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Abstract: One of the significant problems in the modern world is the detection of improvised
explosives made of materials synthesized at home. Such compounds include triacetone triperoxide
(TATP) and hexamethylene triperoxide diamine (HMTD). An attempt was made to construct an
instrument allowing for the simultaneous detection of both compounds despite the large difference of
vapor pressure: very high for TATP and very low for HMTD. The developed system uses differential
ion mobility spectrometry (DMS) in combination with a specially designed gas sample injection
system. The created system of detectors allowed for the detection of a high concentration of TATP and
a very low concentration of HMTD. TATP detection was possible despite the presence of impurities—
acetone remaining from the technological process and formed as a coproduct of diacetone diperoxide
(DADP) synthesis. Ammonia added to the carrier gas improved the possibility of detecting the
abovementioned explosives, reducing the intensity of the acetone signal. The obtained results were
then compared with the detection capabilities of drift tube ion mobility spectrometer (DT-IMS), which
has not made possible such detection as DMS.

Keywords: differential ion mobility spectrometry (DMS); ion mobility spectrometry (IMS); explosives;
triacetone triperoxide (TATP); hexamethylene triperoxide diamine (HMTD)

1. Introduction

The development of the detection of explosives is important for military and security
purposes due to the use of explosives in terrorist attacks. This is especially important
for materials that can be manufactured at home. Such materials include triacetone triper-
oxide (TATP), which was used in the attack in July 2005 in London, and hexamethylene
triperoxide diamine (HMTD), which was used in the terrorist attack in December 1999
in the USA. Explosives detection is based on two strategies: the detection of substance
vapors and particle analysis after swipe sampling. Vapor detection is faster as no sampling
or preparation is required. However, vapor analysis is more challenging due to the low
amount of substance evaporated from the surface. The vapor pressure (VP) is the pressure
of a gas above the surface of a substance. This value for explosives varies from a single hPa
to 10−15 hPa.

Vapor pressure measurement is difficult due to slight signal variations. The determi-
nation of VP is performed at an elevated temperature, which may contribute to material
decomposition or molecular desorption from the surface, which may result in the appear-
ance of additional analytical signals. Vapor pressure can be determined by a dynamic
method consisting of mass change measurements of a substance at a constant tempera-
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ture [1,2] and static methods, such as manometric VP determination [3] or surface phase
studies using gas chromatography [4,5].

Many studies have investigated the vapor pressure of TATP [2,6–9], diacetone diper-
oxide (DADP) [1,2] and HMTD [4,10,11]. Ewing and colleagues [12] compiled the values
of the vapor pressure of explosive substances available in the literature and standardized
them by determining their average values. Figure 1 presents the VPs for various explosives.
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Figure 1. Vapor pressure values for various groups of explosive compounds (Reprinted from [12]).

DADP is a peroxide with the highest VP, which is 24.7 Pa; for TATP, this value is 6.39 Pa.
The vapor pressure of these substances is compared to that of liquid nitro derivatives such
as nitroglycerin (NG). HMTD has a vapor pressure 150 times lower than that of TATP,
which is 3.9 × 10−2 Pa. These values are significantly higher than those of commonly used
strong grinding materials such as octogen (HMX) or hexogen (RDX). The vapor pressures
of the described acetone peroxides are higher than that of TNT, 9.27 × 10−4 Pa.

Since TATP and HMTD do not contain nitro or aromatic functional groups, analytical
devices for conventional explosives are unsuitable for detecting them. In recent years,
many techniques of TATP and HMTD analysis have been developed, including infrared
(IR) [13,14], liquid chromatography (LC) [15–17] and IMS detectors, which play a significant
role in detecting these materials [18–21].

1.1. IMS Technique

Ion mobility spectrometry (IMS) uses differences in ion mobility in carrier gas under
the influence of an electric field [22–26] (Figure 2). A classical IMS (drift tube ion mobility
spectrometer, DT-IMS) spectrometer has a weak linear electric field with values from 150 to
400 V/cm. Within these fields, ion mobility is constant.

