
sensors

Article

Action Generative Networks Planning for Deformable Object
with Raw Observations

Ziqi Sheng †, Kebing Jin †, Zhihao Ma and Hankz-Hankui Zhuo ∗

����������
�������

Citation: Sheng, Z.; Jin, K.; Ma, Z.;

Zhuo, H.-H. Action Generative

Networks Planning for Deformable

Object with Raw Observations.

Sensors 2021, 21, 4552. https://

doi.org/10.3390/s21134552

Academic Editors: Abdeldjalil

Ouahabi, Amir Benzaoui and

Sébastien Jacques

Received: 14 May 2021

Accepted: 26 June 2021

Published: 2 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China;
shengzq@mail2.sysu.edu.cn (Z.S.); jinkb@mail2.sysu.edu.cn (K.J.); mazhh7@mail2.sysu.edu.cn (Z.M.)
* Correspondence: zhuohank@mail.sysu.edu.cn
† These authors contributed equally to this work and should be regarded as co-first authors.

Abstract: Synthesizing plans for a deformable object to transit from initial observations to goal obser-
vations, both of which are represented by high-dimensional data (namely “raw” data), is challenging
due to the difficulty of learning abstract state representations of raw data and transition models of
continuous states and continuous actions. Even though there have been some approaches making re-
markable progress regarding the planning problem, they often neglect actions between observations
and are unable to generate action sequences from initial observations to goal observations. In this
paper, we propose a novel algorithm framework, namely AGN. We first learn a state-abstractor model to
abstract states from raw observations, a state-generator model to generate raw observations from states,
a heuristic model to predict actions to be executed in current states, and a transition model to transform
current states to next states after executing specific actions. After that, we directly generate plans
for a deformable object by performing the four models. We evaluate our approach in continuous
domains and show that our approach is effective with comparison to state-of-the-art algorithms.

Keywords: AI planning; contrastive learning; action model

1. Introduction

For future robots to perform general tasks in unstructured environments such as
homes or hospitals, they must be able to reason about their domains and plan their actions
accordingly. In AI literature, this general problem has been investigated under two main
paradigms—automated planning and scheduling [1] (AI planning) and reinforcement
learning [2]. At the same time, many objects in human daily life are deformable or nonrigid,
such as clothes and ropes. Hence, dealing with deformable objects planning is a significant
issue. In this issue, there have been many studies that seek to handle deformable object
planning problems [3–5].

Researchers face two main challenges when handling deformable object planning
tasks. On the one hand, unlike strict objects planning tasks, it is often difficult to specify
logical representation of a state correctly in deformable object related domains. For example,
considering designing a logical representation of the state of a deformable object such as a
cloth, it is difficult to “logically” specify features of the deformable objects, e.g., bending
angles, relative positions of different parts of deformable objects, etc. On the other hand,
the action models of deformable things are sophisticated and nonlinear [6], which makes
modeling and completing planning task in such deformable object domains challenging.

One category of studies managing the challenges in continuous states and actions do-
mains is model-free learning [7,8]. They either relied on domains whose rewards are instru-
mented [9–11], or required high-quality demonstrations to guide the learning process [12].
Without high-quality demonstrations, however, model-free learning is notoriously weak,
and often needs huge numbers of instances to learn from.

Another category of studies, i.e., model-based learning, has also shown promising in
sample-efficient learning [13,14]. Using such model-based learning studies for deformable

Sensors 2021, 21, 4552. https://doi.org/10.3390/s21134552 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21134552
https://doi.org/10.3390/s21134552
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21134552
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21134552?type=check_update&version=3

Sensors 2021, 21, 4552 2 of 13

objects, however, researchers should consider how to represent state and learn action
models appropriately. Some approaches take a direct approach to learning complex action
models through raw space [4,15]. However, compared with latent space, raw space has
too much redundant information, which is not conductive to model learning. The other
approaches, such as Agrawal et al. [16] and Nair et al. [17], aim to learn forward dynamic
models for manipulating deformable objects. Other model-based studies such as tha-
nard et al. [18] train Causal InfoGANS [19] to both obtain visual representations and action
models for planning. However, those techniques are weak due to training instabilities
concerned with GANS [20] and cannot generate actions to guide robot to perform tasks.

In this paper, we propose a novel model-based algorithm framework, called AGN,
which stands for action generative network, to compute action sequences for guiding
an agent to perform a task from initial observations to target observations, and predict
updating observations after executing actions. AGN uses contrastive technology to learn
both the underlying heuristic models and transition models for deformable objects at the
same time. We assume that using contrastive technology for model-based learning obtains
better generalization and latent space structure with its inherent information maximization
loss function. We modified the loss function posed in contrastive predictive coding [21] to
learning effective transition model and heuristic model jointly. When the latent models for
representations, the transition model, and the heuristic model are learned offline, we can
use these models to manipulate deformable objects from a certain initial observation to the
desired goal observation.

