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Abstract: This study combines satellite observation, cloud platforms, and geographical information
systems (GIS) to investigate at a macro-scale level of observation the thermal conditions of two his-
toric clusters in Cyprus, namely in Limassol and Strovolos municipalities. The two case studies share
different environmental and climatic conditions. The former site is coastal, the last a hinterland, and
they both contain historic buildings with similar building materials and techniques. For the needs of
the study, more than 140 Landsat 7 ETM+ and 8 LDCM images were processed at the Google Earth
Engine big data cloud platform to investigate the thermal conditions of the two historic clusters over
the period 2013–2020. The multi-temporal thermal analysis included the calibration of all images to
provide land surface temperature (LST) products at a 100 m spatial resolution. Moreover, to investi-
gate anomalies related to possible land cover changes of the area, two indices were extracted from the
satellite images, the normalised difference vegetation index (NDVI) and the normalised difference
build index (NDBI). Anticipated results include the macro-scale identification of multi-temporal
changes, diachronic changes, the establishment of change patterns based on seasonality and location,
occurring in large clusters of historic buildings.

Keywords: built heritage; historic buildings; thermal analysis; satellite data; Landsat space program;
Google Earth Engine; Cyprus

1. Introduction

Earth observation sensors have been widely used in the last two decades to observe,
survey, and monitor the built heritage environment [1–3]. The increased capabilities of
space programs initiated and operated by several national agencies and the private sector
facilitated research and application around the study, modelling, and predicting of various
natural and anthropogenic phenomena affecting built heritage [4,5].

Since 1999, when the first high-resolution commercial satellite sensor, namely the
IKONOS was set into orbit, several other satellite sensors were launched. Most new satellite
sensors can capture the visible and near-infrared parts of the spectrum (approximately
between 400 and 900 nanometers). Few of the new satellite sensors can capture the mid-
infrared part of the spectrum (25–40 microns), while even fewer are designed to be sensitive
to the thermal spectral region. The thermal spectrum is covered by Landsat data since the
80s, after the launch of Landsat 4 [6]. Currently, both Landsat 7 and 8 are active and can
provide medium-resolution thermal images.

The Landsat space program is the oldest space program designed and operated for
environmental purposes. Since 1972, several space Landsat sensors have been launched in
space and provide valuable multispectral datasets in a systematic way and with almost
global coverage. Landsat is a joint effort of the U.S. Geological Survey (USGS) and the
National Aeronautics and Space Administration (NASA) [7].

Both Landsat 7 and Landsat 8 satellites orbit the Earth at an altitude of 705 km
(438 miles) in a 185-kilometre (115-mile) swath, moving from north to south over the sunlit
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side of the Earth, in a sun-synchronous orbit. Each satellite makes a complete orbit every
99 min, approximately 14 full orbits each day, and crosses every point on Earth once every
16 days. Although each satellite has a 16-day full-Earth-coverage cycle, their orbits are
offset to allow 8-day repeat coverage of any Landsat scene area on the globe. Between the
two satellites, more than 1,000 scenes are added to the USGS archive on a daily basis. The
extraction of land surface temperatures from Landsat images has been studied in the recent
past by [8,9].

This study advances the state of the art regarding the use of thermal images specifically
for the thermal monitoring of cultural heritage sites, which is normally carried out with
the support of optical data [10–13]. The use of thermal bands from satellite sensors is
mentioned in [14], but it refers to the detection and identification of ancient hills in Farahan,
Iran and not for monitoring purposes. As mentioned by [15], the lack of high-resolution
thermal images is a limiting factor for their use in cultural heritage applications, and for
this reason, the use of higher-resolution datasets is preferred [16].

