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Abstract: The forecast of electricity demand has been a recurrent research topic for decades, due to
its economical and strategic relevance. Several Machine Learning (ML) techniques have evolved in
parallel with the complexity of the electric grid. This paper reviews a wide selection of approaches
that have used Artificial Neural Networks (ANN) to forecast electricity demand, aiming to help
newcomers and experienced researchers to appraise the common practices and to detect areas where
there is room for improvement in the face of the current widespread deployment of smart meters
and sensors, which yields an unprecedented amount of data to work with. The review looks at the
specific problems tackled by each one of the selected papers, the results attained by their algorithms,
and the strategies followed to validate and compare the results. This way, it is possible to highlight
some peculiarities and algorithm configurations that seem to consistently outperform others in
specific settings.

Keywords: electricity demand forecast; machine learning; artificial neural networks; systematic review

1. Introduction

Electricity is expected to increase its prevalence as the main energy vector in the near
future for industrial, domestic and transportation use. This emphasizes the importance
of electricity demand forecast, as it has a direct impact on many operational and business
processes. Electricity demand is typically known as load in the electrical engineering jargon,
we will use both terms interchangeably. For decades, load forecast has been a recurrent
research topic and a framework for the evolution of Machine Learning (ML) approaches
based on Artificial Neural Networks (ANN), which are inherently suitable to deal with non-
linearities and multiple types of inputs [1,2]. Presently, the massive deployment of smart
meters and sensors along the grid yields a propitious environment for the optimization of
such techniques.

The literature accumulated on the topic of load forecast using ANN-based models over
the last 20 years is vast and difficult to grasp. This paper aims at classifying and reviewing
the most relevant works. Our focus is on identifying what algorithm performs better for
specific electricity demand problems and under what circumstances, including the selection
of input variables and the optimal combination of parameters. Other distinguishing aspects
of this systematic review are the following:

• We analyze the Key Performance Indicators (KPIs) used to evaluate the accuracy of
the predictions and to compare the performance of different algorithms. In this regard,
the predominance of some metrics in the literature (e.g., MAPE, the Mean Absolute
Percentage Error) often leads to overlooking important quality parameters, such as
the distribution of the error and the maximum forecast error.

• We look at other fundamental aspects in ML problems, such as the data pre-processing
techniques, the selection of training and validation sets, the tuning of the hyper-
parameters of the model, the graphical representations and the presentation of the results.
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• Last but not least, we discuss the ability to publicly access the datasets used to carry
out the experiments and to validate the results and the code of each one of the selected
papers. Lack of access makes the results of many papers very hard or impossible to
reproduce, reducing their impact as sources of innovation and knowledge.

Previous reviews of approaches for electricity demand forecast (see [3–5]) surveyed the
use of ANN-based techniques in a shallower manner, as they covered other ML techniques
too. Other surveys looked at general uses of ML in energy systems, not only for load
but also for generation, and not restricted to electricity but considering any sources of
energy [6,7]. Our exclusive focus on ANN for electricity demand forecast allows providing
deeper insight, to the point of questioning aspects that have been traditionally taken
for granted, such as the non-linear nature of the forecast problem (to be discussed in
Section 4.3.3). It is worth noting, though, that we cover not only pure uses of ANNs, but
also hybrid approaches in which ANNs are combined with other algorithms and/or used
to process the data in early or final stages.

2. Methodology

Initially, we used Elsevier’s ScienceDirect, Scopus and IEEE Xplore to search for rele-
vant papers, thus ensuring essential quality requirements and coverage of the most relevant
publications. We obtained an initial list by performing search queries for the keywords
“ANN”, “neural networks”, “forecast”, “prediction”, “electricity”, “load”, “forecasting”
and “machine learning”. We also considered related papers that were recommended by
the search engines and met the search requirements. Next, we left out all the papers that
did not include ANN-based mechanisms or dealt with other energy sources than electricity
—still, we included papers that compared ANN-based methods to other approaches such
as Support Vector Machines (SVM). We proceeded iteratively to include all the papers
referenced in the state-of-the-art section of papers already included in our set.

Table 1 shows the sites from where we downloaded the papers covered in the review.
55% of them were retrieved from IEEE Explorer, acknowledging the fact that many rele-
vant papers on electric load forecasting papers have been traditionally presented in IEEE
conferences. MDPI and ScienceDirect also hosted a relevant number of original papers.

Table 1. Sources of papers for the review.

Publisher Number of Papers References

IEEE 29 [2,3,8–33]

ScienceDirect 12 [34–45]

MDPI 8 [44,46–51]

Arxiv 3 [52–54]

Others 2 [55,56]

Having selected the papers, we put them on a data sheet with different columns to
look at the specifics of each one. The columns were:

• Type of problem to solve.
• Algorithms used.
• Supporting tools.
• Input variables.
• Dataset characteristics.
• Performance indicators.
• Results.
• Particularities.

In the last column we wrote down comments about what made each paper different
from others. This helped us to analyze and compare the different papers focusing on
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specific aspects that we will cover in the review. A simplified version of this table is
included in Section 5 to be used as a quick reference by the readers.