2. Related Work
2.1. Deformable Object Planning

There has been a lot of work in the area of robotic manipulation of deformable ob-
jects [22]. The deformable object handling problem has been studied via classical methods
such as motion planning and manipulation [23]. There has been recent interest in combin-
ing deep generative models with structured dynamical systems in the context of variational
autoencoders, where the latent space is continuous [24]. Watter et al. [25] used such
models to perform the planning via learning latent linear dynamics and exploiting a linear
quadratic Gaussian control algorithm. Causal InfoGAN [18] used Gumbel-Softmax to
backprop through transitions of discrete binary states, and leveraged the structure of the
binary states for planning. Ha et al. [26] presented a representation learning algorithm that
learned a low-dimensional latent dynamical system from high-dimensional sequential raw
data, e.g., videos.

In the planning literature, most studies relied on manually designed state representa-
tions. In a recent work, Konidaris et al. [27] automatically abstracted state representations
from raw observations, but relied on a prespecified set of skills for the task. Sriniva et al. [28]
introduced universal planning networks that embedded differentiated planning within a
goal-directed policy. This planning computation unrolls a forward model in a latent space
and infers an optimal action plan through gradient descent trajectory optimization. The
plan-by-gradient-descent process and its underlying representations are learned end-to-
end to directly optimize a supervised imitation learning objective. Our approach performs
a goal-directed deformable planning by using the linear interpolation method and can
achieve convergence quicker than other methods.

2.2. Contrastive Prediction

It remains a challenge to learn a valid representation in the deformable object do-
main. Many researchers seek to use contrastive learning methods to handle this problem.
For example, Word2Vec [29] optimizes a contrastive loss to demonstrate semantic and
syntactic structure in the learned latent space for words. Oord et al. [21] introduce neg-
ative examples to learn abstract representations of high-dimensional data, for example,
pictures. Tian et al. [30] learn abstract representations by letting different views of images
be embedded closely to another, and further from the others through a contrastive loss.

Sensors 2021, 21, 4552 3 of 13

Lately, SimCLR [31] achieves good results in self-supervised learning representations, by
introducing a nonlinear transformation between the representation and the contrastive loss.

Different from the above-mentioned work, we aim to consider generating action
sequences by introducing action transition relations in AGN. Instead of directly planning on
the high dimension observation, we choose to plan in low latent space. AGN perform a goal-
directed planning process by using the heuristic model and transition model iteratively,
which is useful and can converge quicker than other methods.

3. Our AGN Approach

In this section, we introduce our framework, AGN, which stands for action generative
network for deformable object planning (AGN). We begin with presenting the problem
formulation. After that, we address our AGN algorithm framework in detail. Finally, we
describe the procedure of solving a goal-directed planning problem with AGN.

3.1. Problem Definition

Our training data are a set of trajectories T = 〈l1, l2, . . . ln〉, each trajectory li ∈ T , is
defined by li = 〈o0, a1, o1, a2, . . . , aN−1, oN〉, where oi is a raw observation, e.g., image, and
ai is an action denoted by a N-dimension tensor. Note that each dimension of an action
has specific meaning. A raw observation oi is changed into a new raw observation oi+1
after executing action ai. For example, in the rope domain shown in Figure 1, an action is
represented by a vector of five elements: (px, py, φ, c, g), where px, py are x-coordinate and
y-coordinate of the point of the rope where the action is executed. φ is the angle of the rope
being moved by the action. c is the length of the rope moved by the action, g is a boolean
value indicating whether the action should be used for training. As an example, action
“(2.0, 3.0, π, 0.05, 1)” indicates the point (2.0, 3.0) of the rope is moved with π degrees and
0.05 meters length and the action will be used for training due to g = 1.

Figure 1. (a)Examples of initial observations and goal observations in rope domain. (b) Examples of
10 step trajectory, given the initial and goal observations in (a)

We define our learning problem as: given a set of training data T , we aim to learn
a planning model M, i.e., action generative networks, using T . With the learned M,
we formulate our planning problem as a tuple P = 〈M, o0, og,A〉, where o0 is an initial
observation, og is a goal observation, A is a set of actions. We aim to solve the planning
problem P by generating a trajectory (i.e., a plan) σ = 〈o0, a0, . . . , an−1.og〉 that transforms
the initial observation o0 to goal observation og.