In this study, we aim to explore and evidence how medium resolution satellite
thermal data can be used to analyse historic buildings’ thermal conditions. This effort
makes part of a holistic, integrated, multi-disciplinary initiative under the PERIsCOPE
(“Portal for hERItage buildingS integration into the COntemPorary built environment”,
https://uperiscope.cyi.ac.cy/ (accessed on 2 July 2021)), project umbrella, aiming to bring
together technological innovation and restoration of heritage buildings. The results pre-
sented here are following the preliminary outcomes of Agapiou et al. (2021) [17]. The
overall project objective is to design and develop an innovative platform for the identi-
fication, classification, documentation, and renovation of heritage buildings, which can
be exploited by various stakeholders and professionals of the sector. PERIsCOPE enables
the exploitation of state-of-the-art techniques in the scientific fields of building informa-
tion modelling (BIM), remote sensing, terrestrial and aerial 3D modelling techniques, and
non-destructive onsite testing, pursued by leading research and academic institutions of
Cyprus in these fields.

The paper is organised as follows: initially, the overall methodology and the datasets
used are presented (Section 2). Then, the description of the case study area follows
(Section 3). Results and image processing outcomes are given in Section 4, following
by a discussion (Section 5) and ending with the conclusions (Section 5).

2. Methodology

For the needs of the PERIsCOPE project, three different analysis scales were adopted.
During the macro-scale analysis, satellite-based products are used for the overall estimation
of the temperature variations on a wider area, while on a semi-macro scale analysis, low
attitude sensors are employed. Finally, at the micro-scale analysis, ground measurements
and techniques are used to validate the individual buildings’ conditions. This study
presents the results from the macro-scale analysis, for which thermal data, optical satellite
images, and ready satellite products were exploited to provide multi-temporal information
for the selected urban testbeds (refer to the next section).

The overall methodology of this study is grouped in two parts as follows (Figure 1): the
first one is related to desktop image analysis processing, while the second includes the use
of big data cloud platforms. For the first part, land surface temperature (LST) estimations
were extracted from Landsat archival images, while during the second, optical satellite data
were processed on cloud platforms to produce various products such as the normalised
difference vegetation index (NDVI) and the normalised build area index (NDBI).

https://uperiscope.cyi.ac.cy/
https://uperiscope.cyi.ac.cy/
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by both the operational land imager (OLI) and thermal infrared sensor (TIRS) are deliv-
ered in 16-bit unsigned integer format. Landsat 1–7 products are generated from single 
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Figure 1. Overall methodology of the current study.

2.1. Thermal Image Processing

Landsat 7 and 8 archives were downloaded through the EarthExplorer platform [18],
found under the Landsat menu in the “Landsat Collection 1 Level-1” section, in the
“Landsat 7 Enhanced Thematic Mapper Plus (ETM+) Level-1” and “Landsat 8 OLI/TIRS
C1 Level-1” datasets. Newly acquired Landsat 8 scenes are available for download within
24 h of data acquisition.

The Landsat Collections Level-1 data downloaded from the EarthExplorer platform
were rescaled to the top of atmosphere (TOA) reflectance and/or radiance using radiometric
rescaling coefficients, provided in the metadata file that is delivered with the Level-1
product (metadata—MTL file). The metadata file also contains the thermal constants
needed to convert thermal band data to TOA brightness temperature. Landsat Collections
Level-1 data products consist of quantised and calibrated scaled digital numbers (DN).
These numbers represent the multispectral image data. Landsat 8 products acquired data
by both the operational land imager (OLI) and thermal infrared sensor (TIRS) are delivered
in 16-bit unsigned integer format. Landsat 1–7 products are generated from single sensor
data and are delivered in an 8-bit unsigned integer format.

More than 140 satellite images were selected (upon cloud coverage), downloaded,
and processed, covering the period between 2013 and 2020. Specifically, we have used
16 images during the Winter season, 30 images over Spring, 57 images for Summer, and
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38 during Autumn. These variations in terms of available thermal datasets between the
seasons were expected, mainly due to the cloud coverage. The dataset includes images both
from the Landsat 7 ETM+ sensor and the Landsat 8 LDCM sensor. The spectral radiance
of these data’s thermal band was converted to TOA brightness temperature, using the
thermal constants in the MTL file:

T =
K2

ln (K1
Lλ

+ 1)
(1)

where:

T = Top of atmosphere brightness temperature (K), where:
Lλ = TOA spectral radiance (Watts/(m2 × srad × µm))
K1 = Band-specific thermal conversion constant from the metadata (K1_CONSTANT_BAND_x,
where x is the thermal band number)
K2 = Band-specific thermal conversion constant from the metadata (K2_CONSTANT_BAND_x,
where x is the thermal band number)

From the above-described desk-based analysis, the surface temperatures of the areas
of interest were achieved. The various conversions and corrections (i.e., conversion to TOA
radiance, reflectance, and top of atmosphere brightness temperature) led to the develop-
ment of a series of thematic maps (refer to Section 4: Discussion) in a GIS environment
where spatial analysis was also implemented. Through this environment, mean tempera-
tures and standard deviation maps were generated. In addition, the principal component
analysis (PCA) was performed. PCA is a statistical analysis that takes into account the
variations within the image [19]. This analysis can be applied to a multi-temporal dataset
to include the temporal variance. In this study, both the NDVI and the NDBI variances are
estimated. Therefore, the PCA is used as a change detection method in cases where the
radiometric noise is minimal [20].

2.2. Optical Data Processing

For the optical data processing, the researchers used the Google Earth Engine cloud
platform. The specific platform permits the use and management of hundreds of satellite
data. The Google infrastructure was used to extract optical products, namely the NDVI
and the NDBI indices, which characterise the vegetated and built-up areas, respectively.
The equations for the two indices are presented below.

NDVI = (ρNIR − ρred)/(ρNIR + ρred) (2)

NDBI = (ρSWIR − ρNIR)/(ρSWIR + ρNIR) (3)

where, ρNIR refers to the reflectance value at the near-infrared part of the spectrum, ρred
refers to the reflectance value at the red part of the spectrum, and ρSWIR refers to the
short-wave infrared reflectance value at the near-infrared part of the spectrum. Based
on the obtained NDVI and NDBI indices for the areas under examination, time-series
annual maps, starting from 2013 until 2020, were created. These maps were used for a
diachronic interpretation and evaluation of the changes that occurred in the landscape of
the two testbeds.

Once again, PCA was applied to these outcomes to showcase where significant changes
occurred during the period 2013–2020. Any changes were then correlated with the results
of the temperature variations obtained from the thermal analysis.

3. Case Study Area

Two different pilot testbeds have been selected in two different districts in Cyprus,
namely (a) the old Strovolos core in Nicosia District and (b) the Cami Cedid and Arnaut
historic cores in Limassol District (Figure 2). The two study areas include a variability
regarding the architectural typology of the historic buildings, while at the same time, they
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share different environmental and climatic conditions. Case study (a) is located inland,
approximately in the centre of the island, while case study (b) is on the south coast. The
different environment discloses the thermal variations. Together with the study of the
building material properties on individual buildings (done by another team working for the
Periscope project), any potential differences in how buildings behave in each environment
are expected to be revealed.
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Figure 2. The municipalities of Strovolos (top) and Limassol (bottom) in Cyprus, selected as case studies. Red polygons
include specific historic buildings under investigation here.

In each of these areas, ten individual buildings will be selected for further investigation.
The project consortium members will apply a series of ground investigation techniques and
methods, including 3-D geometrical documentation, thermal, and architectural analysis
on the specific buildings. Examples from the historic buildings of Limassol are shown in
Figure 3.
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Figure 3. Examples of historic buildings in Limassol, investigated under the Periscope project (photograph sources:
Municipality of Limassol©).

4. Results
4.1. Thermal Analysis

As stated above, more than 140 Landsat 7 and Landsat 8 thermal images were down-
loaded from the USGS Earth Explorer platform. The digital numbers of Landsat data
products were converted into Kelvin units, using Equation (1) (refer to Section 2). It is
underlined that from these multi-temporal datasets, it is possible to extract individual
thermal images for specific dates or seasons for both areas.