3. State-of-the-Art ANN-Based Algorithms Used in Load Forecasting Problems

Some of the reviewed papers use single ANN-based algorithms, whereas others
combine them with other techniques. The single algorithms are the following:

• The Multi-Layer Perceptron (MLP) refers to a canonical feedforward artificial neural
network, which typically consists of one input layer, one output layer and a set of
hidden layers in between. Early works showed that a single hidden layer is sufficient
to yield a universal approximator of any function, and so MLPs were commonly used
in papers from the 1990s and early 2000s. However they have been progressively
replaced by more sophisticated recursive algorithms, which can better capture the
complex patterns of load time series. The most recent papers included in Section 5
show how recursive ANN-based approaches typically outperform MLP.

• Self-Organizing Maps (SOM) are neural network-based dimensionality reduction algo-
rithms, generally used to represent a high-dimensional dataset as a two-dimensional
discretized pattern. They are also called feature maps, as they are essentially re-training
the features of the input data and grouping them according to similarity parameters.
SOMs are used to recognize common patterns in the input space and train distinct
ANNs to be used with the different patterns [35].

• Deep Learning refers to ANN networks capable of unsupervised learning from data
that are unstructured or unlabeled. The adjective “deep” comes from the use of
multiple hidden layers in the network to progressively extract higher-level features
from the raw input.

• Many authors (e.g., [20,47,52]) use variants of Recursive Neural Networks (RNNs) that
have the capability of learning from previous load time series. Others use Long Short-
Term Memory (LSTM) networks, a special kind of RNNs that can learn from long-term
dependencies. These were introduced by Hochreiter and Schmidhuber [57] in 1997
and refined and popularized by many authors in subsequent works. Several of the
most recent papers included in the review conclude that LSTM variants achieve low
forecasting errors outperforming other algorithms in their experiments.

The hybrid ANN-based algorithms found in the reviewed papers fall into
three approaches:

• ANN and Genetic Algorithms (ANN-GA). In these works, the idea of the genetic
algorithms is to iteratively apply three operations (referred to as selection, crossing
and mutation) in order to optimize different parameters of the ANNs. For example,
Wang et al. [33] used the GA to improve specifically the back-propagation weights,
whereas Azadeh et al. [36] used GAs to tune all the parameters of an MLP.

• ANN and Particle Swarm Optimization (ANN-PSO). PSO is another optimization
technique that tries to improve a candidate solution in a search-space with regard to a
given measure of quality. It is a metaheuristic (i.e., it makes few or no assumptions
about the problem being optimized) that can search very large spaces of candidate
solutions, but it cannot guarantee that an optimal solution is ever found. As an
example, Son and Kim [58] used PSO to select the 10 most relevant variables to be
used as input for SVR (Support Vector Machine Regression) and ANN algorithms.
Likewise, He and Xu [22] proposed the use of PSO to optimize the back-propagation
process to tune the parameters of an MLP.

• Adaptive Neuro-Fuzzy Inference System (ANFIS). Developed in 1993 by Jang [59],
ANFIS overcomes the deficient parts of ANNs and fuzzy logic by combining both
technologies. It is used in [3] to model load demand problems. It uses fuzzy inference
in its internal layers which allows the model to be less dependent on proficient
knowledge, improving its learning and making it more adaptable.



Sensors 2021, 21, 4544 4 of 23

Recent papers combine at least two ANN-based algorithms. For instance, Ref. [32] in-
tegrates LSTM with Deep Neural Networks (DNN) to forecast load demand from previous
time series and to predict from meteorological input variables. In this case, LSTM captures
the load forecast due to previous values thanks to its recursion features, and the DNN gives
a more accurate value for the load demand specifically owing to the weather conditions.

4. Particularities of Electric Load Demand As a Problem for ANNs

In this section, we shall highlight particular aspects about the use of ANNs for load
forecasting. These are questions that must be taken into account in any research work, as
they condition the type of algorithms that may be used.

4.1. Prediction Range

According to the time range of the prediction, we can distinguish three categories that
have been used in the definition of energy forecast problems, at least since 1995 [10]:

1. Short-term load forecasting (STLF) refers to predictions up to 1 day ahead.
2. Medium-term load forecasting (MTLF) refers to 1 day to 1 year ahead.
3. Long-term load forecasting (LTLF) refers to 1–10 years ahead.

Table 2 shows that most of the reviewed papers that use ANN-based algorithms do
so for STLF problems. Therefore, we can safely assume that ANN-based algorithms have
been widely recognized as suitable for short-term prediction.

Table 2. Type of used input variables.

Type of Forecast Number of Papers

STLF 46

MTLF 8

LTLF 2

STLF has become particularly important (hence the greater presence in the scientific
literature) since the massive introduction of renewable energy sources, as the forecasts
help the electric companies to plan the production mix more efficiently. STLF is crucial for
electric intra-day markets, where 1-day ahead forecasts are used to fix the prices for the next
day considering the expected demand. STLF is also important for the operation of electric
companies and microgrids, where the predicted demand may drive operative decisions
in order to be properly covered by the generation sources. Many electric operators are
supporting these research efforts by providing significant amounts of data and funding.