An example of initial observation and goal observation is shown in Figure 1a, where
the figure on the left side shows an initial observation and a goal observation is shown in

Sensors 2021, 21, 4552 4 of 13

the figure on the right side. Figure 1b is a plan of 10 actions transforming o1 to og. Each
action in the plan updates the positions of different points of the rope in different directions
until reaching the goal.

3.2. Algorithm Framework

In this section, we introduce our proposed framework for learning deformable object
manipulation from fully observable raw observations: action generative network (AGN). We
begin with the details of our approach. After that, we discuss our planning process with
AGN in the next section.

An overview of our AGN approach is shown in Figure 2. The training process of our
algorithm contains two steps: we first jointly train an auto-encoder, including a state-
abstractor model E(o; θ1) = s, which extracts the low-dimensional latent abstract state s
given a raw observation o, and a state-generator model D(s, z; θ2) = o, which generates a
raw observation given a low-dimensional latent abstract state s and noise z. After that, we
train a heuristic model F(st, sg; θ3) = at, which generates action at to be executed on state
st given current state st and goal state sg, and a transition model T(st, at; θ4) = st+1, which
generates a new state st+1 given a current state st and an action at. θ1, θ2, θ3 and θ4 are
parameters of the four models, respectively, which are to be learned with the training data.

Figure 2. The framework of our action generative network (AGN).

Planning in high-dimensional continuous domains is hard in general. Therefore, we
consider planning based on low-dimension latent space. In order to learn the conversion
between the high-dimension raw observation and low-dimension latent state, we first learn
an auto-encoder, which contains a state-abstractor model E(o; θ1) = s and a state-generator
model D(s, z; θ2) = õ. The reason of adding noise into state-generator model is to improve
the robustness. We jointly learn a state-abstractor model E(o; θ1) = s and a state-generator
model D(s, z; θ2) = õ by minimizing the MSE loss comparing the real raw observation o
with the reconstructed raw observation õ, which is defined by Equation (1).

L = ‖o− D(E(o; θ1))‖2 (1)

After learning the projection between high-dimensional raw observations and low-
dimensional latent space, then we jointly learn the heuristic model F and the transition
model T. The whole process of jointly training heuristic model F and transition model T is
shown in Figure 3. Heuristic model F predicts an action ãt given a current state st and a

Sensors 2021, 21, 4552 5 of 13

goal state sg by Equation (2). Then transition model T updates current state st to a next
state st+1 after executing ãt by Equation (3).

ãt = F(st, sg; θ3) (2)

s̃t+1 = T(st, ãt; θ4) (3)

where ãt is the predicted action , at is the real action. st is the current state, s̃t+1 is a
predicted next state, st+1 is the real next state, sg is a goal state. st, st+1, sg is computed
by state-abstractor model given a current observation ot, the next observation ot+1, a
goal observation og. Then we train the heuristic model with a loss function defined by
Equation (4).

Figure 3. The framework of the joint-training heuristic model and transition model.

LF = ‖at − ãt‖2 (4)

Next we define an InfoNCE contrastive loss described by Oord et al. [21], which is
defined by Equation (6), where ṡt+1 = 〈ṡ0

t+1, . . . , ṡk−1
t+1 〉 is a set of incorrect latent states

different from the real next state st+1. An incorrect latent state ṡi
t+1 is generated by a sample

in a set of negative samples ȯt+1 = 〈ȯ0
t+1, . . . , ȯk−1

t+1 〉. We construct negative samples ȯt+1 by
random selecting k samples, the latent state of each sample is different from the real next
state st+1. The h function shown in Equation (6) is some similarity function between the
computed latent states, which is computed by Equation (5). The motivation behind this
objective function is to let the predicted states and their corresponding positive samples be
close in latent space.

h(z1, z2) = exp(−‖z1 − z2‖2) (5)

Lc = −E[log
h(s̃t+1, st+1)

∑k−1
i=0 h(s̃t+1, ṡi

t+1)
] (6)

Then we define an L2 norm of convariance matrix to full the loss L by Equation (7)
following tharand et al. [18], aiming at learning a latent planning system such that linear
interpolation between states makes for feasible plans. To bring about such latent space, we
consider transition probabilities TM(st+1|s, a; θ4) given as Gaussian perturbations of the
state: st+1 = s + δ, where δ ∼ N (0, Σθ4(s)), and Σθ4(s) is a diagonal convariance matrix.
The key idea here is that, if only small local transitions are possible in the system, then a

Sensors 2021, 21, 4552 6 of 13

linear interpolation between two states s0 and sg has a high probability, and it represents
that a feasible trajectory exists in the observation space.