All data were then imported into the ArcGIS environment to visualise the results
and to apply spatial analysis. Figure 4 (left) shows the mean temperature results for the
period 2013 to 2020, over case study (a), the Strovolos area. Higher mean temperatures
are shown with red colour, and lower mean temperatures are visualised with blue. It can
be observed that lower temperatures are recorded along the Pediaios river. In addition,
two hot spot areas with high mean temperatures are marked in the western part, with
red colour. A different pattern is observed over the Limassol case study (Figure 4, right),
where high mean temperatures are recorded almost in the entire area of investigation,
except for the coastline on the south. An overall observation is that the Strovolos area
revealed approximately 3 Kelvin degrees higher mean temperature in comparison to the
Limassol case study. Even though these estimated temperatures cannot be considered
unconditionally representative due to the variations of the available images used per season
(see Figures 1 and 2), still a direct comparison between the two case studies can be made
since the same Landsat images were observing both case studies in a single image.

Figure 5 shows the standard deviation of the temperatures between the period 2013 to
2020 for both case studies. Standard deviation can be used to observe significant fluctua-
tions of temperatures. Significant changes in the temperature are recorded in the Strovolos
case study (Figure 5, left), following a similar pattern with the mean temperature outcomes
(Figure 4, left). These fluctuations are within a range of two Kelvin degrees. In contrast,
fewer fluctuations are observed in the Limassol area from 2013 to 2020 (Figure 5, right).
The red lines in Figure 5 (right) are due to missing data from the Landsat 7 sensor [21].
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4.2. Optical Data

Using the optical bands of the Landsat sensors, the NDVI index was calculated for
each year starting from 2013 to 2020. This was carried out in the Google Earth Engine
platform. Figure 6 shows the results for the Strovolos case study, while Figure 7 the NDVI
results of the Limassol area. The area under investigation of the previous section is shown
with a blue rectangle in Figures 6 and 7. Higher NDVI values close to 1 indicate areas
covered with healthy vegetation, whereas areas with NDVI values, less than 0.20, indicate
non-vegetated areas. Vegetated areas are highlighted with green colour compared to the
rest areas shown in yellow and red.

Therefore, in Figure 6, the river basin is covered with green colour, suggesting the pres-
ence of vegetation. Differences per year can be observed within the Strovolos municipality
(comparing, for instance, the years 2014 and 2020). In this pair, we get vegetation coverage
on the western part of the river for the year 2014, while for the year 2020, vegetation
coverage is less.

In the Limassol case study (Figure 7), differences in vegetation presence are observed
in the western part of the municipality, which is primarily linked to seasonal cultivation.
The differences recorded on the northern site are due to natural environmental changes
(semi-mountainous area).

Based on these annual NDVI maps, differences per year can be estimated. The
following figure (Figure 8) reveals differences in the landscape based on RGB pseudo-
colour composites from the NDVI maps for the years 2013, 2017, and 2020 for both cases
studies (Strovolos and Limassol). Areas with blue colour indicate high NDVI values for the
year 2013, areas with green colour show pixels with high NDVI values for the year 2017,
while high NDVI values for the year 2020 are visualised in red. White tones in Figure 8
indicate areas with similar NDVI during the three years. For instance, the Pediaios river,
in the Strovolos case study, is highlighted in white for all three years (Figure 8, top). The
same as for some agricultural fields in the western part of Limassol (Figure 8, bottom).
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For the specific areas within the red rectangle, some changes are noted between the
years 2017 and 2020 in the Strovolos case study (Figure 8, top, red rectangle), while in the
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Limassol area, no significant changes are recorded (Figure 8, bottom, red rectangle). These
changes could be a result of a land-use change or seasonal changes.

The NDBI index was calculated per year, following Equation (3) (refer to Section 2,
above), for both Strovolos and Limassol case studies, using the short-wave infrared
and the near-infrared part of the spectrum. Similar results as those of the NDVI index
(Figures 6 and 7) have been generated for each year. For detecting changes throughout this
period, a pseudo-colour composite was created (Figure 9). As before, high NDBI values for
the year 2013 are shown with blue colour, high NDBI values for the year 2017 are shown
with green colour, while high NDBI values for the year 2020 are shown in the red band
(see purple in Figure 9). Land-use change has been recorded based on the NDBI index for
the year 2020 (red rectangle, Figure 9, top). These changes match the observations made
regarding the mean temperatures of the area (see high mean temperatures in Figure 4).
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Figure 9. Pseudo-colour RGB composites from the NDBI annual maps using the reference years of
2013 (B), 2017 (G), and 2020 (R). On top is the results from the Strovolos case study and on the bottom
the results from the Limassol case study.

