order to reduce
overheads (measured as memory and bandwidth usage) [25].
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Although the selection of the message protocol [25,26] is also relevant in the communi-
cation system, the focus of this paper is the presentation of a new serialization format called
PSON [27]. The main goal of PSON is to define a serialization format efficiently in terms
of total serialization time and bandwidth required to transmit arbitrary data payloads.
The main problem with other encoding technologies is that they were not specifically
designed thinking in the IoT ecosystem, both for servers to allow them to scale better
while decoding massive IoT sensor data, and for sensors to last long when powered by
batteries. This way, some existing methods are quite efficient for reducing the payload
size, but they increase the total serialization/deserialization complexity in terms of pro-
cessing power, especially for a small microcontroller. PSON is then focused on providing
a balance between serialization time and generated payload size. PSON is used in the
Thinger.io Cloud Platform [28]. Thinger.io is an open-source platform with capabilities for
the collection, management, and analysis of a huge amount of heterogeneous sensor data.
The use of PSON provides optimization in terms of execution time, channel utilization,
and power consumption compared to the most common methods used in IoT environ-
ments. The aim of this paper is to describe this new serialization format and assess its
performance compared to the most widely used formats.

The remainder of this article is organized as follows: Section 2 introduces the main
aspects and the information sources of the data serialization formats that are analyzed and
compared in the presented research. Section 3 provides an in-depth description of the new
developed data serialization format, PSON. Section 4 describes the design of the research
carried out to compare the selected data serialization formats and specifically addresses
the attributes used to perform the comparison, the hardware used and its relation with
IoT, the libraries used, and the test and payloads used. Section 5 presents the research
results obtained from each attribute analyzed and the hardware used. Finally, Section 6
summarizes the conclusions obtained in the research and describes possible future work
that can be performed. Taking this research as a starting point, some of that research has
already begun.

2. Data Serialization Formats

This paper presents a comparison between data serialization formats; in this section,
we enumerate and describe the main characteristics of the data serialization formats
included in the comparison. The data serialization formats included in this study are those
with widespread use:

• JSON, JavaScript Object Notation. The European Computers Manufacturers Associa-
tion, ECMA, published the ECMA-404 standard, “The JSON data interchange syntax”,
whose latest update was the 2nd edition, published in 2017 [29]. This document
presents the most recent version of the standardized JSON language. As defined
in the document, “JSON is a lightweight, text-based, language-independent data
interchange format. It was derived from the ECMAScript programming language,
but is programming language independent. JSON defines a small set of structuring
rules for the portable representation of structured data”. JSON is based on a subset of
the JavaScript Programming Language Standard ECMA-262 3rd Edition published
in December 1999, and it is a very stable data-interchange language that has had
few modifications since it was first presented in 2001 on the JSON organization web-
site [30]. This stability is complemented by the fact that it uses conventions similar
to the C-family of languages, such as C, C++, C#, Java, JavaScript, Perl, and Python,
making JSON one of the most widely used data serialization formats.

• BSON, Binary JSON. First developed by MongoBD [31] as a binary structure that
encodes type and length information, BSON is currently maintained as an open
binary-encoded serialization of JSON-like documents in [32], whose latest published
specification version is 1.1. This document describes the three characteristics for
which BSON was designed: “Lightweight, Keeping spatial overhead to a minimum;
Traversable, was designed to be tranversed easily; Efficient, Encoding data to BSON
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and decoding from BSON can be performed very quickly in most languages due to
the use of C data types.”

• Protocol Buffers, developed by Google as a mechanism for serialized structured data.
Two versions have been published, Proto2 and Proto3, the specifications of which
can be found in [33]. The most recent version of Protocol Buffers, proto3, supports
generated code in Java, Python, Objective-C, Dart, Go, Ruby, and C#. The main
objective of Protocol Buffers is to be a small, fast, and simple mechanism for data
serialization and be language-neutral, platform-neutral, and extensible.