ANN-based algorithms have been also proven to work well for MTLF when they
can capture weekly and seasonal patterns, as it happens with the recursion techniques of
LSTM [43]. LTLF problems, in turn, seem harder to solve by using ML algorithms only.
The expected demand in the next years depends heavily on demographic, geopolitical and
technological evolution variables, which are hard to turn into numbers and for which there
are no historical data to learn from.

4.2. Load Forecasting as a Sequence Prediction Problem

In the electricity forecast field, sequences are typically series of past ordered load
values, indexed by time. Brownlee [60] differentiated two types of prediction problems:

• Sequence prediction: from a sequence of values a single value is predicted. For
example, from a time series of previous load values we obtain a prediction for the
next load value.

• Sequence-to-Sequence (S2S) prediction: we do not obtain a single value but a sequence
of predicted values, defining how the load will evolve in a range of future time steps.

Our review covers papers featuring both approaches, and even combined strategies
(e.g., [19]).
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4.3. Input Variables

In many cases the selection of input variables is determined by the available data. All
the papers covered in this review consider the previous load (directly or applying some
kind of transformation) as one of the input variables of the ML algorithm. In many cases, a
time series of previous load is the only input to the algorithm, which is required to learn
from past values only. In other cases, it is common to use additional data such as weather
variables and economic activity indicators [29,33,58]. Table 3 shows the distribution of the
input variables used in the analyzed papers.

Table 3. Type of used input variables.

Input Variable Number of Papers

Previous load time- series 37

Previous load and weather time series 10

Previous load, weather and economic variables time series 3

Weather variables—especially temperature—are known to have a linear influence
on the electricity demand [47]. Extensive analyses of the influence of weather variables,
daylight hours and human activity can be found in [18,61]. It has been shown (see [33])
that the load data over the same period or previous periods have greater influence, though,
as those values of electric load implicitly capture effects of climate, daylight hours and
human habits.

In the electricity market, real-time price depends on the generation of renewable
sources, current demand and socio-economic factors. Real-time price has not been consid-
ered as an input variable for STLF problems in the reviewed papers. However it exhibits a
relevant non-linear correlation with power load as shown in [62].

The values provided by the Advanced Metering Infrastructure (AMIs) deployed by
electric companies give the amount of energy consumed during a period of time (typically
1 h and 24 h) but there are also sensors that can provide instantaneous values of consumed
power. They are all valid for the predictions, but energy values in KW/h or W/h are
the most commonly used in forecasting problems. The AMIs can also provide the peak
values directly and in many cases the forecasting is focused on the peak values only, not on
aggregated consumption.

To identify the predictive value of input variables, several authors have made correla-
tion analysis between the different input variables and the power load [18,42]. However,
recent papers propose more advanced alternatives such as Kendall rank and Copula func-
tions [62,63] which are more suitable to identify non-linear relationships between input
and output variables. The use of LASSO (Least Absolute Shrinkage and Selection Operator)
regression analysis to select the most relevant features is also proposed as an effective
approach [45]. This technique enables the selection of the features to optimize the perfor-
mance of the model. Feature selection is important to improve the performance of models
with a huge number of features, typically those which include socio-economic variables.

4.3.1. Sources of Input Data

All the reviewed papers used time series of previous electric demand to train and test
the models. Table 4 shows the sources of the data.

Table 4. Origin of load time-series data.

Data Number of Papers

Aggregated data from a geographic area 34

Aggregated data from microgrids 8

Individual meters deployed in the public power grid 13
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Many of the papers focused on certain geographic areas, so they handled problems
of aggregated demand from thousands or millions of consumers. The use of ANN-based
models to these problems has shown very good performance. The demand prediction
problems using smart meter and microgrid data, in turn, seem to be in an early stage of
evolution, as they handle load patterns whose distributions differ significantly from those
of aggregated demands.

Several studies have proved that forecast is much more accurate when it is done over
aggregated data. For example, Kong et al. [31] propose the use of a clustering technique
called DBSCAN (Density-Based Spatial Clustering of Application with Noise) to evaluate
consistency in daily power profile, finding that aggregated data presents fewer outliers,
which favors ANN convergence. The same authors compared the forecast accuracy of
individual meters and checked how it improves with the level of aggregation, discovering
that the aggregation of forecasts is more accurate than the forecast of the aggregation.
Regarding the patterns of individual consumers, lifestyles are clearly reflected in energy
consumption as consumers typically have common and repetitive behaviors [64].

4.3.2. Pre-Processing of Input Variables

The importance of data pre-processing is a well-known topic in data science [65]. Any
forecasting problem requires processing of data before feeding them to whichever ML
algorithm. However, most of the papers covered in this review do not explain the way they
pre-process the numeric data.

The pre-processing may differ depending on the used algorithm, but it will typically
involve the following steps when using ANN-algorithms:

1. Data cleaning. Either due to errors in the sensors or in the data processing, the time
series may include invalid or missing data, making it necessary to apply conventional
mechanisms to modify these values. For example, depending on the type and amount
of missing data, different approaches can be used, such as dropping the variable or
completing with the mean or the last observed value. Removal of duplicate rows
may be also needed at this initial stage. Very few papers explain whether any of
these techniques was used, even when they may have a significant effect on the
model’s performance.

