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Abstract: With the increase in the digitization efforts of herbarium collections worldwide, dataset
repositories such as iDigBio and GBIF now have hundreds of thousands of herbarium sheet images
ready for exploration. Although this serves as a new source of plant leaves data, herbarium datasets
have an inherent challenge to deal with the sheets containing other non-plant objects such as color
charts, barcodes, and labels. Even for the plant part itself, a combination of different overlapping,
damaged, and intact individual leaves exist together with other plant organs such as stems and fruits,
which increases the complexity of leaf trait extraction and analysis. Focusing on segmentation and
trait extraction on individual intact herbarium leaves, this study proposes a pipeline consisting of
deep learning semantic segmentation model (DeepLabv3+), connected component analysis, and
a single-leaf classifier trained on binary images to automate the extraction of an intact individual
leaf with phenotypic traits. The proposed method achieved a higher F1-score for both the in-house
dataset (96%) and on a publicly available herbarium dataset (93%) compared to object detection-
based approaches including Faster R-CNN and YOLOv5. Furthermore, using the proposed approach,
the phenotypic measurements extracted from the segmented individual leaves were closer to the
ground truth measurements, which suggests the importance of the segmentation process in handling
background noise. Compared to the object detection-based approaches, the proposed method showed
a promising direction toward an autonomous tool for the extraction of individual leaves together
with their trait data directly from herbarium specimen images.

Keywords: semantic segmentation; object detection; leaf extraction; connected component analy-
sis; plant species identification; herbarium leaf dataset; phenotypic features; leaf measurements;
deep learning

1. Introduction

Herbarium specimen collections present a unique botanical source of information.
They are important data sources for new species discoveries, plant evolution reconstruction,
and studying the impact of climate change [1–3]. Herbarium plants consist of dried plants
with a mixture of damaged, overlapping, and individual intact leaves. Furthermore, these
leaves vary in their shape, color, and texture, even within samples from the same species.
To create a herbarium sheet, a collected fresh plant undergoes a drying and pressing process
that distorts the morphological arrangement of the original plant by folding, overlapping,
and placing the leaves at a different position to ensure the specimen fits on a standard
herbarium sheet [4].

The current digitization effort of these collections presents both an opportunity and a
new challenge for computer vision experts [5]. During the digitization process, additional
non-plant objects such as color charts for image quality assessment and a ruler to estimate
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the physical size of the specimens are added to the sheet [6]. Such items are generally
randomly placed in empty places of the sheet to prevent occluding the specimen itself.
Hence the final herbarium sheet image contains specimen with folded, overlapping, and
single leaves with the addition of other non-plant objects such as color charts, barcodes,
rulers, and labels. While these objects are considered useful to botanists and taxonomists,
they are treated as noise when applying computer vision techniques to identify certain
species [7,8].

Among the plant organs that is mostly present throughout the season, the leaf is
considered important as it carries a lot of information regarding the plant [9]. A leaf carries
many unique features such as shape, color, and texture, which varies among species and
hence makes it a widely used plant organ for different tasks such species identification,
species distribution, climatic indicators, and phylogenetic relationships [10,11]. Phenotypi-
cal characteristics of the leaves such as leaf length, width, petal size, area and leaf perimeter
are important morphological features for the evolutionary studies of plants [12]. Current
community efforts to harvest these features is limited as it requires a manual process
of analyzing individual specimens that is both time-consuming and a costly operation
considering the existing volume of specimens already preserved in herbaria [13]. Existing
digitization efforts of these specimens present a great opportunity for the computer vision
community to accelerate this process through automation [13]. Studies such as [14] have
initiated the process of developing specialized software for extracting phenotypic features
although the process is still user-dependent. Full automation of phenotypic trait extraction
from digitized herbarium specimens could greatly enhance the existing traits database
(such as www.try-db.org, accessed on 20 May 2021) to answer fundamental questions
related to biodiversity [15]. Furthermore, extraction of these leaves with their traits could
improve the involvement of computer scientists in developing new identification systems
for herbarium specimens as most of the existing studies have relied on fresh leaves [16].

In this study, an efficient pipeline (sequence of steps) was proposed to automate the
extraction of individual intact leaves together with their phenotypic traits from herbarium
specimen images. While these leaves exist in various forms (e.g., damaged, overlapping,
and/or intact individual leaves), the proposed method focuses on the extraction of the intact
leaves by combining deep learning and image processing techniques. Given a herbarium
image, the proposed method automatically localizes and segments intact individual leaves
from the rest of the image and extracts morphological measurements from the segmented
intact leaves. Specifically, the proposed pipeline consists of three main phases. First, we
applied aa deep learning based semantic segmentation model to automatically segment
leaves (including damaged, overlapping, and intact individual leaves) from the rest of the
objects present in the herbarium sheet. We then enhanced the generated segmentation mask
with simple thresholding techniques before applying connected component analysis for
localizing candidate leaves. Finally, a simple binary classifier was used to select individual
intact leaves from candidate leaves and then extracted the features from the selected
leaves. To assess the effectiveness of the proposed method, we compared the proposed
method with current state-of-the-art object detection models such as YOLOv5 and Faster
R-CNN [17,18]. These methods were also tested on an in-house dataset as well as one of
the publicly available datasets [19]. The results obtained showed the robustness of the
proposed method.

With the massive investment of both resources and money in the digitization of
herbarium collections worldwide, automating phenotypic traits from leaves will improve
the utilization of these collections for various biodiversity studies [15]. On the other hand,
this will not only increase the value of the herbaria collections but also reduce the cost and
time of manually extracting individual leaf images [20]. Effective extraction of individual
leaves from herbarium collections will also provide a valuable contribution to botanical
research for studies focusing on individual leaves such as [21], thus making better use of
the available specimen images. This will also prove important by improving the sample
size of the species for studies being conducted in tropical regions where there is a high
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number of diverse species with highly imbalanced herbarium collection data [5,22]. In
summary, the main contributions of this work are as follows:

• We propose an approach to automatically segment and extract phenotypic traits of
single intact leaves directly from herbarium specimen images.