• XML, Extensible Markup Language. Developed by six different XML Groups [34],
each dedicated to a different aspect of the Information and Knowledge Domain,
W3C [35], Extensible Markup Language (XML) is a text format derived from SGML
in ISO 8879, which was designed to meet the challenges of large-scale electronic
publishing, but the file was extensively used in the exchange of a wide variety of data
on the Web and elsewhere. Its first publication was in 1997, and since then, many
different specifications, which can be found in [36], have been published.

• YAML, YAML Ai not Markup Language. Developed as an international collaboration,
YAML resulted from the serialization format for Inline, Data::Denter module, devel-
oped by Ingy dot, and a simplification of XML, developed by Clark Evans and Oren
Ben-Kiki. The first specification was published in 2001, and the current version is
YAML 1.2, published in 2009. All of the specifications can be found in [37]. YAML was
integrated and built upon concepts of C, Java, Perl, Python, Ruby, RFC0822 (MAIL),
RFC1866 (HTML), RFC2045 (MIME), RFC2396 (URI), XML, SAX, and SOAP.

• MessagePack. Developed by Sadayuki Furuhashi in 2009, MessagePack is a binary
serialization format that enables data exchange among multiple languages. Small
integers are encoded into a single byte, and typical short strings require only one extra
byte in addition to the strings themselves. There is only one specification, with the
most recent update in 2017, which can be found in [38].

• Apache Thrift. Developed by Facebook, it was open sourced in 2007 and entered the
Apache Incubator in 2008, becoming an Apache Top-Level Project (TLP) in 2010. It is
rigorously maintained, and its latest release was published in March 2021. This and
all previous releases since 2009 can be found in [39]. Apache Thrift allows reliable
performance communication and data serialization across a variety of programming
languages and use cases. The project team aimed for Thrift to embody several char-
acteristics: Simplicity, with a simple and approachable code, free of unnecessary
dependencies; Transparency, conforming to the most common idioms in all languages;
Consistency, with niche, language-specific features in extensions, not the core library;
and Performance, striving for performance first, elegance second.

• Apache Avro. Avro joined the Apache Software Foundation as a Hadoop subproject
in 2009. Since then, it has been very intensively maintained, and more than thirty
releases have been published, with the latest one being 1.10.2 in 2021. All versions
can be found in [40]. This is a data serialization system that relies on schemas. When
Avro data is read, the schema used when writing it is always present. This permits
each datum to be written with no per-value overheads, which also allows its use
with dynamic scripting languages since the data, together with their schema, are fully
self-describing. The developer team indicates that Avro is intended to provide rich
data structures; a compact, fast, binary data format; a container file to store persistent
data; a remote procedure call (RPC); and simple integration with dynamic languages
based on the fact that code generation is not required to read or write data files, nor do
RPC protocols need to be implemented. For this reason, code generation is an optional
optimization step and is only worth implementing for statically typed languages.

3. PSON: Thinger.io Data Serialization Format

PSON is an object serialization specification similar to JSON but specifically created
for microcontrollers. It improves JSON in encoding/decoding complexity and generates a
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more compact representation over the wire. It also extends JSON by allowing any arbitrary
binary information to be encoded, which is not permitted by the standard JSON schema.
Thus, PSON handles different data types, which are referenced in the following as the
wire type:

• Unsigned: represents unsigned integers;
• Signed: represents signed integers;
• Float: represents both IEEE 754 simple and double precision;
• Discrete: represents discrete values, such as true, false, or null;
• String: represents a UTF-8 string;
• Bytes: represents a byte array;
• Map: represents key–value pairs of objects;
• Array: represents a sequence of objects.

To represent this kind of heterogeneous information, PSON messages are encoded as
series of header–value pairs. Headers indicate the type of data, and the value represents
the actual value. Therefore, a decoder needs to read the header to retrieve the actual data
type and determine how to decode the upcoming value. A header is a fixed single byte
composed of two fields: the wire type and the header payload. The wire type is encoded in
the first 3 MSB (most significant bits), while the payload header is kept on the remaining
5 LSB (less significant bits). Figure 1 represents this structure.