Ln = Es∼PM ||Σθ4(s)||2 (7)

where the prior probability PM for each element of s is uniform in [−1,1].
Therefore, the loss function of transition model can be defined by Equation (8). Finally,

we jointly learn the heuristic model F and transition model T by minimizing the loss
function defined by Equation (9), where λ is a hyper-parameter.

LT = Lc + Ln (8)

L = λLF + (1− λ)LT (9)

3.3. Planning with AGN

After training the state-abstractor model E, state-generator model D, heuristic model
F, and transition model T, naturally, we use them for planning to solve deformable object
planning problems, aiming at computing an action observation trajectory to reach og from
o0. The overall planning process can be divided into three steps.

• Firstly, state-abstractor model E outputs abstract state s0 and sg with o0 and og, respec-
tively.

• Secondly, we compute an action sequence reaching sg from s0 and derive an action
state trajectory γ = 〈s0, a0, s1, a1, . . . , aN−1, sN〉 by Algorithm 1. We first perform linear
interpolation between s0 and sg, and attain an initial sequence η = [s0, s1, . . . , sn, sg].
As for each pair of si and si+1, we compute an action ai by the heuristic model.
If si can reach si+1 after executing action ai, we add state si and action ai into θ.
Otherwise, we interpolate a latent state smid into η between si and si+1. We repeat
the above procedures until each pair of states in η can be transformed by an ac-
tion computed by the heuristic model. Finally, we attain an action state trajectory
γ = 〈s0, a0, s1, a1, . . . , aN−1, sN〉.

Algorithm 1 planning algorithm.
input: s0, sg, F, T.
output: γ = 〈s0, a0, s1, a1, . . . , aN−1, sN〉

1: do linear interpolation between s0 and sg, get η = [s0, s1, . . . , sn, sg]
2: i=0, γ = []
3: while i < n do
4: ai = F(η[i], η[i + 1]), s̃i+1 = T(η[i], ai)
5: if ||s̃i+1 − η[i + 1]||2 < 1e− 3 then
6: γ = [γ|γ[i + 1]], γ = [θ|ai]
7: i+ = 1
8: else
9: smid = (η[i] + η[i + 1])/2

10: η = η[0 : i + 1] + [smid] + η[i + 1 :]
11: n+ = 1
12: end if
13: end while

• Finally, we compute an action observation trajectory σ = 〈o0, a0, o1, a1, . . . , aN−1, oN〉.
We first sample k different Gaussian noises randomly. Then we can obtain k differ-
ent action observation trajectories given an action state trajectory θ and a noise by
state-generator model D. At last, we select an optimal action observation trajectory
σ = 〈o0, a0, o1, a1, . . . , aN−1, oN〉 among the k trajectories.

Since the states and the actions for deformable object are in continuous space, the
optimality and determinism of the solutions can hardly be discussed in this paper. In

Sensors 2021, 21, 4552 7 of 13

summary, given an initial observation and a goal observation, we can finally obtain a
feasible trajectory that is valid and clear compared to other state-of-the-art methods.

4. Experiments

In our experiments, we aimed to (1) visualize the abstract states and planning in
AGN; (2) show that AGN can produce realistic visual plans in a complex dynamical system;
(3) show that AGN significantly outperforms baseline methods.

We began our investigation with a set of experiments in the rope domain, specifically
designed to demonstrate the benefits of AGN, where we also compared AGN with other
methods. We later present experiments on a real dataset of robotic cloth manipulation
and verified the influence of two important hyper-parameters. Since both cloth and rope
datasets are collected in the real physical environment, the final plan we learned is definitely
fitted to a real setting.

4.1. Baselines

In order to evaluate AGN, we compared our approach with state-of-the-art algorithms.
The first one is the visual forward model [32]; we achieve it by realizing training and plan-
ning process purely in pixel space. Secondly, we jointly learn a forward and inverse model
following Lee et al. [16]. Finally, we compared AGN to causal InfoGAN [18], synthesizing
plans to transit from initial observations to goal observations based on the InfoGAN [18]
framework.

In consideration of the failure of the visual forward model and the causal InfoGAN to
generate action sequences, we have trained an inverse model on the dataset, given a current
observation ot and a next observation ot+1, the action between o, ot+1 can be generated.

4.2. Evaluation Criterion

We evaluate our approach based on three aspects:

• Trajectory confidence, to evaluate whether an observation transition is feasible or not.
• Trajectory distance, to evaluate the Euclidean distance between the current observation

and the next observation after the current action is performed.
• Final-to-goal distance, to evaluate the Euclidean distance between the final observation

and goal observation.