2. Data validation. It is necessary to validate the data, especially when they come directly
from AMI devices and they have not been obtained from public databases. Data visu-
alization techniques can help to check if the data match expected patterns. It is worth
noting that smart meters typically send the measured values using PLC (Power Line
Communication) technologies, which may be affected by different electromagnetic
interference sources [66]. This makes it especially important to verify the integrity of
the data before training the model. Detection and removal of outlier values is typically
performed to optimize the training of ANN-based models. Ref. [46] proposes the use
of PCA (Principal Component Analysis) as an effective outlier detection approach.

3. Data transformation. This phase includes different types of transformations of the
data, such as change of units or data aggregation. Data aggregation from individual
sources is a common practice to achieve data reduction, change of scale and minimize
variability. More advanced transformation techniques are aimed at rescaling the
features in order to make the algorithm to converge faster and properly and minimize
the forecasting error. The most common rescaling approaches are normalization
and standardization:

• Normalization refers to the process of scaling the original data range to values
between 0 and 1. It is useful when the data have varying scales and the used
algorithm does not make assumptions about their distribution (as is the case
of ANNs).

• Standardization consists of re-scaling the data so that the mean of the values is 0
and the standard deviation is 1. Variables that are measured at different scales
would not contribute equally to the analysis and might end up creating biased
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results through the ANNs. Standardization also avoids problems that would
stem from measurements expressed with different units.

4. Dimensionality reduction techniques are typically used in machine learning problems
in order to optimize the model generation by reducing the number of input variables.
However, only a few of the reviewed papers require the usage these techniques due
to the low number of input variables.

The blue box in Figure 1 presents a generalization of the pre-processing steps found in
the reviewed papers. As already mentioned, many authors do not explain how the raw
data are pre-processed, even though any omission or error in this process may lead to
inaccurate and suboptimal models.

Figure 1. Generalization of the steps documented in the reviewed papers.

4.3.3. Non-Linearity with Respect to Input Variables

In almost all the reviewed papers, the authors mention the fact that electricity demand
is inherently non-linear, and therefore algorithms designed for linear problems are not a
good choice for forecasting. This is typically taken for granted, without referring to papers
that include mathematical analyses of demand time series in order to calculate the degree
of linearity regarding the input variables. In this line, Darbellay and Slama [34] carried out
a correlation analysis that suggests that LTLF—at least with the data available from the
Czech Republic—was primarily a linear problem. This was confirmed by the comparison
of the predictions. Knowing that, the same authors discussed the conditions under which
ANNs could be superior to linear models. It is relevant to note that the computational cost
of ANN-based algorithms can be easily afforded by research centers and companies of
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any size at present. Therefore, the superior mathematical knowledge required to create
adapted linear models may not be worth even when the algorithms are typically lighter
than the training and optimization process of ANN-based algorithms.

4.4. Output Variables

In the reviewed papers we found two main possible output variables:

• A time series of expected demand for the future, i.e., a list of the demand values
predicted for specific moments.

• The load peak value of the electric grid at some point in the future (e.g., next day or
next week peak).

As shown in Figure 2, the most common output is the 24-h ahead prediction. As we
explained before, this is especially relevant because the production is scheduled according
to the negotiation of the intra-day electricity markets.

Figure 2. Output variables of the reviewed papers that focus on STLF and MTLF. Some papers are counted in several columns.

Figure 2 also shows that the number of papers that look at peak values only ([8,37,56])
is very low compared to those that predict the load time series, and none of those was
published after 2011. Narrowing to peak values was apparently done to simplify the
problem, but currently predicting a complete time series is more useful for operative
purposes (and, of course, peak values can be drawn from the predicted time series).

Almost all the reviewed papers present models that generate a predicted value for
future points in time. Other authors [67] propose models that produce forecast probability
density functions (PDF) so that it is possible to know the degree of uncertainty of each
result. The suitability of a PDF as the output of the model depends on the type of problem
that needs to be solved. A PDF may provide valuable information, for example, when it
is important to know the probability of rare events that can compromise the supply. The
loss of information with single-point forecasting is especially relevant when the forecasting
model produces fat-tailed PDFs [68].
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4.5. Measuring and Comparing Performance

The reviewed papers typically used the same data set with different algorithms or
variants to decide which one performs better. Several Key Performance Indicators (KPI)
have been used in order to compare their results.

Most of the works compare the results of the simulation algorithm with the actual
values. The most common metrics to do so is the Mean Absolute Percentage Error (MAPE),
given by Equation (1), where N represents the number of predicted values, Ft is the
predicted value at t and At is the actual value which corresponds to the predicted value.
MAPE gives a measurement of how accurate the prediction is, based on the average
percentage of error of each predicted value.

MAPE =
1
N

N

∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣ (1)

The Mean Absolute Error (MAE), given by Equation (2), is equivalent to the MAPE
but gives an absolute value for the error rather than a percentage.