• The proposed method has completely automated the task of individual leaf extraction
from a given herbarium specimen image without requiring any user intervention.

• We performed experimental validation of the proposed method by comparing its
performance with existing state-of-the-art object detection approaches (Faster R-CNN
and YOLOv5) on an unseen publicly available dataset (in addition to the in-house
dataset) and achieved promising results.

• We curated a new dataset of herbarium specimen images together with their
pixel-level ground truth annotation, which can be used for training/testing machine
learning techniques.

2. Related Works

An important step in automatic phenotypic feature extraction directly from herbarium
specimen images is to accurately localize intact leaves. This is important as leaf measure-
ments taken from damaged or non-intact leaves can give misleading results [23]. In most
cases, leaf localization is achieved by performing leaf segmentation, which is separating the
leaf from the rest of the background. There exist a number of studies that have attempted
to segment plant leaves directly from herbarium specimens [24]. These methods are based
on active contours [25] using prior shape models [26] and color based methods [27]. These
methods perform well when the target leaf has a uniform background but they tend to
struggle in the presence of more complex backgrounds such as images with highly variable
content. In the case of herbarium specimen images, existing visual noise such as color
charts, specimen labels, and other botanical information makes the task of leaf segmenta-
tion difficult for traditional segmentation algorithms. On the other hand, deep learning
approaches have started to show promising results [13], however, most of these approaches
are species dependent and hence do not generalize well on other taxa categories or require
large and diverse training samples [12].

Corney et al. are among earlier works to attempt automating the segmentation of
the leaves directly from herbarium specimens [28]. Their study focused on three species
belonging to the genus Tilia L, where they used the canny edge detector algorithm together
with a deformable template approach to segment potential leaves from the rest of the
objects. In order to extract leaf features, a human expert was required to manually select
intact leaves and then perform further processing. Their work was limited as it was not fully
automated and techniques such as deformable template were based on prior knowledge of
leaf shapes, hence lacking flexibility. Similarly, Henries and Tashakkori proposed using
different morphological operations such as opening and closing operations to segment
herbarium leaves from their stem [29]. However, their study was performed on a simple
experimental setting where the specimen was already isolated from the rest of the objects.

Recent results on deep learning methods have started to show promising results for
the segmentation process. Studies such as [13] attempted to automate the extraction of
leaf features using an ensemble of models. The study trained a deep learning semantic
segmentation model based on DeepLabv3+ and used a set of selected intact leaves to train
a SVM classifier to filter out candidate leaves from the remaining leaves based on leaf
length and width. The study involved more than 400 specimen images collected from
different herbaria. Furthermore, the authors used a sliding window technique to improve
the training sample size and use it as a remedy to downscale the images for training the
CNN model while using leaf measurements such as leaf length and width to train a SVM
classifier. The study reported an average IoU of 55.2% for the leaf segmentation model on
74 test sets while achieving a recall of 0.98 for detecting at least a single intact leaf from a
set of images. In contrast, Ott et al. proposed an object detection technique to automatically
identify intact leaves from herbarium specimen images. Their study involved a total of
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243 herbarium images mostly from the Leucanthemum species. Their study trained a Faster
R-CNN model and reported an accuracy of 95% on a sub-set of 61 test images. Similarly,
Younis et al. [30] proposed a Faster R-CNN model to detect and annotate different plant
organs from digitized herbarium specimens. The authors manually annotated hundreds
of images and used a subset of 498 images to train the model to detect different organs
including flowers, leaf, fruit, seed, root, and stem. The study reported an overall average
precision (AP) of only 9.7.

Other studies have used similar techniques for digitized herbarium specimens, al-
though they focused on solving different tasks. For example, Abraham et al. [6] applied
semantic segmentation to extract herbarium information to assess and automate image
quality management. The study aimed to use the segmented information to assess three
quality attributes including colorfulness, contrast, and sharpness of the images. Similarly,
Hussein et al. [7] proposed using deep learning semantic segmentation techniques to
remove background noise in herbarium images. Adán et al. [31] proposed an instance seg-
mentation model for extracting morphological and visual information existing in herbarium
specimens. Due to the high demand for annotated datasets for most of the deep learning
approaches, the study suggests integrating their model (Mask R-CNN) with an active
learning mechanism to minimize the manual annotation process for researchers. Although
the study applied instance segmentation in herbarium images, the main focus was to
extract visual information such as the number of organs instead of extracting the leaves
themselves [31].

A closely related study to this work is the study of Weaver, Ng, and Laport, although
our study has made numerous improvements. As discussed, the performance reported by
the previous study was relatively small despite a large training sample being used. This is
likely caused by training on various class categories apart from leaves only and using a
simple feature such as leaf length and width to distinguish intact leaves from non-intact
leaves. From the rest of the sections, we show that our approach yielded better results as
the segmentation process is more robust to noise than object detection, which is important
when extracting botanical features.

3. Proposed Methodology

In this section, we provide a detailed explanation of the proposed method by intro-
ducing different components of the pipeline. In the next section, the experimental work of
the proposed method will be provided.

The proposed system consists mainly of three phases, as shown in Figure 1. During the
first phase (deep learning based semantic segmentation process), the leaves are segmented
from the background and the generated mask is enhanced via various post-processing
steps. The second phase involves applying connected component analysis for the extraction
of components from the output of the first phase, which are the potential leaves. Finally, in
the third phase, individual leaves are filtered using a single-leaf classifier trained on binary
leaf images.
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Figure 1. A graphical summary of the single leaf extraction process. In the first phase, the herbarium image is passed
through a trained deep learning semantic segmentation model. The generated mask is then enhanced through various
image pre-processing techniques before passing the image to the connected component to extract all potential leaves. A
trained deep learning classifier based on binary image is then used as a filter to filter out individual leaves from the rest of
the detected potential leaves. Finally, phenotypic measurements are then extracted from the filtered individual intact leaves.