In order to further evaluate the temporal changes, the PCA was applied for the NDVI
and the NDBI indices for the Strovolos and Limassol case studies. Figure 10 displays the
results of the first principal component (PC1) for the NDVI (left) and the NDBI (right)
indices. Higher PC1 values are indicated with a white tone of grey in Figure 10, while
lower PC1 values are indicated with a black tone of grey. Therefore, pixels with bright
tones of grey indicate the presence of significant changes in the NDVI and the NDBI index
during the period 2013 until 2020. As we see in Figure 10 left, changes recorded from the
NDVI values are along with the river stream and to its north-western part (the area that
includes the historic buildings under examination). The seasonal vegetation variations
are expected and are connected to the river. Regarding the NDBI index (Figure 10, right),
changes were recorded in the north/east area, at a fair distance from the historic core of
Strovolos. Therefore, these changes are probably related to modern building development.

A similar approach was also followed for the Limassol case study. The results are
shown in Figure 11 for the NDVI (left) and NDBI (right) indices. In this area, we can
observe changes along the coastline. These are highlighted with white tones of grey. These
changes should be linked with new constructions carried out in the last years at the seafront
of the city, where sky-towers were constructed [22].
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5. Discussion

The previous section presented the results from the thermal analysis of more than
140 Landsat images. In addition, the outcomes from the processing of two indices using
the optical spectral bands of the sensor, namely the NDVI and the NDBI indices, were also
presented.

The processing of the thermal analysis indicated some hot spot areas in the case
study of Strovolos. In contrast, in Limassol, several areas were detected with high mean
temperature. It should be noted that a difference of approximately 3 degrees Kelvin
has been observed between the Strovolos and Limassol case studies, with the higher
temperature values recorded in the first case study, as expected, since Strovolos is in the
hinterland. Of course, the temperature differences are also dictated by the season (see
Figures 1 and 2).
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The space-based observation allowed the detection of multitemporal changes for eight
years, starting from 2013 to 2020. Despite Landsat medium spatial resolution (100 m), the
benefits of using space-based observations are evident since they supported the analysis in
the broader context of both case studies.

A similar approach was also implemented through the Google Earth Engine big data
cloud platform, where Landsat data were processed in order to extract the NDVI and
the NDBI indices. The results from this analysis evidenced that the NDBI index was
sensitive, and therefore able to capture the thermal variations of the Strovolos case study.
Indeed, through the PCA analysis, significant changes during the period 2013 to 2020 were
recorded, fully in line with the hot spot thermal areas of the Strovolos case study.

Hereunder, an example is displayed of how the above-described research could be
employed to support local models for estimating thermal conditions of historic clusters.
The Strovolos area is used as a case study.

Figure 12 (bottom) shows that the NDBI index has a good correlation with the area’s
thermal response. Indeed, the red hotspots, which are visible in Figure 12 bottom, and
which equal augmented building activity, are matching the red hotspots of Figure 12 top,
which are the result of recorded high temperatures. The NDVI index tends to provide
a “reverse” outcome. This is very important, as, in many satellite sensors, the thermal
spectral band is missing. In contrast, the short-wave infrared, near-infrared and red spectral
bands used for the calculation of the NDBI and NDVI are more frequently found in satellite
sensors, even with higher spatial resolution.
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Figure 12. (Top) Mean thermal temperature over the Strovolos case study. (Middle) The PC1 analysis
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2013–2020). Selected historic buildings are shown on top (STR_XX).
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In addition, satellites facilitated the extraction of individual temperatures for specific
historic buildings (within the areas of interest), as indicated in Figure 13 below. The
figure shows the temperature of four selected buildings (marked in Figure 12 as STR_71,
STR_290, STR_337, and STR_317) for the period of 2013 until 2020. Even though a similar
pattern is observed for all buildings, some subtle differences between them are noted.
Recorded temperatures range between 285 and 315 Kelvin degrees. As expected, increased
temperatures are recorded during the summer season, while they decrease slightly moving
into the winter season.
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Figure 13. Temperature profile (in Kelvin) for four historic buildings: STR_71; STR_290; STR_317; and STR_337
(see Figure 12), as reported from the Google Earth Engine for the period 2013–2020.