Figure 1. PSON data header composed of both wire type (3 bits) and header payload (5 bits).

The wire-type field of the header has a clear role in describing the value type, i.e., a
number, a float, a string, an object, etc. On the other side, the header payload is 5-bit general-
purpose storage that is used to optimize the serialization size. In this case, 5 bits allows up
to 32 different values to be specified, which, in PSON, is used for different purposes:

• Represent small signed/unsigned integers (0–30);
• Indicate whether the floating point value is an IEEE 754 with simple or double precision;
• Discern between true, false, and nulls;
• Indicate the string size (up to 30 characters);
• Indicate the byte array size (up to 30 bytes);
• Indicate the number of elements in a map (up to 30 elements);
• Indicate the number of elements in an array (up to 30 elements).

Thus, a header contains the wire type and, under some circumstances, the actual value
or size of the upcoming object/array, resulting in an efficient encoding representation. This
is especially useful in the embedded ecosystem, where payloads tend to be small due to
network and battery constraints. If an integer, length, size, or number of elements does
not fit in the 5-bit storage (it is greater than 30), then it is flagged with a 0x1 f (31) value in
the header payload, and in this case, the actual value is represented by a varint number
following the header.

Varints, also known as Little Endian Base 128 (LEB128) [41], allow small numbers to be
stored in a single byte while also allowing the encoding of arbitrarily long numbers. Each
byte in LEB128, except for the last byte, has the MSB set, and this indicates that there are
further bytes to come. The lower 7 bits of each byte are used to store the two’s complement
representation of the number in groups of 7 bits, starting with the least significant group.

The conventions used for encoding all different types are summarized in Table 1, along
with their binary representations. Figure 2 presents an example of the complete encoding
of a JSON document to the PSON format. In this example, a map is encoded with two
keys. A map wire-type is encoded by convention with a header starting with 0b110 . . . . . .
The remaining bits are used for the header payload, which contains the number of elements
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in the map. Thus, the header value is encoded as 0b11000010, which is 0xC2, as shown in
the figure. The map header is followed by key–value pairs composed of a key as the string
and a value that can be any other value, such as an integer, boolean, another string, a null,
etc. In the present example, it is a header encoded with 0x87, meaning that it is a string with
a length of 7 bytes, as 0b100 . . . . . . represents a string wire-type. Thus, the following 7 bytes
contain the actual string, which is “compact”. In the following, the actual value is encoded
as 0x61. In Table 1, a discrete value is encoded as 0b011 . . . . . ., and a header payload of 1 is
used for true values, so the final value is 0b01100001, which is the above-mentioned 0x61.
This process is repeated for the next key–value pair following the same encoding rules for
wire-types and header payloads.

Table 1. Encoding rules for different PSON wire types.

Header
Value

Wire Type Header Payload Binary
Representation

Unsigned Unsigned integer up to 0x1E or
0x1F to signal an upcoming varint. 0 0 0 [P P P P P] LEB128 if integer

is greater than 0x1E

Signed Signed integer up to 0x1E or 0x1F
to signal an upcoming varint. 0 0 1 [P P P P P] LEB128 if integer

is greater than 0x1E

Floating
Point

0x00 to indicate that the floating
point is single precision. 0 1 0 [0 0 0 0 0]

Stores a floating point number
in IEEE 754 single-precision floating
point number (fixed to 32 bits)

Floating
Point

0x01 to indicate that the floating
point is double precision. 0 1 0 [0 0 0 0 1]

Stores a floating point number
in IEEE 754 double-precision floating
point number (fixed to 64 bits)

Discrete 0x00 to indicate False 0 1 1 [0 0 0 0 0] N/A

Discrete 0x01 to indicate True 0 1 1 [0 0 0 0 1] N/A

Discrete 0x02 to indicate Null 0 1 1 [0 0 0 1 0] N/A

String Unsigned integer up to 0x1E to indicate
the string size, or 0x1F to signal an
upcoming varint to specify the size.