Ion separation in a homogeneous electric field takes place based on differences in their
mobility. The results obtained from the detector are presented in the form of drift time
spectra. An IMS detector with a membrane was used in the laboratory research.
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1.2. DMS Technique

A variant of IMS is differential ion mobility spectrometry (DMS) [27–31]. In DMS,
ions are distinguished because of the difference between mobilities at high and low electric
fields [32,33]. For strong electric fields (exceeding 12 kV/cm), ion mobility depends on the
applied field, and the dependence is nonlinear. The relationship between ion mobility and
the intensity of the electric field is expressed by Equation (1) [34].

K(E/N) = K0·[1 + α(E/N)] (1)

where K0 is the reduced ion mobility [cm2V−1s−1], E/N is the electric field in Townsend
units (1 Td = 10−17 V·cm2), which is known as the normalized molecular density, and
α(E/N) is the normalized function describing the electric field mobility dependence.

DMS spectrometers consist of an ionization area and a space in which ions are sepa-
rated (Figure 3) [35,36]. An isotopic source emitting β particles is placed in the ionization
region. Carrier gas transports generated ions through the separation region, which consists
of two parallel plates on which metal electrodes are placed, the distance between electrodes
(gap) should be almost 0.5 mm. The electric field produced by these electrodes is perpen-
dicular to the gas flow direction. The voltage between the electrodes consists of a variable
component called the separation voltage (SV) and compensation voltage (CV).

The waveform of SV is shown in Figure 3c: it should be a rectangular wave with 30%
of duty; practically it is very similar to a dotted line. Voltage should be regulated from
400 V to 2000 V, 1 MHz or above should be applied; if the frequency is too low we cannot
seen the light ions.

The compensation voltages are shown in Figure 3b as a very low wave. These voltages
are generated as a special electric field which works as an ion filter.

In the established conditions only one type of ion comes through the control electrode
to the ion current electrode. In the time t1 the mobility of ions M1 is K1 and in the time t2 it
is K2, but the compensation voltage reduces these differences and allows ion M1 to reach
the collecting electrode. The other ions going to the control electrode cannot be observed
via the collecting electrode. Slowly changing the compensation voltage allowed us to make
a graph (function ion current depending on compensation voltage) of all ions generated
in the ionization region. This allowed us to order from higher to lower the values of α
(differences of mobility).
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The analyte introduced into the IMS/DMS detector is ionized by charge transfer
(proton) between the reaction ions and the neutral molecule of the analyte. The change in
the enthalpy of this reaction taking place in the gas phase is called proton affinity (PA). For
the ionization of each substance, the values are different for TATP and HMTD. They are
860 kJ/mol [37] and 940 kJ/mol [11], respectively.

2. Materials and Methods

The DMS chamber used to build the measuring system was made of ceramic sub-
strates [32]. The gas was ionized with an electrode made of nickel isotope (63Ni). The
detector drift area consisted of two parallel electrode plates (5 × 25 mm) placed 0.635 mm
apart. A high-amplitude 3 MHz asymmetric voltage waveform was generated by the HSV
generator. Voltage was applied to the electrodes across the flow direction of the carrier gas.
The applied voltage range of separation was from 7 Td to 118 Td (peak to peak). A constant
weak compensation voltage ranging from −5.4 Td to +2.1 Td was applied to the electrodes.
At the end of the drift section, two collecting electrodes (5 × 5 mm) were installed, which
in the DMS detector allowed the simultaneous obtaining of a signal from positive and
negative ions, as shown in Figure 3. Measurements were made using air as carrier gas,
dried with 13 X molecular sieves (Merck, France). Internal gas flow through the detector
was 3.2 L/min. The detector temperature was 45 ◦C.

The gas system is presented in Figure 4. The measurement system was constructed at
WIChiR (Warszawa) for the purpose of detection and identification of TATP and HMTD
(Figure 5). The system was constructed with the use of three rotation pumps (Thomas)
(P1, P2, P3) with flow rates respectively of 1, 1, 3.2 L/min and two three-way valves (Z1,
Z2). The advantage of the constructed system is the possibility to work in the membrane
mode when detecting substances with high volatility and in the membrane-free mode
when detecting substances with low volatility, such as HMTD.
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In the membrane mode, the Z1 valve is switched to gas flow through the membrane,
which is forced by the P1 pump at this time. The Z2 valve at the P2 pump outlet allows
gas to flow through the carbon filter, and then the sample is taken from the membrane
exchanger (sample introduction system), and goes to the DMS.