An empirical second-order polynomial equation was carried out for the given area
(Figure 14). It was formulated using three input parameters: the mean temperature and the
first principal component analysis (PC1) of the NDVI and the NDBI indices. The R-square
was estimated to be 0.83, and the RMSE was found as 0.45. In detail, the coefficient of
fitness was calculated as follow: SSE: 19.62; R-square: 0.8307; RMSE: 0.4568. The model is
given in Equation (4) below:

Mean temperature= p00 + p10 × x + p01 × y + p20 × x2 + p11 × x × y + p02 × y2 (4)

where x (PC1 of the NDVI for the years 2013–2020) is normalised by mean 0.6655 and std
0.2407, and where y (PC1 of the NDBI for the years 2013–2020) is normalised by mean 1.03
and std 0.2347. The coefficients, with 95% confidence bounds, are as follow: p00 = 304.2,
p10 = 0.2457, p01 = 0.6405, p20 = −0.142, p11 = −0.5146, and p02 = −0.3724.
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The space-based observation carried out allows a first understanding of the environ-
mental context of the historic buildings. It has the benefit of recording phenomena in
large areas and providing information through time. For the interpretation of the various
changes, a blending with low altitude sensors (which monitor smaller areas), as well as
with ground-based recordings for an individual building, is considered an asset. The latest
can also be used as ground truth validation results on occasion.

6. Conclusions

This paper is a follow-up research work presented in [17] under the PERIsCOPE
project. The research employed satellite-based images for detecting hot spot areas regarding
the thermal conditions of historic buildings in Cyprus. Regarding this, both the thermal
band and the red, near-infrared and the short-wave infrared part of the spectrum from
the Landsat sensors products were used. This study is relevant for the preservation and
study of historic buildings in terms of contributing to the creation of a “Portal for heritage
buildings integration into the contemporary built environment”, by exploiting state-of-the-
art techniques for data acquisition and analysis, related to the buildings per se and their
environment.

Thermal maps over two case study areas in Cyprus have been produced covering a
period from 2013 until 2020. The mean temperature was estimated from this dataset that
includes more than 140 thermal images. This analysis was able to detect hotspot areas that
tend to give higher mean temperatures. In addition, thermal differences were observed
between the two different case studies, and a primary interpretation was given.

Moreover, the NDVI and the NDBI indices were estimated and compared with the
previous results. These time-series analyses allowed for a more detailed temporal mapping
of the changes, while the PCA analysis highlighted areas that have significantly changed
in the recent past. The NDBI index showed a good correlation with the mean thermal
temperatures.

The thermal conditions of historic buildings, and specifically the seasonal thermal
variations, are related to conservation needs, with possible hazardous effects in the case
of thermal leaps throughout a single day. Sudden and intense variations of temperature
in a small period provoke thermal shock to the materials, occasionally resulting in their
cracking/fragmentation. Therefore, systematic recording of temperatures and other cli-
matic conditions (i.e., relative humidity) in the direct environment of archaeological sites
and/or historic buildings, together with measurements related directly to the construction
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materials and techniques, could support the planning of future preservation or restoration
interventions, accordingly.

The overall outcomes of this study will be integrated with the ground investigation and
other measurements on individual historic buildings to estimate a comprehensive thermal
and general condition, as mandated by the PERIsCOPE project. More specifically, future
research will include the analysis for seasonal changes in more detail (for an indicative
seasonal heat change pattern, refer to Figures 1 and 2 in Appendix A) using thermal
observations from space and the correlation between building techniques, material, and
thermal conditions of the buildings will be searched.
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Figure A1. Seasonal mean temperature over the Strovolos area, between the years 2013 and 2020. The red colour indicates 
higher mean temperatures, while the blue colour indicates lower mean temperatures. 