1 0 0 [P P P P P]
LEB128 if string length
is greater than 0x1E

UTF-8 String

Bytes Unsigned integer up to 0x1E to indicate
the byte array size, or 0x1F to signal an
upcoming varint to specify the size.

1 0 1 [P P P P P]
LEB128 if byte array length is
greater than or equal to 0x1E

Binary data

Map Unsigned integer up to 0x1E to indicate the number
of elements present in the map, or 0x1F to
signal an upcoming varint to specify the size.

1 1 0 [P P P P P]
LEB128 if byte array
length is greater than 0x1E

Map Data

Array Unsigned integer up to 0x1E to indicate the number
of elements present in the array, or 0x1F to
signal an upcoming varint to specify the size.

1 1 1 [P P P P P]
LEB128 if byte array length
is greater than 0x1E

Array Data
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Figure 2. PSON encoding example versus default JSON.

4. Evaluation Methodology

The evaluation methodology used in this research had two main parts: the design
of the research and the realization of the tests to compare data serialization formats. In
this section, the design of the research carried out to compare data serialization formats is
described. Four main aspects were defined in order to obtain a useful comparison of the
formats enumerated above:

1. Attributes;
2. Hardware;
3. Libraries;
4. Tests and Payloads.

4.1. Attributes

The attributes or characteristics measured to compare data serialization formats are
the following:

1. Serialization/Deserialization speed. The values were measured per 1000 iterations
and are expressed in microseconds.

2. Binary size increase with the use of the library. This attribute is very important with
memory-limited devices such as Arduino UNO and is necessary for its application in
IoT devices.

3. Encoding sizes. This attribute is very important when on a limited bandwidth network
and, in consequence, for the scope of this study.

4.2. Hardware

To perform these tests, Arduino UNO (BCMI LABS LLC, Scarmagno, Italy) and
ESP32-WROVER-B (Espressif Systems, Shanghai, China) modules were used. Due to
their different characteristics, these devices represent different use scenarios. Arduino
UNO represents a device with low memory capacity and low CPU power, while ESP32-
WROVER-B represents a device with higher memory and higher CPU. The tests were
performed on both devices to show the results in both cases.

Hardware Characteristics

Three key characteristics were involved in the tests:

• Flash memory, also called program space: where the compiled code is saved;
• SRAM: the memory where the variables and the dynamic code are loaded and read;
• CLK speed: the CPU clock speed.

Arduino UNO characteristics:

• Flash memory: 32 KB;
• SRAM: 2 KB;
• CLK speed: 16 MHz.

Arduino UNO has very limited memory to store the program and the variables, so
some of the performed tests only work on ESP32.
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ESP32-WROVER-B characteristics:

• Flash memory: 1310 KB;
• SRAM: 327 KB;
• CLK speed: 240 MHz.

4.3. Libraries

This section contains the libraries used for each protocol. Some libraries are not
supported on Arduino UNO because they have dependencies not available with it.

The libraries used for each protocol are:

• JSON: ArduinoJson. Library: https://arduinojson.org/ (accessed on: 19 February
2021). Version used: 6.18.0

• MessagePack: ArduinoJson. Library: https://arduinojson.org/ (accessed on: 19
February 2021). Version used: 6.18.0

• Protocol Buffers: NanoPB. Library: https://github.com/nanopb/nanopb (accessed
on: 19 February 2021). Version used: 0.4.5

• Protoson: Pson. Library: https://github.com/thinger-io/Protoson (accessed on: 19
February 2021). Version used: https://github.com/thinger-io/Protoson/commit/605372
57cb52a5a16ad2e5444226ebab82a7ceb1

• XML: TinyXML2. Library: https://github.com/leethomason/tinyxml2 (accessed on:
19 February 2021). Version used: 8.0.0