In order to quantitatively analyze the action trajectories we generated, we take the
pretraining model proposed by Therand et al. [18], which is called Judge, to evaluate
whether an observation transition is feasible or not. Trajectory confidence value is in
[0, 1], a higher score represents a higher confidence coefficient. Given an output trajectory
σ = 〈o0, a0, o1, a1, . . . , aN−1, oN〉, we can compute the trajectory confidence used by the
Judge in Equation (10).

tc =
1
N

N−1

∑
i=1

Judge(oi, oi+1) (10)

where tc is trajectory confidence, N is the length of trajectory.
Moreover, we train a path distance function EVAL to evaluate the Euclidean dis-

tance between the current observation and the next observation after the current action is
performed. Trajectory distance is computed by Equation (11).

td =
1
N

N−1

∑
i=1

EVAL(oi, ai, oi+1) (11)

where td is trajectory distance and the less td is, the better a trace is, N is the length
of trajectory.

Sensors 2021, 21, 4552 8 of 13

We also compare the final-to-goal distance. Final-to-goal distance is the Euclidean
distance between the final observation and goal observation, indicating that the smaller
the final-to-goal distance is, the better action trajectory is.

Then we introduce the training process of the Judge model and EVAL model in detail:

1. The Judge model takes a pair of observations (ot, ot+1) as input and outputs a binary
result of whether the observation is feasible or not. The training dataset consists
of positive observation pairs, which are 1 timestep apart, and negative pairs that
are randomly sampled from different rope manipulation trajectories. To avoid the
background of rope influencing the training of Judge, we preprocess the rope data
using the background subtraction pipeline mentioned above.
To validate the accuracy of the Judge model, we evaluate it with observation traces to
observe the binary outputs. Given an m-length observation trace, Judge takes the first
observation and an observation, which is n steps apart, where n is from 1 to m− 1.
The binary output decreases from 1 to 0 smoothly with n increasing, indicating that
the Judge model has the ability to recognize a feasible observation pair. We test Judge
with 100 traces out of the testing dataset for AGN and the accuracy is 98%.

2. The EVAL model takes a pair of observations (ot, ôt+1), an action at, and an observa-
tion ot+1 as inputs, where ôt+1 is a predicting next observation and oi+1 is a real next
observation, they are updated from a current observation ot after executing action
at. The EVAL model outputs a distance between ot+1 and ôt+1. The training dataset
consists of positive next observations, we trained the EVAL model by letting the
predict next observation ôt+1 be close to the real next observation ot+1. On a held-out
test set, the distance between the predict next observation and real next observation
converges to 0.

Note that the Judge and EVAL models are trained independent of AGN. Thus, trajectory
confidence and trajectory distance are both impartial metrics.

4.3. Rope Manipulation

The rope dataset [17] contains sets of sequential pictures and corresponding actions,
collected by a robot operating a rope in a self-supervised manner. The sample size used in
the training process is 100,000. Each initial picture is 64× 64× 3 RGB. In order to remove
interference factors, we converted the images to grayscale images, and used a model BRM
proposed by Therand et al. [18] to remove the background, aiming at focusing on the object
itself, which can avoid the algorithm overfitting to the background.

Regarding the definition of states, we follow the configuration of continuous abstract
states specified in [18]. In this section, we intend to verify the effectiveness of the algorithm
to handle deformable objects with continuous actions and continuous states.

Table 1 shows the results of AGN and baselines in the rope domain. We trained on
800 pairs of test samples to obtain this average results. As shown in Table 1, our algorithm
framework outperforms the other baseline in all kinds of evaluation methods, which
verifies the reliability of our method. In term of trajectory confidence, it means that we can
generate paths that are much more confident and much smoother than other algorithms.
As for the trajectory distance, AGN is significantly lower than the others. Because the
visual forward method and causal InfoGAN neglect actions, they cannot reason about the
transition and updating between observations after executing actions. As for final-to-goal
distance, AGN can generate action trajectories that are closer to the goal observation more
effectively, which indicates that AGN outperforms the other three algorithms in goal-arrived
tasks. Visual forward and joint dynamics are poor at long distance planning; therefore they
are often unable to reach the goal. Figure 4 shows six examples generated by AGN and each
row is a trajectory between initial raw observations and goal raw observations. As shown
in Figure 4, given different pairs of initial and goal observations, AGN is able to generate a
well-shifted and clear observation path.

Sensors 2021, 21, 4552 9 of 13

Figure 4. Result for rope manipulation data. The plot shows six planning instances, from left (initial observation) to the
right (goal observation).

Table 1. Evaluation of planning result in rope domain.