3.1. Phase 1: Deep Learning for Semantic Segmentation

Image segmentation has been a long-term computer vision problem and has been
attempted with different algorithms such as image thresholding, Watershed algorithms,
Graph partitioning methods, K-means clustering, and many others. CNN’s in image
segmentation tasks have received much attention due to its good performance in image
classification tasks [32,33]. Segmentation is more challenging as it involves both object
detection and localization. This is achieved by assigning labels to each pixel in an im-
age. Semantic segmentation has been widely adapted with either new domain areas of
application or improvements in existing architectures [34,35]. Figure 2 shows the basic
encoder-decoder architecture of the fully convolutional network used in semantic seg-
mentation tasks. This architecture involves two main parts. The first part is the encoder
network t5at uses a modified CNN for classification without the full connected layers to
develop a low-resolution feature map of the input with higher efficiency in discriminating
between classes. The second part, which is the decoder network, up-samples the learned
feature map into a full-resolution segmentation map to provide a pixel-level classification
that has the same size as an input image.
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Figure 2. A schematic diagram of a fully convolution neural network for semantic segmentation. The network consists of
an encoder part where the model extracts potential useful features and the decoder part, which up-samples the extracted
feature map to produce the final segmentation results.

In this phase, we adapted DeepLabv3+ architecture, which follows the same encoder-
decoder architecture. This was based on the performance of the DeepLabv3+ model on
our previous work related to the segmentation of the whole herbarium specimen [7]. The
model has also being widely adapted for herbarium-related studies [36]. Apart from that,
DeepLabv3+ has been the state-of-the-art in different benchmarking datasets for semantic
segmentation tasks [37]. Deeplabv3+ follows the same encoder-decoder architecture. In
the encoder phase, DeepLabv3+ uses pre-trained CNNs that have been trained for image
classification tasks such as ResNet or VGG16. DeepLab families uses spatial pyramid
pooling to process input images at multiple scales in order to capture multi-scale features
and later fuse the output to produce a feature map [38]. To improve its efficiency, an Atrous
convolution operation was introduced. This operation enables the window size of the
kernel to expand without increasing the number of parameters [39]. This expansion of the
window is controlled by the dilation rate and it enables the network to capture information
from a larger receptive field of view with the same parameters and computational complex-
ity as the normal convolution. The combination of spatial pyramid pooling with Atrous
convolutions resulted in an efficient multi-scale processing module called Atrous spatial
pyramid pooling (ASPP). In the earlier version (DeepLabV3) [40], the last ResNet block of
the modified ResNet-101 uses different Atrous convolutions with different dilation rates.
ASPP, together with bilinear up sampling, is also used on top of the modified ResNet block.
DeepLabv3+ is an improvement in the previous version by adding an effective decoder
module to improve the boundaries of the segmentation results [41]. Furthermore, apart
from ResNet-101, an Xception model can be used as a feature extractor while applying a
depth-wise separable convolution to both ASPP and the decoder module, hence improving
the speed and robustness of the encoder-decoder network.

3.2. Phase 2: Leaf Extraction Using Connected Component

A classic connected component algorithm was first introduced by Azriel and John
in 1966 [42]. Since then, numerous different implementations have been proposed for
improving existing ones [43]. In image processing, connected components analysis helps
to find parts of objects in an image that is physically connected. It works by assigning
a given set of pixels a unique label that depends on whether the surrounding pixels are
connected or not. Connected-component labelling is necessary for distinguishing different
objects in a binary image and has been one of the most important techniques used in image
analysis, computer vision, and pattern recognition [44]. Connected component analysis
has successfully been used in different domain areas such as leaf vein detection [45], weed
detection [46], and character extraction from vehicle plates [47]. In this work, we utilized
connected-component labelling for extracting all detected potential leaves, which include
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overlapping, damaged, and individual leaves from a binary herbarium image obtained in
phase 1 of the pipeline.

3.3. Phase 3: Single-Leaf Classifier

Herbarium specimens are dried plants that vary in shape, color, and texture even
for species belonging to the same taxa. Furthermore, the same sheet can have a mixture
of individual leaves, overlapping or damaged leaves, which occurs due to either the
preservation process, herbivore activities, physical interaction, or the preservation period.
Training a classifier with the normal leaf images will present a great challenge as these
categories of leaves share both color and texture. In this way, a large dataset of different
categories of leaves (individual, damaged, and overlapping) will be required to train
the model with a high probability of poor generalization due to the nature of herbarium
leaves themselves.

Due to these constraints, we approached this stage of filtering individual leaves by
focusing on the leaf shape only. Given a leaf, we applied pre-processing steps by converting
it to a binary image (black and white) and then used the binary image for training. This
eliminates the need for large training data but also improves the generalization of the clas-
sifier as it specifically focuses on the leaf shape patterns. On the other hand, since different
species share similar leaf shapes, a publicly available dataset of individual leaves from
fresh plants could be used as a training sample as they require minimum pre-processing.
In this phase, we adapted the VGG16 network architecture with few modifications, which
will be explained in later sections. With this approach, the proposed method is more
flexible and can deal with different leaf shapes, color, and even herbarium leaves with
small deformations. Earlier studies have limited the classifier by considering the leaf size
as a feature [13]. As the study showed, they require a large training sample to maintain a
good performance of their approach.

4. Experimental Work

In this section, we introduce the experiment performed for developing the proposed
method. All the experiments were carried out on a machine equipped with an Intel i7
8th generation CPU, 16 GB RAM together with NVIDIA GeForce GTX 1060 Max-Q Design
in a 64-bit Windows 10 environment.

4.1. Datasets

In this study, we used three different datasets. The first dataset included herbarium
sheet images collected from the in-house herbarium (UBDH). This dataset was used for
training and evaluation of the semantic segmentation model. The second dataset was the
Herbarium Challenge 2019 Dataset (HCD) [19], which is publicly available. This dataset
was used to evaluate and validate the performance of the proposed method. The third
dataset was a combination of individual herbarium leaves together with a subset of the
Flavia dataset. The Flavia dataset [48] (publicly available) consists of individual leaves
with the blade only on a plain background. This dataset was used as part of training a
single-leaf classifier.