MAE =
N

∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣ (2)

When the same dataset is used to compare the prediction algorithms, both MAPE and
MAE can be used; however, they are not helpful to compare results from different datasets.
Even with the same dataset, the use of MAE may lead to confusing results if the units of
any output are modified. Thus, MAPE is more common in the reviewed papers.

The second most common KPI is the Root Mean Square Percentage Error (RMSPE),
given by Equation (3). While the MAPE gives the same weight to all errors, the RMSPE
penalizes variance, since it gives more weight to larger absolute values than errors with
smaller absolute values. Like in the case of the MAE, there is an absolute version called
RMSE (Equation (4))that gives more weight to larger errors.

RMSPE =

√√√√ 1
N

N

∑
t=1

(
At − Ft

At
)

2
(3)

RMSE =

√√√√ 1
N

N

∑
t=1

(At − Ft)
2 (4)

RMSPE is considered more suitable to show bigger deviations and helps to provide a
complete picture of the error distribution (see [69]); however, it is not commonly used in
the analyzed papers. Chai and Draxler [69] claim that RMSE is more appropriate than MAE
when the error distribution is expected to be Gaussian, but this is often disregarded in the
reviewed papers even though it would help to extract more information from the results.

The following are other variables found in the literature, depending of the purpose of
the research work:

• The Maximum Negative Error (MNE) and Maximum Positive Error (MPE) give the
maximum negative and positive difference, respectively, between a predicted value
and a real value. These values can be more relevant than the average error for some
applications (e.g., to forecast the fuel stockage in a power plant).

• The Residual Sum of Squares (RSS) is the sum of the squares of residuals (deviations
predicted from actual values of data). It can be calculated from the RMSE. It measures
the discrepancy between the data and an estimation model.

• The Standard Deviation of Residuals describes the difference in standard deviations of
observed values versus predicted values as shown by points in a regression analysis.
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• The comparison of the correlation between the time series produced by different algo-
rithms and the real validation set is used by some authors to measure quality [13], too.

Computing the values above allows comparing the results attained by different tech-
niques. However, such a simple analysis may not be very meaningful, especially when
the difference between algorithms is small or the dataset is not very long. In this line,
Kandananond [48] used Wilcoxson signed-rank and paired t-tests to compare the results
offered by ANN, MLR and ARIMA. The p-values obtained were above α = 0.05, so he
concluded that the results were not meaningful and there was no real advantage of ANN
over ARIMA or MLR.

4.6. Forecasting Model Generation Process

Figure 1 shows the steps typically followed by the reviewed papers to validate their
proposed models by obtaining meaningful results from the input data. The process is not
significantly different from the flows typically used in ML problems.

Once the data have been pre-processed following the steps presented in Section 4.3.2,
they are typically divided in two sets: training and test. The training data are in turn
divided into training and validation datasets. First, the training data is used to train the
model. The initial version of the model is validated with the validation dataset. After
this process, it may be necessary to tune the hyperparameters of the model or, in the
specific case of ANN-based models, to introduce some changes to the topology of the
neural network. Then the model is tested again with the test dataset and its performance is
measured by calculating the error with regard to the real data.

Graphical representations of the final results are included in almost all the reviewed
papers. It is also common to support model selection decisions with different data visual-
ization techniques to describe the patterns and characteristics of the original data.

Despite the fact that this structure is common to most of the reviewed papers, the
authors typically introduce innovations in either the methodology or the algorithms and
techniques used in the different stages of the process. The parts where more innovative
approaches can be found are:

1. The use of clustering and other categorization techniques with load input data in
order to tune the model depending on the patterns found therein [31,35,49,51];

2. The ML algorithm proposed to build the forecasting model. The proposed models
are typically compared with commonly used ML models. Section 5 includes an
exhaustive list of both the ML algorithm being tested and the alternative options.

3. As mentioned in Section 4.5, authors use different alternatives to analyze and compare
the performance of the different ML algorithms [13,40,48]. However, the comparison
of MAPE and RMSE values is the most typical choice.

4.7. Reproducibility of Forecasting Experiments

As shown in Table 5, we found that less than 40% of the reviewed papers used publicly
accessible data that could be used to reproduce the experiment. In the other cases, the
researchers typically had some type of agreement with the operator providing the data,
and the original data are not accessible. This makes the experiments hard to reproduce and
validate, especially in the case of new algorithms. In any case, aggregated demand and
generation data are commonly available in developed countries. In contrast, smart meter
data are harder to achieve owing to data protection laws, but it is possible to gain access to
anonymized load time series of individual and industrial consumers, which can be freely
used for experiments.
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Table 5. Data source in the reviewed papers.

Data Source Number of Papers

Public data 14
([12,20,24–26,31,40,47,50–54,58])

Private data 37

Another factor that affects the reproducibility of the experiments are the tools and
the code used to conduct them. The growing adoption of ML algorithms to extract value
from the massive amount of data available in numerous fields of applications has fostered
an active open-source ML community. Some of the most relevant ML and data science
related projects (e.g., PyTorch, Tensorflow and its high-level API Keras) are supported by
big Internet companies. Research in ML can now take advantage of these valuable tools,
reducing the programming efforts and making it easier to focus on the problems and try
different alternatives. In Table 6, we see that MATLAB remains the main tool used in the
reviewed papers, while several authors used code implemented ad-hoc. The tool used for
the implementation is not even mentioned by many authors.