Trajectory Confidence Trajectory Distance Final–to–Goal Distance

visualforward 0.719 9.7189 5.5484
jointdynamics 0.567 10.680 5.046
ausalinfoGAN 0.884 9.0219 2.29

AGN 0.935 1.432 2.126

4.4. Cloth Manipulation

In this section, we present the results of our experiments in the cloth domain to verify
the effectiveness of our algorithm framework. The sample size used in the training process
is 400k. Because training on the cloth domain is more difficult than training on the rope
domain, we used a larger sample size. As shown in Figure 5, given a pair of an initial
observation and a goal observation, we can finally obtain a valid trajectory. Since actions
are abstract tensors, they do not have graphical representations. Then we compare origin
AGN with AGN training in raw observation space. The last two rows of Figure 5 show
that training AGN in raw observation space cannot learn correct action models, leading to
bad trajectories.

We jointly trained the heuristic model and transition model; the ratio between heuris-
tic model loss and transition model loss is λ, which is a hyper-parameter, shown in
Equation (9). Figure 6 shows the relation between λ and trajectory distance. When λ = 0.2,
the trajectory distance is the smallest, because the heuristic model will inevitably have
gradient flow when training transition model. Further, we also compare the performance
with different latent state dimension. As shown in Figure 7, where we set λ = 0.2, when
the latent state dimension is 16, we can obtain the smallest trajectory distance. After that,
the trajectory distance slowly grows as the latent state dimension increases, because it is
hard to express all of the information in an observation with a low dimensional state vector;
further, it becomes more difficult to train a neural network with more weights when the
dimension size increases.

Sensors 2021, 21, 4552 10 of 13

Figure 5. The first four rows are the origin algorithm AGN; the last two rows are AGN[1] train-
ing in raw observation space. Given initial observation and goal observation, AGN can attain
valid trajectories.

Figure 6. Trajectory distance with different parameter λ.

Figure 7. Trajectory distance with different latent state dimension.

Sensors 2021, 21, 4552 11 of 13

5. Conclusions

In this paper we propose a novel planning model learning framework, AGN, by con-
sidering actions between observations. Based on AGN, we learn four models, i.e., the
state-abstractor model, state-generator, heuristic model, and transition model, and solve
new planning problems with the learned models. Our experimental results show that
our AGN approach is effective in comparison to baselines. In the future, we would like to
extend our work to complex domains and consider objects in our framework that can better
leverage the benefit of both deep learning and classical AI planning. It is also interesting to
investigate the possibility of applying our AGN approach to learning action models [33–36]
and recognizing plans [37–39] in the planning community.

Author Contributions: Conceptualization, Z.S., K.J., and H.-H.Z.; methodology, Z.S., K.J., and
H.-H.Z.; software, Z.S.; validation, Z.S.; investigation, Z.S.; resources, Z.S.; data curation, Z.S. and
Z.M.; writing—original draft preparation, Z.S., K.J., and H.-H.Z.; writing—review and editing, Z.S.,
K.J., and H.-H.Z.; visualization, Z.S.; supervision, H.-H.Z.; project administration, H.-H.Z.; funding
acquisition, H.-H.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant
No. 62076263), Guangdong Natural Science Funds for Distinguished Young Scholar (Grant No.
2017A030306028), Guangdong special branch plans young talent with scientific and technological
innovation (Grant No. 2017TQ04X866), Pearl River Science and Technology New Star of Guangzhou
and Guangdong Province Key Laboratory of Big Data Analysis and Processing.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ghallab, M.; Nau, D.S.; Traverso, P. Automated Planning and Acting; Cambridge University Press: Cambridge, UK, 2016.
2. Sutton, R.S.; Barto, A.G. Reinforcement Learning—An Introduction; Adaptive Computation and Machine Learning; MIT Press:

Cambridge, MA, USA, 1998.
3. Schulman, J.; Lee, A.X.; Ho, J.; Abbeel, P. Tracking deformable objects with point clouds. In Proceedings of the 2013 IEEE

International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 1130–1137.
4. Wu, Y.; Yan, W.; Kurutach, T.; Pinto, L.; Abbeel, P. Learning to Manipulate Deformable Objects without Demonstrations. arXiv

2019, arXiv:1910.13439
5. Seita, D.; Ganapathi, A.; Hoque, R.; Hwang, M.; Cen, E.; Tanwani, A.K.; Balakrishna, A.; Thananjeyan, B.; Ichnowski, J.;

Jamali, N.; et al. Deep Imitation Learning of Sequential Fabric Smoothing From an Algorithmic Supervisor. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020, Las Vegas, NV, USA, 24 October 2020–24
January 2021; pp. 9651–9658.