UBDH Dataset—This dataset consists of 500 herbarium images together with their
annotations (ground truth) for training the segmentation model. The UBDH dataset
contains more than 8000 plant species from a tropical region and is currently undergoing
digitization. The image labeler app from MATLAB 2018 software was used to generate the
ground truth labels. We then applied a median filter to reduce any noise that may have
been introduced during the labelling process. Figure 3 shows an example of herbarium
images and their ground truth labels. After the labelling process, the dataset consisted of
two classes: leaves and background. We later converted the dataset into the coco dataset
format and made it publicly available for future research purposes.
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Figure 3. A sample of herbarium images (top row) and their corresponding annotation (bottom
row) used for training the segmentation model from the UBDH dataset. This dataset consisted of
500 herbarium images together with their ground truth annotation for the training segmentation
model.

HCD Dataset—This dataset contains herbarium images of the flowering plant family
Melastomataceae [19]. We randomly selected a subset of this dataset containing 90 herbar-
ium images with at least an individual leaf that can be extracted for evaluating the proposed
method. This dataset aimed to assess the generalizability of our proposed method and
compared it with existing state-of-the-art approaches.

Single-leaf Classifier Dataset—To train a single-leaf classifier, we utilized two different
datasets and combined them. The first dataset was the herbarium leaves. This dataset was
generated by passing the same training data used for the semantic segmentation model
(phase 1) and later used a connected component to extract all the detected leaves (phase 2).
Finally, we manually separated these leaves into individual (leaves having recognizable
outer shape or margin) versus non-individual leaves (i.e., damaged leaves, partial leaves,
and overlapping leaves).

To improve the generalization of our classifier, we used a subset of the Flavia dataset
containing 83 individual leaves samples of 32 different species. The selected leaves had a
similar shape to the herbarium leaves. The combination of the two datasets was important
to improve the robustness of the classifier when presented with a new dataset. A summary
of the dataset used is given in Table 1. Figure 4 shows some of the negative samples used
for training the classifier.
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Table 1. Dataset summary used for training the single-leaf classifier.

Datasets Single Leaves
(Positive Samples)

Non-Single Leaves
(Negative Samples)

UBDH dataset 798 1015
Flavia dataset 83 0

Total 881 1015
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The dataset consisted of 881 intact individual leaves as positive training samples and 1015 negative samples.

4.2. Pre-Processing and Training of Semantic Segmentation Model

Herbarium sheet images are usually of high resolution to capture the fine-grain details
of the specimens. As a standard procedure for training deep learning models, all input
images together with their annotation were resized to a 512 × 512 resolution to reduce
the computational cost during training. Rotation, flipping, and brightness adjustments
were applied as augmentation techniques for better network generalization. We used
DeepLabv3+ as the segmentation model with ResNet-101 as the feature extractor. This
model was pre-trained on the ImageNet dataset and fine-tuned on the dataset. This is
useful as earlier layers of the network tend to learn generic features and therefore become
useful for other computer vision tasks [49]. We applied an Adam optimizer with a learning
rate of 1 × 10−4 and a batch size of 3. The model was trained for 100 epochs with a binary
cross-entropy loss function as we had a binary class problem (leaf or background).

Mask Post-processing—Although our segmentation model successfully segmented
between the leaves and the background, there exists a tendency of the model to under-
segment individual leaves that were close together within a single mask. Figure 5b shows
an example of the model output with the under-segmentation of closely placed leaves
highlighted with a black square box. This presents a challenge as most of the individual
leaves are closely placed due to the limitation in the size of the herbarium sheet. To solve
this problem, simple post-processing steps were applied.

First, the generated mask from semantic segmentation model was resized to the
original high-resolution dimension of the herbarium images. This is a vital step as we
wanted to extract fine details of the leaves in the later stages without sacrificing image
quality, hence, we only resized the mask and not the herbarium image itself. In the next
step, the generated mask was converted to a binary mask using Otsu thresholding [50]
followed by a 5 × 5 dilation (5 × 5 kernel was determined as the best size after several
experiments). The dilation operation helped in ensuring the margins of the leaves were
covered from the generated mask. In the third step, a flood-fill operation was applied
to cover the holes that were present inside the margin of the leaves (Figure 5c). This
operation helped in preventing any artifacts being introduced when applying the masking
operation between the current mask and the original herbarium image again (Figure 5d).
Since the new image had a clean background with distinct color between the leaves and
the background with the clear boundary between closely placed individual leaves, Otsu
thresholding was again applied. Finally, another flood-fill operation was applied to the
segmented image to ensure the mask covered the whole leaf, which may have been missed
by the thresholding process (Figure 5e). This step is also important to ensure that the whole
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leaf is detected when applying connected component analysis in the next step. The output
of this step is a clean mask which is then taken to phase 2. The summary of the whole
process is explained in Algorithm 1 below.

Algorithm 1. Mask Post-processing

Input: Herbarium image Hi, mask m
Output: New herbarium mask mn
1: begin
2: ms ← Resize m to the same size as Hi;
3: mo ← Apply inverse_otsu_threshold to ms;
4: mf ← Apply flood-fill operation to mo;
5: md ← Dilate mf by 5 pixels;
6: Hn ← Apply masking operation between md and Hi;
7: mi ← Apply inverse_otsu_threshold to Hn;
8: mn ← Apply flood-fill operation to mi;
9: end
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4.3. Leaves Extraction Using Connected Components