Table 6. Tools used in the reviewed papers.

Tool Number of Papers

Not mentioned 19

MATLAB 12

Tensorflow-based 6

Custom code 3

Regarding the code used to conduct the experiments, only one of the reviewed papers
offers it to the reader [52]. However, sharing the code seems to be a growing trend in data
science and ML papers [70] so it may happen as well for load demand forecasting papers
in the near future.

5. Summary of the Reviewed Papers

Given the perspective of the previous section, next we provide a table (Table 7) con-
taining the most relevant information from the reviewed papers, including the following:

• Title and reference.
• Year of publication.
• Goal.
• Algorithms and optimization techniques used.
• Performance of the best algorithm.

Most of the papers used MAPE (and in some cases other related values) as the metrics
to compare the performance of the algorithms. To give the reader a reference of the
performance of each algorithm, we only include the MAPE value in the table. When
other non-normalized values were used, we did not include them in the table to keep it
coherent and avoid misunderstandings. If, in some specific case, the MAPE was not the
most relevant value, it is indicated in the Best algorithm column.
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Table 7. Reviewed papers.

Title Year Goal Algorithms Best Algorithm

An artificial neural
network-based short term load
forecasting with special tuning

for weekends and seasonal
changes [8]

1993 To compare the performance
of ANN using season, day of

week, temperature and
previous power peaks as
inputs to forecast 1-week

ahead peaks.

MLP MAPE MLP: 1.60%

A recurrent neural network for
short-term load forecasting [9]

1993 To compare the performance
of recurrent and

feedforward ANNs.

Feedforward
3-layer MLP

3-layer recurrent
neural network

with BP and
diffusion learning

MAPE RNN with
diffusion learning:

2.07%

Practical experiences with an
adaptive neural network

short-term load forecasting
system [11]

1995 To compare performance of
statistical methods and MLP
to forecast demand 7 days

ahead in blocks of 3 h.

3-layer MLP
(hidden layer with

3 neurons) with
daily, weekly and

monthly
adaptation

MAPE MLP: 6%

A real-time short-term peak and
average load forecasting system

using a self-organising fuzzy
neural network [38]

1998 To predict the demand peak
1 day and 1 week ahead

comparing the performance
of SFNN (Self-organising
Fuzzy Neural Network),

FFN (Fuzzy Neural
Network) and MLP.

SFNN, FFN and
MLP

MAPE SFNN: 1.8%
for 1 day ahead

peak load forecast
and 1.6% for 1
week ahead

Forecasting the short-term
demand for electricity: Do

neural networks stand a better
chance? [34]

2000 To compare feedforward
ANN with ARIMA and
ARMAX using previous

demand and temperature as
inputs. To analyze the

non-linearity of the demand
forecast problem.

ARIMA, ARMAX
and MLP

MAPE MLP: 0.8%

Global model for short-term
load forecasting using artificial

neural networks [12]

2002 To check performance of
MLPs trained for classes

defined using
self-organizing maps with

statistical methods. No
comparison with other

algorithms.

Kohonen’s
self-organising
map + Elman

Recurrent Network

MAPE: 1.15–1.61%

A new approach using artificial
neural network and time series

models for short term load
forecasting [13]

2003 To check accuracy of ANN
to predict forecast using
input variables selected

depending on their
correlation coefficient

compared with ARIMA.

MLP using
correlation

coefficient to
calculate weights

MAPE: 2.241%
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Table 7. Cont.

Title Year Goal Algorithms Best Algorithm

Forecasting electrical
consumption by integration of

Neural Network, time series and
ANOVA [39]

2007 To compare the performance
of MLP to predict

aggregated load from time
series using analysis of

variance and time series
approach. Linear regression

ANOVA and Duncan’s
Multiple Range Tests are
used to validate results.

MLP MAPE: MLP 1.56%

Integration of artificial neural
networks and genetic algorithm

to predict electrical energy
consumption [36]

2007 To check performance of
MLP and GA for LTLF in the
Iranian agricultural sector.

MLP + GA MAPE MLP: 0.13%

Annual electricity consumption
forecasting by neural network in

high energy consuming
industrial sectors [40]

2008 To check the performance of
ANN algorithm to predict

annual load of energy
intensive industries using

different input variables such
as electricity price, number of
consumers, fossil fuel price,

previous load and industrial
sector. ANOVA and Duncan’s
multiple range test are used
for formal comparison and

validation.

MLP using
different networks

and regression.

MAPE: MLP 0.99%

Daily load forecasting using
recursive Artificial Neural

Network vs. classic forecasting
approaches [23]

2009 To compare the performance
of RNN with other

analytical methods for 24-h
ahead forecasts for a region

of Romania.

RNN (using
hyperbolic tangent

as activation
function).

RNN performs
better. Least square
value used instead

of MAPE.