Figure 1. Seasonal mean temperature over the Strovolos area, between the years 2013 and 2020. The red colour indicates
higher mean temperatures, while the blue colour indicates lower mean temperatures.



Sensors 2021, 21, 4557 17 of 18

Sensors 2021, 21, x FOR PEER REVIEW 17 of 18 
 

 

 

 
Figure A2. Seasonal mean temperature over the Limassol area, between the years 2013 and 2020. The red colour indicates 
higher mean temperatures, while the blue colour indicates lower mean temperatures. 

  

Figure 2. Seasonal mean temperature over the Limassol area, between the years 2013 and 2020. The red colour indicates
higher mean temperatures, while the blue colour indicates lower mean temperatures.

References
1. Parker, A.; Castellazzi, P.; Fuhrmann, T.; Garthwaite, M.; Featherstone, W. Applications of Satellite Radar Imagery for Hazard

Monitoring: Insights from Australia. Remote Sens. 2021, 13, 1422. [CrossRef]
2. Song, Y.; Wu, P. Earth Observation for Sustainable Infrastructure: A Review. Remote Sens. 2021, 13, 1528. [CrossRef]

http://doi.org/10.3390/rs13081422
http://doi.org/10.3390/rs13081528


Sensors 2021, 21, 4557 18 of 18

3. Koehler, J.; Kuenzer, C. Forecasting Spatio-Temporal Dynamics on the Land Surface Using Earth Observation Data—A Review.
Remote Sens. 2020, 12, 3513. [CrossRef]

4. Moise, C.; Negula, I.D.; Mihalache, C.E.; Lazar, A.M.; Dedulescu, A.L.; Rustoiu, G.T.; Inel, I.C.; Badea, A. Remote Sensing for
Cultural Heritage Assessment and Monitoring: The Case Study of Alba Iulia. Sustainability 2021, 13, 1406. [CrossRef]

5. Agapiou, A.; Lysandrou, V.; Hadjimitsis, D.G. Earth Observation Contribution to Cultural Heritage Disaster Risk Management:
Case Study of Eastern Mediterranean Open Air Archaeological Monuments and Sites. Remote Sens. 2020, 12, 1330. [CrossRef]

6. Landsat Science. Landsat Homepage. Available online: https://landsat.gsfc.nasa.gov (accessed on 16 May 2021).
7. Landsat—Earth Observation Satellites. Available online: https://pubs.usgs.gov/fs/2015/3081/fs20153081_ver1.2.pdf (accessed

on 16 May 2021).
8. Ren, H.; Liu, R.; Qin, Q.; Fan, W.; Yu, L.; Du, C. Mapping finer-resolution land surface emissivity using Landsat images in China.

J. Geophys. Res. Atmos. 2017, 122, 6764–6781. [CrossRef]
9. Meng, X.; Cheng, J.; Zhao, S.; Liu, S.; Yao, Y. Estimating Land Surface Temperature from Landsat-8 Data using the NOAA JPSS

Enterprise Algorithm. Remote Sens. 2019, 11, 155. [CrossRef]
10. Agapiou, A. Estimating Proportion of Vegetation Cover at the Vicinity of Archaeological Sites Using Sentinel-1 and -2 Data,

Supplemented by Crowdsourced OpenStreetMap Geodata. Appl. Sci. 2020, 10, 4764. [CrossRef]
11. Abate, N.; Lasaponara, R. Preventive Archaeology Based on Open Remote Sensing Data and Tools: The Cases of Sant’Arsenio

(SA) and Foggia (FG), Italy. Sustainability 2019, 11, 4145. [CrossRef]
12. Luo, L.; Wang, X.; Guo, H.; Lasaponara, R.; Zong, X.; Masini, N.; Wang, G.; Shi, P.; Khatteli, H.; Chen, F.; et al. Airborne and

spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907–2017). Remote
Sens. Environ. 2019, 232, 111280. [CrossRef]