6. Essahbi, N.; Bouzgarrou, B.C.; Gogu, G. Soft Material Modeling for Robotic Manipulation. Appl. Mech. Mater. 2012, 162, 184–193.
[CrossRef]

7. Mirza, M.; Jaegle, A.; Hunt, J.J.; Guez, A.; Tunyasuvunakool, S.; Muldal, A.; Weber, T.; Karkus, P.; Racanière, S.; Buesing, L.; et al.
Physically Embedded Planning Problems: New Challenges for Reinforcement Learning. arXiv 2020, arXiv:2009.05524

8. Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.I.; Moritz, P. Trust Region Policy Optimization. In Proceedings of the 32nd
International Conference on Machine Learning, ICML 2015, Lille, France, 6–11 July 2015; Bach, F.R., Blei, D.M., Eds.; Volume 37,
pp. 1889–1897.

9. Hafner, D.; Lillicrap, T.P.; Ba, J.; Norouzi, M. Dream to Control: Learning Behaviors by Latent Imagination. In Proceedings of the
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020.

10. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.A.; Fidjeland, A.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

11. Levine, S.; Finn, C.; Darrell, T.; Abbeel, P. End-to-End Training of Deep Visuomotor Policies. J. Mach. Learn. Res. 2016,
17, 1334–1373.

12. Matas, J.; James, S.; Davison, A.J. Sim-to-Real Reinforcement Learning for Deformable Object Manipulation. arXiv 2018,
arXiv:1806.07851

http://doi.org/10.4028/www.scientific.net/AMM.162.184
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670

Sensors 2021, 21, 4552 12 of 13

13. Nagabandi, A.; Kahn, G.; Fearing, R.S.; Levine, S. Neural Network Dynamics for Model-Based Deep Reinforcement Learning
with Model-Free Fine-Tuning. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation, ICRA
2018, Brisbane, Australia, 21–25 May 2018; pp. 7559–7566.

14. Berenson, D. Manipulation of deformable objects without modeling and simulating deformation. In Proceedings of the 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 4525–4532.

15. Wang, A.; Kurutach, T.; Abbeel, P.; Tamar, A. Learning Robotic Manipulation through Visual Planning and Acting. In Proceedings
of the Robotics: Science and Systems XV, Breisgau, Germany, 22–26 June 2019.

16. Agrawal, P.; Nair, A.; Abbeel, P.; Malik, J.; Levine, S. Learning to Poke by Poking: Experiential Learning of Intuitive Physics. In
Proceedings of the Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing
Systems 2016, Barcelona, Spain, 5–10 December 2016.

17. Nair, A.; Chen, D.; Agrawal, P.; Isola, P.; Abbeel, P.; Malik, J.; Levine, S. Combining self-supervised learning and imitation for
vision-based rope manipulation. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation, ICRA
2017, Singapore, 29 May–3 June 2017; pp. 2146–2153.

18. Kurutach, T.; Tamar, A.; Yang, G.; Russell, S.J.; Abbeel, P. Learning Plannable Representations with Causal InfoGAN. arXiv 2018,
arXiv:1807.09341

19. Chen, X.; Duan, Y.; Houthooft, R.; Schulman, J.; Sutskever, I.; Abbeel, P. InfoGAN: Interpretable Representation Learning by
Information Maximizing Generative Adversarial Nets. arXiv 2016, arXiv:1606.03657

20. Srivastava, A.; Valkov, L.; Russell, C.; Gutmann, M.U.; Sutton, C. VAEGAN: Reducing Mode Collapse in GANs using Implicit
Variational Learning. In Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017; Guyon, I., von Luxburg, U., Bengio, S.,
Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R., Eds.; pp. 3308–3318.

21. van den Oord, A.; Li, Y.; Vinyals, O. Representation Learning with Contrastive Predictive Coding. arXiv 2018, arXiv:1807.03748
22. Arriola-Rios, V.E.; Güler, P.; Ficuciello, F.; Kragic, D.; Siciliano, B.; Wyatt, J.L. Modeling of Deformable Objects for Robotic

Manipulation: A Tutorial and Review. Front. Robot. AI 2020, 7, 82. [CrossRef] [PubMed]
23. McConachie, D.; Ruan, M.; Berenson, D. Interleaving Planning and Control for Deformable Object Manipulation. In Proceedings

of the Robotics Research, The 18th International Symposium, ISRR 2017, Puerto Varas, Chile, 11–14 December 2017; Amato, N.M.,
Hager, G., Thomas, S.L., Torres-Torriti, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10, pp. 1019–1036.

24. Chung, J.; Kastner, K.; Dinh, L.; Goel, K.; Courville, A.C.; Bengio, Y. A Recurrent Latent Variable Model for Sequential Data. In
Proceedings of the Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing
Systems 2015, Montreal, QC, Canada, 7–12 December 2015; pp. 2980–2988.