The connected component analysis was applied to the binary image generated from
the mask post-processing step (Figure 1: phase 1) to extract different components (potential
leaves). Since it is well known that herbarium images are of high resolution, we only
considered components that had an area greater than 1000 pixels as most of the components
with a smaller area were found to be noise. For each of the detected components, a mask
was generated and dilated by 10 pixels (obtained best after a number of experiments),
which considered only that area of the component as active while ignoring the rest of the
image. This step was necessary to prevent nearby components being extracted together
with the current component. Subsequently, the bounding box coordinate, which covers the
whole component, was used to extract the component from both the component mask and
the relevant part from the original herbarium image followed by the masking operation
between the two. The masking process was important to generate a leaf image with a
clean background by removing any nearby leaf that was covered in the bounding box
coordinates. The output of this step (Figure 1: phase 2) is then passed to the single-leaf
classifier for filtering whether the component detected was an individual leaf or not. The
algorithm summarizing the extraction process is presented below (Algorithm 2).
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Algorithm 2. Extracting Detected Components

Input: Herbarium image Hi, New herbarium mask mn
Output: A set C of extracted components cx
1: C← Ø;
2: call← Detect all component cs in mn;
3: N← Find the total number of detected components in call;
4: for cs ← 1 to N do
5: if Area (cs) > 1000 pixels
6: mcs ← Create a mask of the current cs only from mn;
7: mcd ← Dilate cs in mcs by 10 pixels;
8: Hcd ← Apply masking between mcd and Hi;
9: cx ← Crop the bounding box of cs from Hcd;
10: C← C ∪ {cx};
11: end if
12: end for

4.4. Pre-Processing and Training of Single-Leaf Classifier

To preprocess the dataset, first, we padded all images with extra pixels to achieve a
square (1:1) aspect ratio to ensure maintaining the shape of the leaves while resizing the
images before training. Extra padding is also important for data augmentation during
the training process to prevent individual leaf shapes from being distorted. The image
was then converted to grayscale followed by inverse Otsu thresholding due to the white
background of the images. Furthermore, a flood-fill operation was then applied to fill in
any holes existing inside the leaves. This operation was performed to extract not only
damage-free leaves but also damaged leaves with a recognizable outer shape. Figure 6
summarizes the pre-processing step.
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Training procedure—We adapted a pre-trained VGG16 network that is a CNN trained
on the ImageNet dataset and used for transfer learning on our dataset [51]. We froze
earlier layers of the base version of the network to make them non-trainable and added an
extra max-pooling layer before the fully connected layers to reduce the dimension of the
previous layer. The feature vector of the fully connected layer was reduced from 2048 units
of the original VGG16 to 128 units, which helped in reducing the computational complexity
without sacrificing much on performance. The model was implemented using Keras with
TensorFlow backend [52].

We trained with a batch size of 32 images per iteration and applied binary cross-
entropy as the loss function. All input images were resized to 300 × 300 resolution and
trained for 100 epochs with an Adam optimizer at a learning rate of 1 × 10−4. We also
applied data augmentation for the training images such as flipping and rotation, with
height and width shift as leaves were expected to be indifferent orientations, size, and
location hence helped the model to generalize better. The trained classifier was then used
as a filter to detect whether the detected component was an individual leaf or not. This
process is summarized in Algorithm 3.
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Algorithm 3. Filtering Individual Leaves

Input: A set C of extracted components cx
Output: Set L of filtered individual leaves
1: L← Ø;
2: call← Detect all component cs in mn;
3: N← Find the total number of components in C;
4: for cx ← 1 to N do
5: cp ← Apply pre-processing steps;
6: flag← Pass cp to a trained single_leaf_classifier;
7: if flag = = leaf
8: L← L ∪ {cx};
9: end if
10: end for

Table 2 provides a summary of the hyperparameters used for the semantic segmenta-
tion model and the single-leaf classifier. We used a larger input dimension for the case of the
segmentation model since herbarium images are of high dimensions (usually 3000 × 2000
or more). For the case of a single-leaf classifier, we reduced the input dimension as we
were only dealing with the extracted components with a binary image.

Table 2. A summary of the hyperparameter used for training the deep learning models.

Segmentation Model Single-Leaf Classifier

Input dimension 512 × 512 300 × 300
Batch size 3 32

Learning rate 1 × 10−4 1 × 10−4

Optimizer Adam optimizer Adam optimizer
Loss function binary cross-entropy binary cross-entropy

Epochs 100 100
Pre-trained network ResNet101-DeepLabv3+ Modified-VGG16

4.5. Comparison with the State-of-the-Art Approaches

To assess the performance of the proposed method, we compared it with the current
existing state-of-the-art object detection techniques such as Yolo architectures and Faster
R-CNN network [53,54]. For the YOLO architecture, we adapted the recently released
YOLOv5, which has made significant improvements over its predecessors [17], while
for Faster R-CNN architecture, we used the implementation available in the detectron2
framework for training with our custom dataset [18]. Training setup for each architecture
is as follows:

Faster R-CNN network: For the Faster R-CNN network, we used the publicly available
implementation using the detectron2 framework. Since the Faster R-CNN network is a
multi-stage detection model (two-stage detector), the network consists of a feature pyramid
network (FPN) as a backbone that has a multi-scale pyramid convolutional structure to
perform multiscale feature extraction. The extracted features were then used as input to a
region proposal network (RPN) to propose multiple regions with objects. Finally, a Fast
R-CNN network was used as a head to detect multiple objects. A detailed description of the
network can be found in [18]. In this study, we performed a fine-tuning of the pre-trained
Faster R-CNN network, which was trained on a MS COCO dataset for object detection
task. The network was trained with a batch size of 2, a stochastic gradient descent (SGD)
optimizer with a learning rate of 0.00025, and used a 0.6 non-maximum suppression (NMS)
threshold during training for 3000 iterations. At the end of the training process, the best
performing model based on the validation loss was saved and used as the Faster R-CNN
model with a NMS threshold of 0.7 during testing.