• BSON: MiniBSON. Library: https://github.com/cyberguijarro/minibson (accessed
on: 19 February 2021). Version used: https://github.com/cyberguijarro/minibson/
commit/3a460446245b17ffc3947f02a079b2232cef973a

• Avro: Apache Avro. This library was not used on the microcontrollers because
there are currently no implementations for it. They were implemented in Java and
executed on a computer in order to obtain the serialized object and measure its size
for serialization and deserialization. For this reason, the tests with this library only
contain data on sizes. The associated code can be found in the theoretical-tests folder.

• Thrift: Apache Thrift. This library was not used on the microcontrollers because
there are currently no implementations for it. They were implemented in Java and
executed on a computer in order to obtain the serialized object and measure its size
for serialization and deserialization. For this reason, the tests with this library only
contain data on sizes. The associated code can be found in the theoretical-tests folder.

• YAML. This library was not used on the microcontrollers because there are currently no
implementations for it. They were implemented in Java and executed on a computer
in order to obtain the serialized object and measure its size for serialization and
deserialization. For this reason, the tests with this library only contain data on sizes.
The associated code can be found in the theoretical-tests folder.

Table 2 describes the details of all the libraries used.

Table 2. Libraries used for comparison of data serialization protocols.

Protocol Format Library Header only Static Memory Library Size (Not Compiled)

JSON JSON ArduinoJSON yes yes 227,185 bytes
MsgPack MsgPack ArduinoJSON yes yes 227,185 bytes

ProtocolBuffers ProtocolBuffers Nano PB no yes 42,000 bytes
Protoson Protoson Protoson yes yes 31,294 bytes

XML XML TinyXML2 yes yes 151,373 bytes
BSON BSON MiniBSON yes yes 18,152 bytes

Apache Avro This library was not used on the microcontrollers and was tested in Java
Apache Thrift This library was not used on the microcontrollers and was tested in Java

YAML This library was not used on the microcontrollers and was tested in Java

https://arduinojson.org/
https://arduinojson.org/
https://github.com/nanopb/nanopb
https://github.com/thinger-io/Protoson
https://github.com/thinger-io/Protoson/commit/60537257cb52a5a16ad2e5444226ebab82a7ceb1
https://github.com/thinger-io/Protoson/commit/60537257cb52a5a16ad2e5444226ebab82a7ceb1
https://github.com/leethomason/tinyxml2
https://github.com/cyberguijarro/minibson
https://github.com/cyberguijarro/minibson/commit/3a460446245b17ffc3947f02a079b2232cef973a
https://github.com/cyberguijarro/minibson/commit/3a460446245b17ffc3947f02a079b2232cef973a
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4.4. Tests and Payloads

Different tests and payloads were developed to measure each defined attribute.
For each attribute, the payloads are the following:

1. Serialization/Deserialization speed. The tests used to measure this attribute were
performed by using 10 different payloads and checking the time needed to serialize
and deserialize them.

2. Binary size increase with the use of the library. The tests used to measure this attribute
were performed using a reference code (code-without-library folder) to measure the
binary size generated when not using any library. Then, the code from the binary-
size-tests folder was loaded on each microcontroller, and the binary size increment
was calculated.

3. Encoding sizes. This attribute is very important when on a limited bandwidth network
and, in consequence, for the scope of this study. The tests used to measure this
attribute were performed by using 10 different payloads and checking the generated
serialized object size.