25. Watter, M.; Springenberg, J.T.; Boedecker, J.; Riedmiller, M.A. Embed to Control: A Locally Linear Latent Dynamics Model for
Control from Raw Images. arXiv 2015, arXiv:1506.07365

26. Ha, J.S.; Park, Y.J.; Chae, H.J.; Park, S.S.; Choi, H.L. Adaptive Path-Integral Autoencoders: Representation Learning and Planning
for Dynamical Systems. In Proceedings of the Advances in Neural Information Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018, Montréal, QC, Canada, 3–8 December 2018.

27. Konidaris, G.; Kaelbling, L.P.; Lozano-Pérez, T. From Skills to Symbols: Learning Symbolic Representations for Abstract
High-Level Planning. J. Artif. Intell. Res. 2018, 61, 215–289. [CrossRef]

28. Srinivas, A.; Jabri, A.; Abbeel, P.; Levine, S.; Finn, C. Universal Planning Networks: Learning Generalizable Representations for
Visuomotor Control. ICML 2018, 4739–4748.

29. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed Representations of Words and Phrases and their
Compositionality. In Proceedings of the Advances in Neural Information Processing Systems 26: 27th Annual Conference on
Neural Information Processing Systems 2013, Lake Tahoe, NV, USA; 5–8 December 2013; Burges, C.J.C., Bottou, L., Ghahramani, Z.,
Weinberger, K.Q., Eds.; pp. 3111–3119.

30. Tian, Y.; Krishnan, D.; Isola, P. Contrastive Multiview Coding. In Computer Vision; Lecture Notes in Computer Science; Vedaldi, A.,
Bischof, H., Brox, T., Frahm, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; Volume 12356, pp. 776–794.

31. Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G.E. A Simple Framework for Contrastive Learning of Visual Representations. In
Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13–18 July 2020; Volume 119, pp. 1597–1607.

32. Kaiser, L.; Babaeizadeh, M.; Milos, P.; Osinski, B.; Campbell, R.H.; Czechowski, K.; Erhan, D.; Finn, C.; Kozakowski, P.;
Levine, S.; et al. Model Based Reinforcement Learning for Atari. In Proceedings of the 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020.

33. Zhuo, H.H.; Zha, Y.; Kambhampati, S.; Tian, X. Discovering Underlying Plans Based on Shallow Models. ACM Trans. Intell. Syst.
Technol. 2020, 11, 1–30. [CrossRef]

34. Zhuo, H.H.; Kambhampati, S. Model-lite planning: Case-based vs. model-based approaches. Artif. Intell. 2017, 246, 1–21.
[CrossRef]

35. Zhuo, H.H.; Yang, Q. Action-model acquisition for planning via transfer learning. Artif. Intell. 2014, 212, 80–103. [CrossRef]
36. Zhuo, H.H.; Muñoz-Avila, H.; Yang, Q. Learning hierarchical task network domains from partially observed plan traces.

Artif. Intell. 2014, 212, 134–157. [CrossRef]
37. Zhuo, H.H. Recognizing Multi-Agent Plans When Action Models and Team Plans Are Both Incomplete. ACM Trans. Intell. Syst.

Technol. 2019, 10, 1–24. [CrossRef]

http://dx.doi.org/10.3389/frobt.2020.00082
http://www.ncbi.nlm.nih.gov/pubmed/33501249
http://dx.doi.org/10.1613/jair.5575
http://dx.doi.org/10.1145/3368270
http://dx.doi.org/10.1016/j.artint.2017.01.004
http://dx.doi.org/10.1016/j.artint.2014.03.004
http://dx.doi.org/10.1016/j.artint.2014.04.003
http://dx.doi.org/10.1145/3319403

Sensors 2021, 21, 4552 13 of 13

38. Feng, W.; Zhuo, H.H.; Kambhampati, S. Extracting Action Sequences from Texts Based on Deep Reinforcement Learning. In
Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, Stockholm, Sweden,
13–19 July 2018; pp. 4064–4070. [CrossRef]

39. Zhuo, H.H. Human-Aware Plan Recognition. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
San Francisco, CA, USA, 4–9 February 2017; pp. 3686–3693.

http://dx.doi.org/10.24963/ijcai.2018/565

	Introduction
	Related Work
	Deformable Object Planning
	 Contrastive Prediction

	Our AGN Approach
	Problem Definition
	Algorithm Framework
	Planning with AGN

	Experiments
	Baselines
	Evaluation Criterion
	Rope Manipulation
	Cloth Manipulation

	Conclusions
	References