In the membrane-free mode, the gas to be analyzed is charged directly to the DMS.
Setting the valve Z1 to take air allows direct sampling from the test area.

The P2 pump allows you to regulate the flow with the required amount of gas for
analysis (external circuit). In this mode, the valve Z2 at this time is switched over to allow
gas to be purged after the analysis.

The P3 pump is used to regulate the carrier gas flow in the DMS chamber at 3.2 L/min
(internal circuit). The applied molecular sieves clean the gas in the internal circuit of the
DMS chamber.

Due to the high vapor pressure of TATP, most measurements for this substance
are made in the membrane mode, while for HMTD all measurements are made in the
membrane-free mode. In the membrane mode, the appearance of the HMTD peaks was
not recorded as the intensity of peaks was below the limit of detection (LOD). TATP,
HMTD, and DADP were obtained synthesized at the Military Institute of Armament
Technology (Zielonka).
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3. Results

The gas system presented in Figure 4 was used to analyze pure TATP, DADP, HMTD
and a mixture of TATP and DADP. Scattering spectra were recorded for a separation voltage
of 118 Td.

For TATP (99% purity), monomer and dimer ions were obtained in positive mode
(Figure 6). The monomer ion peak was issued at −0.6 Td and the dimer ion peak at +0.1 Td.
No peaks for negative ions were observed.
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For TATP (99% purity), monomer and dimer ions were obtained in positive mode
(Figure 7).
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Traces of dimer ions were observed for DADP (low intensity compared to monomer
ions). When increasing the DADP concentration, the RIP and NH3 peaks disappeared. This
means that the peak intensity of the DADP monomer increased but the peak of the DADP
dimer did not increase.

In further studies, a mixture of TATP and DADP (approximately 78% w/w TATP) was
analyzed. This research doped NH3 at two concentrations (50 ppb and 200 ppb) in the
internal circuit. The results for 118 Td are shown in Figures 8 and 9.
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internal circuit.

In the case of a TATP + DADP mixture for positive ions, there were generally four
peaks: one from the TATP + DADP monomer, the other from the acetone monomer, and
two peaks from the dimer ion, from acetone and TATP. Due to the rather low resolution
of DMS, the peaks derived from the TATP and DADP monomers were not separated and
appeared as one peak. In the presence of a low concentration of ammonium, the dominant
peaks were those of acetone (Figure 9).

For a system with a 200 ppb ammonium concentration, two reaction peaks were
visible: one for ammonium and the other for H+(H2O)n, both of which showed small
amplitudes. The ammonium peak was only twice as high as the noise.

From the spectra presented in Figure 9, we can see that acetone significantly disturbed
the accuracy of the measurement. In particular, the acetone dimer peak interfered with the
analysis. The acetone peaks were higher than the TATP peaks. Doping the carrier gas with
200 ppb NH3 caused a decrease in the intensity of the acetone peak (Figure 10). Therefore,



Sensors 2021, 21, 4545 8 of 12

it can be concluded that the minimum value of ammonia concentration in the carrier gas,
which is necessary for the separation of the peaks from TATP, was approximately 200 ppb.
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Figure 10 shows the spectrum for HMTD positive ions. For this substance, both
monomer and dimer ions were formed. Table 1 presents the compensating voltage for all
positive ions.

Table 1. Compensating voltage values for positive ions.

Substance Positive Ion CV (Td)

TATP 99% purity
RIP −1.3

monomer −0.6
Dimer 0.1

DADP 99% purity
RIP −1.3

monomer −0.6
dimer 0.1

TATP + DADP
(50 ppb NH3)

RIP −1.3
acetone monomer −0.9

acetone dimer −0.2
TATP + DADP −0.7

TATP dimer 0.2

TATP + DADP
(200 ppb NH3)