The 10 payloads used to measure the results for the encoding size and speed tests are
named Test#. All of the tests performed are labeled with their name and can be checked
here to confirm which payload was used for any test (shown as their JSON representation):

1. Test01

{
"sensor":"gps",
"time":1351824120,
"data":[
48.75,
2.3
]
}

2. Test02

{
"sensor":"This is a very long string. This is a very
long string. This is a very long string. This is a very
long string. This is a very long string. ",
"time":1351824120,
"data":[
48.75,
2.3
]
}

3. Test03

{
"sensor":"This contains a lot of keys.",
"sensor2":"This contains a lot of keys.",
"sensor3":"This contains a lot of keys.",
"sensor4":"This contains a lot of keys.",
"sensor5":"This contains a lot of keys.",
"sensor6":"This contains a lot of keys.",
"sensor7":"This contains a lot of keys.",
"time":1351824120,
"data":[
48.75,
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2.30
]
}

4. Test04

{
"data":[
48.75,
2.3,
3.01,
5.4,
6.7,
4.3,
10.01,
10.01
]
}

5. Test05

{
"bool":true
}

6. Test06

{
"neg":-2
}

7. Test07

{
"pos":1
}

8. Test08

{
"double":1.03
}

9. Test09

{
"string":"test"
}

10. Test10

{
"string":"test",
"double":1.03,
"long":1351824120,
"pos":1,
"neg":-2,
"bool":true,
"array":[
48.75,
2.3
]
}
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5. Research Results

This section summarizes the research results with new findings for each of the at-
tributes studied.

5.1. Serialization/Deserialization Speed

These are the values measured for each test; the test definitions above can be referenced
to confirm which payload corresponds to each row. As previously mentioned, the values
were measured per 1000 iterations and are expressed in microseconds. The results are
presented for ESP32-WROVER-B and Arduino UNO in two separate tables.

These tests show the performance of each library and protocol. High values for the
serialization and deserialization time indicate that more CPU cycles were used for the
data processing, which leads to more power consumption. Power consumption is very
important in scenarios in which devices are powered by batteries. In addition, decreased
use of the CPU by the serialization and deserialization process allows the device to use it for
its actual goal, i.e., reading the sensors and processing their data. In these tests, the lower
the values, the better.

The results for ESP32 are reported in Figure 3 and Table 3.
The results for Arduino are depicted in Figure 4 and Table 4.

Figure 3. ESP32 Serialization (S)/Deserialization (DS) speed.
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Figure 4. Arduino UNO Serialization (S)/Deserialization (DS) speed.

Table 3. ESP32 Serialization (S)/Deserialization (DS) speed.

Protocol Test01 Test02 Test03 Test04 Test05 Test06 Test07 Test08 Test09 Test10 Average

JSON S 28,767 116,705 188,648 33,814 7602 6865 6708 10,350 11,082 51,759 46,230
JSON DS 36,577 90,513 115,070 41,774 9132 8481 8033 11,032 10,809 74,032 40,545.3
BSON S 123,806 140,927 427,762 256,979 31,812 31,846 31,837 32,081 32,020 250,959 136,002.9

BSON DS 76,403 86,572 264,767 159,726 19,020 19,092 19,083 19,114 19,090 153,429 83,629.6
MsgPack S 15,875 31,524 47,345 20,153 4714 4819 5085 5597 5737 26,417 16,726.6

MsgPack DS 16,677 68,870 100,840 14,366 4394 4047 4034 5427 7330 33,787 25,977.2
Protocol Buffers S 16,487 45,835 117,739 11,449 4931 6347 5093 5403 5986 27,574 24,684.4

Protocol Buffers DS 24,162 32,412 59,527 13,952 6286 10,642 6216 6360 7152 41,606 20,831.5
PSON S 8854 23,372 40,624 9364 2627 2632 2617 3387 3676 14,637 11,179

PSON DS 13,011 13,618 29,044 15,432 3578 5726 4318 4225 4500 23,119 11,657.1
XML S 127,529 119,323 240,721 193,044 55,073 54,538 54,506 55,618 55,504 184,497 114,035.3
XML S 163,530 177,467 313,182 257,228 80,087 79,212 79,159 81,217 81,216 242,851 155,514.9

Table 4. Arduino UNO Serialization (S)/Deserialization (DS) speed.