Short-term load forecasting
using artificial neural networks

[24]

2009 To compare the performance
of ANN for 1-h ahead

performance using previous
load, weekday, month and

temperature as input values
with the results of other

studios. ISO-New England
control data are used to
validate the algorithm.

Feed-Forward MLP
using LM as BP

algorithm.

MAPE: 0.439% (for
ISO-New England)

Dynamic neural network-based
genetic algorithm optimizing for
short term load forecasting [33]

2010 To compare BP and Genetic
Algorithm-based BP to find

the optimal weights of a
3-layer MLP for one hour
ahead load forecasts using

load time series and weather
variables

3-layer MLP using
BP and GA-BP

MAPE: GA-BP
1.6% (data

calculated from
results for day max

load)

The comparison of mid term
load forecasting between
multi-regional and whole

country area using Artificial
Neural Network [56]

2010 To compare the forecasting
results using MLP with data

of Thailand as a whole or
disaggregated in several

regions.

MLP MAPE monthly
consumption

multi-region: 1.45
peak: 2.48
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Table 7. Cont.

Title Year Goal Algorithms Best Algorithm

Forecasting electricity demand
in Thailand with an Artificial

Neural Network approach [48]

2011 To compare MLP with
ARIMA and Multi-Linear
Regression for LTLF for
Thailand using previous

load time series and
economical variables.

Different
topologies of MLP

and RBF.

MAPE MLP: 0.96%

A new neural network approach
to short term load forecasting of

electrical power systems [50]

2011 To compare performance of
ANN using MHS (Modified
Harmony Search) learning

algorithm with other
techniques STLF forecast

using PJM ISO data

ARMA, RBF, MLP
trained by BR

(Bayesian
Regularization),
MLP trained by
BFGS (Broyden,

Fletcher, Goldfarb,
Shanno) and MLP

neural network
trained by LM

MAPE: MLP MHS
1.39%

PREDICT – Decision support
system for load forecasting and
inference: A new undertaking
for Brazilian power suppliers

[41]

2011 To analyze the use of
wavelets, time series analysis
methods and artificial neural
networks, for both mid and

long term forecasts.

MLP with BP and
LM

MAPE: 0.72%

Monthly electricity demand
forecasting based on a weighted
evolving fuzzy neural network

approach [37].

2011 To compare WEFuNN
(Weighted Evolving Fuzzy

Neural Network) with ENN
and BPN for 1-month ahead

load forecast.

WEFuNN,
Winter’s, MRA

MAPE WEFuNN:
6.43%

Short-term power load
forecasting based on

self-adapting PSO-BP neural
network model [22]

2012 To show that PSO-BP
algorithm can obtain

optimal MLP parameters
outperforming BP to forecast

hourly 1-day ahead load
demand for a city of China.

MLP getting the
parameters with
PSO-BP and BP

MAPE PSO-BP:
2.39%

A comparison of support vector
machines and artificial neural
networks for mid-term load

forecasting [29]

2012 To compare the performance
of SVM and ANN for MTLF
with load and weather data.

MLP with several
different numbers
of neurons (2, 5, 8,
20/30). Usage of
GA and PSO to
obtain optimal
SVMs models.

The authors
conclude that both
ANN and SVM are
suitable, but SVM

is more reliable and
stable for load

forecasting.

Load forecasting in a smart grid
oriented building [15]

2013 To compare performance of
ARIMA, MLP, SVM and

STLF (next hour forecast) in
university campus

microgrid.

Seasonal ARIMA,
MLP and SVM.

MAPE MLP: 5.3%

Short-term load forecasting for
microgrids based on Artificial

Neural Networks [46]

2013 To check ANN performance
for load forecasting in a
microgrid-sized Spanish

region from previous load
time series.

MLP (16 neurons in
hidden layer)

MAPE: 2–5%
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Table 7. Cont.

Title Year Goal Algorithms Best Algorithm

Multi-substation control central
load area forecasting by using
HP-filter and double neural
networks (HP-DNNs) [42]

2013 To compare the use of HP
(Hodris-Prescott) filter to

decompose the previous load
signals into trend and cyclical

signals and DNN (Double
Neural Network) for LTLF

with other algorithms.

HP-DNN MAPE HP-DNNS:
1.42–3.20%

Check the performance of MLP
using SOM and k-means to find

the right number of MLPs for
STLF for a microgrid in

Spain [35].

2014 To check the performance of
MLP using SOM and

k-means to find the right
number of MLPs for STLF
for a microgrid in Spain.

3-stage: SOM +
k-means clustering
and MLP. No other

algorithms were
tested.

MAPE: 2.73–3.22%

PI-controlled ANN-based
energy consumption forecasting

for smart grids [17].

2015 To compare ANN and
PI-ANN (Proportional

Integral ANN) to predict
consumption of individual

devices.

PI-ANN and MLP. N/A

Short-term load
cross-forecasting using

pattern-based neural models
[25]

2015 To check if a combination of
daily and weekly patterns
performs better than the
models individually for

SLTF from previous load.

Unspecified neural
model

MAPE cross-
forecasting: 0.85%

Input data analysis for
optimized short term load

forecasts [26]

2016 To compare the performance
of MLP, SVR and clustering

for 24-ahead forecast for
Germany load demand.