YOLOv5s: Unlike Faster R-CNN, YOLO architectures belong to the family of single
stage detectors that enable a fast end-to-end network training and inference time. Since
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after the first release of YOLO architecture, newer versions have focused on incremental
improvements in areas including backbone feature extractors such as cross stage partial
networks, network training strategies with novel augmentation methods such as mosaic
data augmentation, incorporating different training losses such as complete intersection
over union (CIoU-loss) and focal loss to address the imbalance between the foreground
and background classes, activations such as Mish activation, and other universal feature
extraction strategies such as cross-stage-partial-connections (CSP), weighted-residual-
connections (WRC), etc. [55]. In this work, we utilized the recently proposed YOLOv5s
architecture. YOLOv5 architecture shares many similarities with its YOLOv4 counterpart,
nevertheless the authors of YOLOv5 have automated the process of anchor box selection
by learning the bounding box distribution of a new dataset using k-means and genetic
algorithm and hence making the network easily adaptable to train with other datasets [17].
We also performed a fine-tuning process of YOLOv5s, which was trained from the MS
COCO dataset for the object detection task. The network was trained for 300 epochs using
an Adam optimizer with an initial image size of 640 × 640 and a batch size of 16. Like
in the Faster R-CNN training process, we stored the best performing model based on
validation loss and used it for inference. To improve the network results, we used test time
augmentation with a 0.6 NMS threshold. Both networks were trained to detect potential
candidate leaves from the herbarium images using the same train/validation and test
dataset as the one used to train the proposed segmentation model. For each detected
potential leaf from the networks, an Otsu thresholding and flood-fill operation was applied
before using connected component analysis to extract the largest component. The extracted
largest component was then passed to a single-leaf classifier to detect whether the object
was an individual intact leaf or not. This pre-processing improved the performance of the
single-leaf classifier as the classifier was trained with a binary leaf image. Figure 7 depicts
the approach used for the object detection-based method for individual leaf extraction. The
correctly classified intact leaves were then used to extract various phenotypic features.
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Figure 7. Object detection-based approach for single leaf and feature extraction. The same setup was used as the proposed
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5. Performance Evaluation Metrics

The procedure used in evaluating the proposed method versus other approaches was
conducted as follows. We selected herbarium images that consisted of at least a single
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individual leaf. In this way, we were able to count how many leaves were extracted by
the proposed method against how many leaves we expected. This stage helped us to
investigate the effectiveness of each approach in the extraction of an individual leaf. We
selected a total of 144 herbarium images, 54 from the UBDH dataset, and 90 images from
the HCD dataset. From the UBDH dataset, we expected to extract a total of 190 individual
leaves while in the HCD dataset, we expected to extract a total of 260 individual leaves
after manually inspecting the images. None of these selected images were used in the
training stage.

For performance evaluation, different metrics were used to evaluate the performance
of the individual models as well as of the whole pipeline on individual leaf extraction.
Mean intersection over union (MIoU) is a standard metric for evaluating segmentation
models [56]. It provides an average score of all classes by quantifying the overlap between
the target label and the predicted label. MIoU is calculated by taking the ratio of true
positives over the sum of false positives, false negatives, and true positives. Equation (1)
shows how to calculate the MIoU, which is calculated pixel-wise in the case of segmentation
model. We also adapted different performance metrics such as accuracy, precision, recall,
and F1 score to assess the performance of the proposed system (Equations (2)–(5))

MIoU =
1
N

N

∑
x=1

Nxx

∑N
y=1 Nxy + ∑N

y=1 Nyx − Nxx
(1)

Accuracy =
Nxx + Nyy

Nxx + Nyy + Nxy + Nyx
(2)

Precision =
Nxx

Nxx + Nxy
(3)

Recall =
Nxx

Nxx + Nyx
(4)

F1 score =
2× Nxx

2× Nxx + Nxy + Nyx
(5)

where N is the total number of classes; Nyy is the true negative; Nyx is the false negative;
Nxx is the true positive; and Nxy is the false positive. For object detection models, we used
a mean average precision metric (mAP) to measure the overlap between the predicted
bounding box against the ground truth or the predicted pixels against the ground truth
pixels for the segmentation task. We also used other metrics such as mean absolute error
(MAE), mean square error (MSE), and root mean square error (RMSE) to measure how well
the extracted phenotypic traits matched those of the ground truth features.

6. Results and Discussions

The results section presents the performance evaluation of the semantic segmentation
model and single-leaf classifier along with a comparison between the proposed method
and the object detection-based approaches for individual leaf extraction from herbarium
specimen images.

6.1. Evaluation of Semantic Segmentation Model

We divided the UBDH dataset into 80% training, 10% validation, and 10% for testing.
The model achieved an average accuracy of 95.59% on 57 test samples. Table 3 summarizes
the results of the two-class semantic segmentation model used in the proposed method for
differentiating the leaf and the background. For the leaves class, the model achieved an
accuracy of 92.21% on testing samples that was slightly lower than the background class,
which achieved an accuracy of 98.98%. This difference between the two accuracies may
suggest that the model has a certain degree of under-segmentation of the leaves, which was
corrected by the mask post-processing step after the segmentation process. Nevertheless,
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our model achieved a satisfactory result with a MIoU of 94.17% and 93.71% in the validation
and testing sets, respectively. On the other hand, the performance of the YOLOv5s model
seems to be higher than both DeepLabv3+ and Faster R-CNN in terms of leaf localization
on a test set (Table 4) but as shown in the next section, this model does not generalize
well presented with a new dataset. The results of the segmentation model suggest that
DeepLabv3+ architecture is more efficient to work with a relatively small dataset compared
to most of the deep learning implementations while maintaining good generalization on a
new dataset.

Table 3. Performance of semantic segmentation model.

Performance Metric Validation Results Testing Results

Leaf Acc 92.87% 92.21%
Background Acc 99.71% 98.98%

MIoU 94.17% 93.71%

Table 4. Performance comparison of all models on the test set.