Protocol Test01 Test02 Test03 Test04 Test05 Test06 Test07 Test08 Test09 Test10 Average

JSON S 1,685,840 - - 3,890,896 118,868 150,172 147,008 539,372 165,756 2,539,444 1,154,669.5
JSON DS 633,272 - - 776,852 133,652 128,432 122,884 179,188 169,768 1,240,716 423,095.5
BSON S - - - - - - - - - - -

BSON DS - - - - - - - - - - -
MsgPack S 299,712 - - 407,748 77,536 79,980 83,780 94,592 96,824 528,548 208,590

MsgPack DS 325,988 - - 285,564 85,656 80,604 80,632 106,908 141,716 647,048 219,264.5
Protocol Buffers S - - - - - - - - - - -

Protocol Buffers DS - - - - - - - - - - -
PSON S 189,648 - - 195,420 50,688 52,536 52,632 65,096 73,408 325,940 125,671

PSON DS 471,604 - - 427,496 86,000 314,908 122,880 99,216 99,776 973,368 324,406
XML S - - - - - - - - - - -
XML S - - - - - - - - - - -
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5.2. Binary Size Tests

This section presents the results of the binary size tests for each format. These values
are important when working with microcontrollers. Due to their limited memory, it is
important to keep the utility code as small as possible. If the serialization/deserialization
library consumes a lot of the total memory of the device, there may be insufficient memory
to load the code that is necessary to perform the actual microcontroller task. In these tests,
the lower the values, the better. The binary sizes without a library are:

• Arduino: 592 bytes;
• ESP32: 260,710 bytes.

The total available memory on each device is:

• Arduino: 32,256 bytes;
• ESP32: 1310,720 bytes.

The calculated percentages for the sizes are presented in Figures 5 and 6. The “Increase”
columns in the figures represent the actual percentage of program size increase resulting
from the addition of the serialization and deserialization library (BSON is not represented
in Figure 5 because its values are very different from the rest and would distort the whole
graphic). This value is calculated by subtracting the binary size without a library from the
total value obtained in the test.

Figure 5. ESP32 binary size increase.
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Figure 6. Arduino binary size increase.

5.3. Encoding Sizes

These are the results obtained after encoding each Test# payload with each library.
These values are important because microcontrollers are commonly used in low-bandwidth
or mesh networks. In these scenarios, sending a message through the net has a high cost
in terms of network capacity. Furthermore, sending or receiving a larger message uses
more of the network interface, so the device consumes more power. As described in
the serialization/deserialization speed section, this is very important when devices are
powered by batteries. In these tests, the lower the value, the better. Figure 7 includes the
results for Avro, Thrift, and YAML, although they were not used in the microcontrollers.
Avro, Thrift, and YAML messages were serialized using Java on a computer, and their
serialized sizes were measured for each test. All results are shown in bytes.

Figure 7 shows the size values for each serialization protocol.
The above evaluation results for encoding time, encoding size, and binary size increase