13. Agapiou, A.; Lysandrou, V. Remote sensing archaeology: Tracking and mapping evolution in European scientific literature from
1999 to 2015. J. Archaeol. Sci. Rep. 2015, 4, 192–200. [CrossRef]

14. GholamReza, A.; Malian, A. Investigating on OLI and TIRS data fusion methods in detection and identification of ancient hills
(case study: Farahan area). Appl. Geomat. 2021, 1–15. [CrossRef]

15. Raimundo, J.; Medina, S.L.-C.; Prieto, J.; de Mata, J.A. Super Resolution Infrared Thermal Imaging Using Pansharpening
Algorithms: Quantitative Assessment and Application to UAV Thermal Imaging. Sensors 2021, 21, 1265. [CrossRef] [PubMed]

16. Al-Qubaa, A.; Al-Hamdani, S. Detecting abuses in archaeological areas using k-mean clustering analysis and UAVs/drones data.
Sci. Rev. Eng. Environ. Sci. 2021, 30, 182–194. [CrossRef]

17. Agapiou, A.; Lysandrou, V.; Hadjimitsis, D. Analysing the thermal conditions of historic buildings in Cyprus using archive
Landsat satellite data and Google Earth Engine big data cloud platform. Presented at 2020 IMEKO TC-4 International Conference
on Me-trology for Archaeology and Cultural Heritage, Trento, Italy, 22–24 October 2020.

18. USGS. Earth Explorer Service. Available online: https://earthexplorer.usgs.gov/ (accessed on 2 July 2021).
19. Campbell, J.B. Introduction to Remote Sensing; The Guilford Press: New York, NY, USA, 2007.
20. Agapiou, A. Detecting Looting Activity through Earth Observation Multi-Temporal Analysis over the Archaeological Site of

Apamea (Syria) during 2011–2012. J. Comput. Appl. Archaeol. 2020, 3, 219–237. [CrossRef]
21. Landsat 7 Scan Line Corrector. Available online: https://www.usgs.gov/core-science-systems/nli/landsat/landsat-7?qt-science_

support_page_related_con=0#qt-science_support_page_related_con (accessed on 16 May 2021).
22. Agapiou, A. Multi-Temporal Change Detection Analysis of Vertical Sprawl over Limassol City Centre and Amathus Archaeologi-

cal Site in Cyprus during 2015–2020 Using the Sentinel-1 Sensor and the Google Earth Engine Platform. Sensors 2021, 21, 1884.
[CrossRef] [PubMed]

http://doi.org/10.3390/rs12213513
http://doi.org/10.3390/su13031406
http://doi.org/10.3390/rs12081330
https://landsat.gsfc.nasa.gov
https://pubs.usgs.gov/fs/2015/3081/fs20153081_ver1.2.pdf
http://doi.org/10.1002/2017JD026910
http://doi.org/10.3390/rs11020155
http://doi.org/10.3390/app10144764
http://doi.org/10.3390/su11154145
http://doi.org/10.1016/j.rse.2019.111280
http://doi.org/10.1016/j.jasrep.2015.09.010
http://doi.org/10.1007/s12518-021-00366-3
http://doi.org/10.3390/s21041265
http://www.ncbi.nlm.nih.gov/pubmed/33578847
http://doi.org/10.22630/pniks.2021.30.1.16
https://earthexplorer.usgs.gov/
http://doi.org/10.5334/jcaa.56
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-7?qt-science_support_page_related_con=0#qt-science_support_page_related_con
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-7?qt-science_support_page_related_con=0#qt-science_support_page_related_con
http://doi.org/10.3390/s21051884
http://www.ncbi.nlm.nih.gov/pubmed/33800262

	Introduction 
	Methodology 
	Thermal Image Processing 
	Optical Data Processing 

	Case Study Area 
	Results 
	Thermal Analysis 
	Optical Data 

	Discussion 
	Conclusions 
	
	References