Model mAP Precision Recall

DeepLabv3+ 95.6 98.9 98.3
YOLOv5s 99.8 100.0 100.0

Faster R-CNN 88.2 88.2 90.9

6.2. Evaluation of Single-Leaf Classifier

To train the classifier, the single-leaf classifier dataset was divided into 70% training
and the remaining 30% for testing. The classifier achieved a testing accuracy of 93.49% with
an area under curve score (AUC) of 93.24%. Figure 8 shows the confusion matrix for the test
set. From the confusion matrix, we can see that the classifier had a slightly higher precision
of 93.62% than recall, which was 93.5%. It also shows that the model made few mistakes in
classifying non-individual leaves as individual leaves than classifying individual leaves as
non-individual leaves. This is perhaps an acceptable mistake when we want to automate
the extraction of features using the proposed method as the model would not miss many
samples of individual leaves.
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6.3. Evaluation of the Proposed Method for Single Leaf Extraction

From the results in Table 5, we can see that by using the proposed method, we were
able to extract a total of 175 individual leaves from the UBDH dataset and a total of
256 individual leaves from the HCD dataset. A sample of these images can be seen in
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Figure 9. The proposed method achieved a high precision and recall in both datasets
(Figure 10) that showed a good generalization when presented with a new dataset such as
HCD, which was not used in any part of the training. In contrast, both Faster R-CNN and
YOLOv5s approaches achieved a higher precision than the proposed method but suffered
in the recall, which had a high number of false negatives. This may be attributed due to the
fact that the images that were passed to the single-leaf classifier using the object detection-
based approach contained leaf with other parts of the plants (such as stem attached to
the leaf), causing the classifier to classify them as a non-individual leaf. As shown in the
feature extraction part, even for the correctly identified individual intact leaves, the object
detection-based approaches introduced artifacts that may hinder precise the trait extraction
process. Figure 11 shows some of the output from the intact leaf extraction pipeline.
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Figure 9. Samples from the UBDH and HCD evaluation datasets (top row) together with the predicted segmentation mask
using the proposed method (middle row). The bottom row represents intact individual leaves that the proposed method
was able to extract. The first three columns represent evaluation samples from UBDH (consisted of 54 image samples) and
the last three columns represent evaluation samples from the HCD (consisting of 90 image samples).
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Figure 10. Comparison of precision, recall, and F1 score between the approaches on a separate test set. The UBDH dataset
consisted of 54 images with a total of 190 individual intact leaves. The HCD dataset consisted of 90 images with a total of
260 individual leaves.

From the results in Table 5, it can be seen that the semantic segmentation model plays
a crucial role in the effective extraction of individual leaves as the proposed method only
failed to recognize 19 leaves out of all possible leaves, which matches the performance of
the Faster R-CNN approach (Table 6).

Table 5. Performance of the proposed method for single leaf extraction.

Dataset No of Images TP FP FN Total Expected Total Extracted Undetected Leaf

UBDH 54 168 7 7 190 175 15
HCD 90 232 10 24 260 256 4

Table 6. Performance of Faster R-CNN for single leaf extraction.

Dataset No of Images TP FP FN Total Expected Total Extracted Undetected

UBDH 54 161 0 19 190 180 10
HCD 90 206 4 45 260 251 9

However, as shown in Figure 11, the output of the proposed method could effec-
tively deal with noise along the leaf, hence making it desirable for automating the feature
extraction process. Most of the failure cases by the proposed method may be due to under-
segmentation or over-segmentation of the leaf, hence failing to capture the proper leaf
shape. With the object detection-based approaches, the number of undetected leaves was
high for the YOLOv5s as more than 7% of the leaves were not detected (Table 7). On the
other hand, since the images extracted with the object detection approach were not as clean
as the one in the proposed method, a classifier needs to be much more robust to detect the
leaf when using this approach. Figure 11 shows a sample of the individual leaves extracted
using all the approaches. With the current volume and size of herbarium images, the
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proposed method seems to be much more efficient and robust even when using a simple
shape-based classifier for filtering individual leaves from other leaves. Table 8 presents a
side-by-side comparison between the proposed method based on semantic segmentation
against similar approaches when using object detection. As shown in Table 8, using se-
mantic segmentation, the proposed method was able to extract more intact leaves than the
object detection approaches. However, using the segmentation model resulted in a higher
false detected individual intact leaf. Nevertheless, the proposed approach had a lower
number of misclassified individual intact leaves (false negative), which suggested that
most of the individual leaves present on the herbarium images were correctly segmented.
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Figure 11. Samples of intact leaves extracted and used for feature extraction. First row represents
the ground truth leaves that were manually segmented; the second row consists of leaves extracted
using the proposed method; the third row represents leaves extracted based on the Faster R-CNN
model; and the last row represents the leaves extracted when using the YOLOv5s model. The first
three columns for object detection-based approaches showed some artifact encountered when using
object detection-based approaches as opposed to segmentation. The last three column showed some
failure cases even for the segmentation model with small artifacts at the boundary of the leaves and
missing leaf apex.
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Table 7. Performance of the YOLOv5s approach for single leaf extraction.

Dataset No of Images TP FP FN Total Expected Total Extracted Undetected

UBDH 54 157 1 19 190 176 14
HCD 90 201 2 41 260 242 18

Table 8. Summary comparison between the proposed method (based on semantic segmentation) vs. object detection-based
approaches. ↑ indicates that a higher value reflects better performance, ↓ indicates that lower values reflect better.

UBDH HCD

Metrics Proposed
Method Faster R-CNN YOLOv5s Proposed

Method
Faster

R-CNN YOLOv5s

TP ↑ 168 161 157 232 206 201
FP ↓ 7 0 1 10 4 2
FN ↓ 7 19 19 24 45 41

Total extracted ↑ 175 180 176 256 251 242
Undetected leaf ↓ 15 10 14 4 9 18

6.4. Phenotypic Trait Extraction Process

To assess the quality of the individual intact leaf extraction process, we further ex-
tracted a number of leaf traits commonly used for species identification [57,58]. We manu-
ally segmented 76 intact leaves from the HCD dataset and extracted the features (ground
truth). We then compared these traits with the one extracted by the proposed approach.
The intuition behind is that, if these features are close to the ground truth features, it means
that the segmentation process from the proposed method is important for the precise trait
extraction process. In contrast, if the features obtained by object detection approaches are
better than the proposed method, this suggests that using object detection approaches with
connected component analysis can produce a precise feature and would be more desirable
than an expensive segmentation process.