indicate that PSON is quite an efficient mechanism for embedded systems. According to the
encoding time, PSON is one of the fastest formats for completing the encoding/decoding
tests for ESP32 (Figure 3), followed by Protocol Buffers or MessagePack. Compared to
MessagePack (another schema-less format, similar to PSON), PSON is much faster on
average: 33% faster encoding and 55% faster decoding. On Arduino UNO, as shown
in Figure 4, it encodes 40% faster on average, but deserialization is around 47% slower.
Thus, PSON is quite efficient when encoding information on microcontrollers, which is the
normal scenario in IoT, where devices send information periodically to the cloud. From
the encoding size results in Figure 7, the most efficient means of encoding information in
these tests was obtained with Protocol Buffers or Apache Thrift, but this is only suitable for
use cases in which the message structure is known beforehand by both the microcontroller
and the server decoding the messages. However, this is not the standard scenario in
the IoT ecosystem, as it will require creating custom decoding functions in the cloud for
every message sent by the device, which typically implies the compilation of the format
definition, the use of the generated source files, etc. This is not practical or sustainable
in the long term when dealing with multiple device types or changes in the protocol,
which may result in versioning complexity. Moreover, it complicates the cloud inter-
operability required in IoT with third-party services or applications, which usually work
over the well-known REST API schema, using JSON as the standard encoding format.
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Among the other schema-less encoding formats that can be directly converted to JSON,
PSON is one of the most efficient methods and is comparable to MessagePack, obtaining
quite similar results for encoding size. On average, PSON and MessagePack generate
payloads that are 15% smaller than a raw JSON, but depending on the payload, it can
be improved by 30–40%, i.e., in Test01 and Test06. Finally, the increases in binary size
due to serialization/deserialization in Figures 5 and 6 illustrate that the ArduinoJSON
library, which provides serialization/deserialization for JSON and MessagePack, is quite
an optimized library in this respect, leading with a smaller program footprint in both ESP32
and Arduino UNO. The PSON library is quite similar to ESP32, with a 20.26% increase
above the baseline binary versus the 20.15% required for MessagePack or 20.21% required
for JSON. For Arduino UNO, PSON is less optimized and results in a 10% greater footprint
on average against Arduino JSON. In sum, PSON is a new encoding format that competes
with MessagePack in terms of encoding size but improves the serialization time by using a
simpler encoding approach. It outperforms other schema-less encoding systems such as
JSON, XML, and BSON in both serialization size and time. The results also indicate that the
PSON library competes with other specific state-of-the-art Arduino Libraries on modern
microcontrollers such as ESP32, but it can be improved on more modest architectures such
as the AVR used in Arduino.

Figure 7. Protocol encoding sizes.

6. Conclusions and Future Work

We are witnessing the emergence of a new generation of IoT devices capable of
being part of massively scalable and cost-effective IoT applications using LPWAN and the
latest NB-IoT and LTE-M communication technologies. The deployment of massive IoT
applications requires an huge volume of low-cost, low-power sensor devices. Therefore,
these sensor devices will have relatively low performance requirements.
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In an IoT environment, clients and servers exchange data. Part of this data may be
in the transport protocol, which is used in the exchange of messages. Within messages,
structured information (integers of different sizes and formats, arrays, strings, etc.) can
be exchanged. Therefore, the use of serialization formats is necessary to represent this
structured data in a linear set of bytes, which can be equivalently deserialized. The process
of serialization and deserialization is critical in massive IoT environments, as it consumes
processing time and has an impact on message size, and consequently, it is directly related
to the energy consumption of sensor devices and their lifetime. This paper presents a
new serialization format used by the Thinger.io platform called PSON. PSON optimizes
execution time, channel utilization, and power consumption compared to the most common
methods used in IoT environments.

In order to evaluate the efficiency of PSON, tests were carried out to compare it with
the most widely used serialization formats using different payloads. The evaluation results
demonstrate the excellent performance of PSON in terms of serialization, deserialization,
and average encoding sizes. Specifically, the serialization and deserialization times for
1000 iterations were 11,179 µs and 11,657 µs for ESP32 and 125,671 µs and 324,406 µs for
Arduino UNO; the average encoding binary size was 66.3 bytes. PSON also presented
good results for library binary size overhead.

Future works will involve extending this research to other IoT services, such as the
performance impact in mesh and low-bandwidth networks and the energy savings for
microcontrollers. Moreover, the intention is to register the encoding format within IANA
(Internet Assigned Numbers Authority) so that PSON can become a new standard in the
future for optimizing JSON payloads over the Internet. There is also an opportunity to
improve PSON libraries by reducing the compile size in microcontrollers, thus increasing
the efficiency in constrained devices. In addition, there is a plan to create libraries in
different languages, such as Python, Node.JS, and Java, so the encoding format can be
much more operable with different programming languages and custom back-ends. Finally,
the improvement of libraries is planned with the use of zero-copy techniques [42] to avoid
unnecessary memory copying to improve deserialization time.
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