RIP −1.3
acetone monomer −1.0

acetone dimer −0.2
TATP + DADP monomer −0.6

TATP dimer 0.1

HMTD
RIP −1.3

HMTD monomer −1.0
HMTD dimer −0.5

To determine the possibility of detecting the mixture of TATP and HMTD, tests were
carried out with the DT-IMS detector. The tests were carried out under the same conditions
as with a DMS detector, with concentrations of TATP totaling 250 µg/m3 and 5 ppm NH3
in the internal cycle.
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The spectrum showed (Figure 11) the RIP peak with NH3 and the most insensitive
TATP monomer peak. The DADP peak was invisible (it appeared on the leading edge of
the TATP monomer peak). One dimer peak was observed as a mixture of TATP and DADP
ions. In the case of recording the spectrum for DADP, peak separation was not observed,
and only the shift of the peak from RIP + DADP ions towards increasing time values from
9.3 ms to a maximum of 9.7 ms was observed. Table 2 shows drift times for the mixture of
TATP and DADP for a concentration of 250 µg/m3.
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Table 2. Drift time for TATP and DADP ions.

Positive Ion Time (ms)

RIP (NH3) 9.3
DADP monomer ion 9.7
TATP monomer ion 11.2

TATP + DADP dimer ion 13.2

In the measurement system shown in Figure 2, no recorded peaks from HMTD were
observed. After removing the inner membrane, the spectrum showed a peak with reduced
mobility of approximately 1.5 cm2/Vs. HMTD detection using DT-IMS was possible only
under laboratory conditions (for dried air).

4. Discussion

The acetone residues reduced the detection capability of the DMS detector. The
PA for acetone is 812 kJ/mol [38], which is lower than the PA of the added ammonia
(853.6 kJ/mol [39]); therefore, the use of ammonium as an admixture in the carrier gas
will help to reduce the appearance of acetone peaks. When detecting improvised explo-
sives using differential ion mobility spectrometry, the carrier gas should be doped with a
minimum of 200 ppb NH3 to reduce the effect of acetone (TATP contamination). During
the analysis of TATP containing DADP as an impurity, an increase in the amplitude of the
monomer was observed, the peak of which was at the same location as that of the TATP
monomer, without a significant increase in the dimer amplitude. This may indicate a lack
of separation of the dimer for DADP.

In the case of TATP measurements with the DT-IMS detector, the measurement system
used a carrier gas with NH3 content at the level of several ppm. The appearance of a peak
close to the reaction ions (NH3) was observed in both the TATP and DADP studies.
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Differential ion mobility spectrometry was more effective than DT-IMS. For DT-IMS,
the peaks derived from TATP and DADP were located close to the peaks of the reaction
ions; in the case of DMS, the peaks were spaced apart and it was possible to separate them
more efficiently. Moreover, for the gas system with the membrane, no HMTD peaks were
observed in the case of IMS. Furthermore, it is impossible to detect HMTD in generally
used DT-IMS systems with membranes. In this case, there was no peak observed from
the analyte.

In the DMS studies, it was observed that the peaks moved towards higher compen-
satory voltages in membrane-free mode, due to a humidity effect. When adjusting the
effect of humidity on the location of peaks, the identification of HMTD and TATP was
maintained at the same level—no shift of adjusted peaks was observed.

The response time for instruments with membranes for TATP is a few seconds, while
that for HMTD is from several dozen seconds to two minutes. The response time for HMTD
results is the time required for membrane permeation, whereas for a membrane-free system,
TATP and HMTD are detected in seconds.

5. Conclusions

Detection of triacetone trioxide and hexamethylene triperoxide diamine can provide
early warning of a terrorist threat. DMS is currently one of the leading new technologies
for the separation and detection of chemicals in the gas phase.

When we used the membrane-free mode, the differential ion mobility spectrometry
detected TATP and HMTD correctly.

The use of ammonia as the dopant carrier gas in system with and without membrane
allows for the detection of inaccurately purified TATP containing the by-product DADP
and residual acetone. The use of ammonia in the carrier gas as a dopant helps in TATP
analysis for a membrane or membrane-free system.

Due to the differences resulting from the vapor pressure, it is necessary to use both
a membrane and membrane-free system at the same time. In the case of the membrane-
free mode, it is necessary to apply a peak position correction due to the variable value
of wetness.

Regarding laboratory analysis, the detection times of TATP and HMTD are short and
allow for quick scanning tests. Such a system allows the detection of HMTD at a level
lower than that of the gas chromatography used in WIChiR.

This study is the first to report detection of TATP and HMTD by differential ion
mobility spectrometry.
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