As illustrated by the results in Table 9, features extracted by the proposed approach
were much closer to the ground truth features than the other approaches. For example,
when looking at the MAE of features such as leaf area, there is a large deviation for features
extracted with object detection approaches. The same can be observed while looking at
the other features, which suggests that the proposed segmentation process is much more
robust in handling noise that the other approaches. Figure 11 shows some of the failure
cases between the proposed approaches. It is clear that other approaches suffer when the
leaf is overlapped by another object such as the plant stem. However, all the approaches
including the proposed approach have difficulties when dealing with tapped leaves as it
only detects the majority part of the leaf and miss the leaf apex. Although the situation is
not always present in all herbarium images, further research is required to ensure that the
whole leaf is accurately segmented including the tapped region of the leaf.

Table 9. Comparison of leaf measurement differences against the ground truth for 76 manually collected leaves. For all
metrics, lower values indicate better results.

MAE MSE RMSE

Proposed
Method

Faster
R-CNN YOLOv5s Proposed

Method Faster R-CNN YOLOv5s Proposed
Method

Faster
R-CNN YOLOv5s

eccentricity 0.0030 0.0044 0.0038 0.0000 0.0001 0.0001 0.0049 0.0093 0.0073
area 342.6184 455.3947 1289.6842 162,057.5526 369,695.8158 26,847,791.5395 402.5637 608.0262 5181.4855
bbox_area 691.2632 1093.0789 2700.8289 1,193,423.7632 2,783,964.2368 60,037,639.8816 1092.4394 1668.5216 7748.3960
convex_area 361.5132 628.8816 1511.9474 230,122.8816 1,131,211.3289 29,410,001.1579 479.7112 1063.5842 5423.0989
equivalent_
diameter 1.2161 1.6611 3.9151 1.9709 5.7467 206.0384 1.4039 2.3972 14.3540
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Table 9. Cont.

MAE MSE RMSE

Proposed
Method

Faster
R-CNN YOLOv5s Proposed

Method Faster R-CNN YOLOv5s Proposed
Method

Faster
R-CNN YOLOv5s

extent 0.0099 0.0123 0.0174 0.0002 0.0003 0.0005 0.0143 0.0185 0.0225
filled_area 343.9474 461.2895 1300.0921 164,526.7895 383,162.7632 27,113,134.6711 405.6190 619.0014 5207.0274
major_axis_length 1.6697 2.8865 5.6320 6.1220 40.6365 349.0719 2.4743 6.3747 18.6835
minor_axis_length 1.1301 1.4556 3.3250 1.5845 6.0962 130.0219 1.2588 2.4690 11.4027
perimeter 10.0381 21.1247 33.1226 258.5453 1608.1119 4932.9094 16.0793 40.1013 70.2347
solidity 0.0049 0.0077 0.0081 0.0000 0.0005 0.0004 0.0068 0.0227 0.0204
diameter 1.2207 1.6507 3.9047 1.9746 5.6350 205.8782 1.4052 2.3738 14.3485
aspect_ratio 0.0189 0.0330 0.0288 0.0008 0.0080 0.0042 0.0288 0.0894 0.0645
rectangularity 0.0019 0.0035 0.0046 0.0000 0.0002 0.0002 0.0030 0.0145 0.0128
compactness 0.5694 1.0373 1.2096 0.6377 5.2750 4.9619 0.7985 2.2967 2.2275
circularity 0.0184 0.0289 0.0352 0.0007 0.0025 0.0027 0.0258 0.0499 0.0523
narrow_factor 0.0035 0.0049 0.0045 0.0000 0.0001 0.0001 0.0052 0.0112 0.0078
per_dia_ratio 0.0564 0.0986 0.1163 0.0062 0.0410 0.0402 0.0787 0.2024 0.2004
per_length_ratio 0.0319 0.0637 0.0768 0.0021 0.0212 0.0218 0.0463 0.1455 0.1476
per_length_
width_ratio 0.0232 0.0415 0.0507 0.0011 0.0075 0.0078 0.0330 0.0865 0.0884

7. Conclusions and Future Work

From the reported results, it can be concluded that the proposed semantic segmentation-
based approach for the extraction of individual intact leaves is much more efficient and ac-
curate than the existing object detection approaches. This method has four benefits: (1) the
use of the semantic segmentation model enables the extraction of individual leaves even
while using a weak classifier trained on a binary image with a small dataset; (2) the semantic
segmentation model used in the proposed method can be utilized as a pre-processing step
for removing visual noise that exists in herbarium specimens before applying classification
algorithms as used in [7] or performing feature extraction compared to object detection-
based approaches; (3) the extracted leaves had a uniform white background, which could
be an advantage for pre-processing tasks such as segmentation for feature extraction as
shown in the result section; and (4) using the proposed method, it becomes possible to auto-
matically extract individual leaves directly from herbarium specimen images. As opposed
to the proposed method, object detection-based approaches can offer a simple solution
for the location and extraction of leaves when the target task does not require precise leaf
information such as phenotypic extraction of features from an individual intact leaf.

This is an important step toward full utilization of existing digitized herbarium
collections and for new studies that intend on examining individual leaves. The generated
datasets together with the extracted traits will be useful in applying other feature extraction
techniques for building automated species identification systems. This will also be a useful
step toward developing cross-domain identification systems that involve both fresh leaves
and dried leaves from the herbarium specimens where the extraction of features from
individual intact leaves could be important. Furthermore, both the filtered individual
leaves and non-individual leaves (overlapping and damaged leaves) can be processed
for developing plant species identification systems that may provide a more practical
utilization of the specimens than the existing identification systems that only expose the
center of the image to the classifier or feed the whole herbarium image.

The proposed method can be easily extended to extract other plant organs from the
specimen such as flowers or fruits, which could be important for other studies. Moreover,
the performance of the overall pipeline can be improved by improving the models used
in each phase. In future work, we intend to explore different techniques in dealing with
overlapping leaves as well as damaged and taped leaves, which are also common in
herbarium specimens. We also intend to further extract different features from the extracted
leaves for building a species identification system.
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