MLP(1,1,1) with
(LM) algorithm,

SVR and k-means
cluster.

MAPE SRV: 2.1%

Hourly load forecasting model
based on real-time

meteorological analysis [18]

2016 To check the influence of
weather variables in load

forecast using MLP.

3-layer MLP MAPE (including
weather variables)

<2%

Neural network-based
short-term electricity demand

forecast for Australian states [27]

2016 To check the performance of
FFNN (Feed Forward Neural
Network) forecasting model
for the different regions of

Australia for STFL.

FFNN (using LM
for training)

MAPE: 2.7233%

Building energy load forecasting
using deep neural networks [19]

2016 To compare standard LSTM
and LSTM-based Sequence

to Sequence for STFL for
1-min resolution 1-h ahead

predictions.

LSTM and
LSTM-based S2S.

RMSE LSTM-S2S:
0.667

Deep neural network-based
demand side short term load

forecasting [21]

2016 To compare DNN
forecasting results for
individual industrial

consumers from South
Korea with typical 3-layered

shallow neural network
(SNN), ARIMA, and Double

Seasonal Holt-Winters
(DSHW) model.

DNN (4 hidden
layers with 150

neurons per layer
and using RBM

and ReLU),
ARIMA, DSHW,

MLP

DNN RBM: MAPE
8.84% RRMSE

10.62%
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Table 7. Cont.

Title Year Goal Algorithms Best Algorithm

Forecasting daily electricity load
by wavelet neural networks
optimized by Cuckoo search

algorithm [71]

2017 To check performance of
MLP using wavelet for
data-preprocessing and

Cuckoo algorithm to obtain
parameters.

MLP (using
Wavelet and

Cuckoo algorithm),
ARIMA, MLR

MAPE Wavelet
ANN-CS: 0.058

Short-term forecasting of
electricity demand for the

residential sector using weather
and social variables [58]

2017 To compare algorithms to
forecast 1-month ahead
demand in South Korea.

SVR, Fuzzy-rough
feature selection
with PSO, MLP,

MLR and ARIMA.

MAPE SVR
fuzzy-rough: 2.13%

A comparison of artificial neural
networks and support vector
machines for short-term load
forecasting using various load

types [28]

2017 To compare SVM and ANN
to predict the load of

Trinidad and Tobago for 3
industrial customers with

different consumption
patterns: continuous, batch,

batch-continuous.

3-layer MLP and
SVM.

MAPE ANN: 1.04%

Short-term load forecasting
using EMD(Empirical Mode

Decomposition)-LSTM neural
networks with a Xgboost

algorithm for feature
importance evaluation [51]

2017 To compare SD (Similar
Days)-EMD-LSTM

algorithm with others used
for STLF.

SD-EMD-LSTM,
LSTM SD-LSTM

EMD-LSTM,
ARIMA, BPNN,

SVR

MAPE SD- EMD-
LSTM 24 h: 1.04%

168 h: 1.56%

Deep learning for household
load forecasting—A novel

pooling deep RNN [20]

2018 To compare the performance
of PDRNN (Diagonal

Recurrent Neural Networks)
with other algorithms for
STLF household forecast.

PDRNN with
ARIMA, SVR,

DRNN, SIMple
RNN.

MAPE PDRNN:
0.2510%

Long short term memory
networks for short-term electric

load forecasting [30]

2017 To compare algorithms for
STLF regional load

forecasting.

LSTM, MLP,
ARIMA.

MAPE LSTM: 3.8%

A State-of-the-Art Review of
Artificial Intelligence Techniques

for Short-Term Electric Load
Forecasting [3]

2017 To compare performance of
ANFIS, MLP and SVM for

STLF in a large region.

MLP, SVM and
ANFIS

MAPE SVM:
1.790%

Short term load forecasting
using deep neural networks

(DNN) [72]

2018 To compare different
transfer functions using

MLP for STFL in an Iberian
region.

MLP using
different transfer

functions: sigmoid,
ReLU and ELU.

MAPE MLP
ELU-ELU: 2.03%

Residential load forecasting
using deep neural networks

(DNN) [52]

2018 To compare DNN
algorithms for STFL

day-ahead for residentials
users.

LSTM, GRU, RNN,
ARIMA, GLM, RF,

SVM, FFNN.

MAPE LSTM: 29%

Optimal deep learning LSTM
model for electric load

forecasting using Feature
Selection and Genetic Algorithm:

Comparison with Machine
Learning Approaches [47]

2018 To find optimal algorithm
for STLF and MTLF for

region load, using GA to
find optimal parameters.

LSTM + GA, Ridge
Regression,

Random Forest,
Gradient Boosting,

Neural network,
Extra Trees.

RMSE LSTM 0.61%
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Table 7. Cont.

Title Year Goal Algorithms Best Algorithm

Predicting electricity
consumption for commercial

and residential buildings using
deep recurrent neural networks

[43]

2018 To evaluate an LSTM-based
algorithm using MLP for

encoding for MTLF of
different residential building

load profiles.

LSTM + MLP +
SMBO

N/A

Predicting electricity
consumption using deep

recurrent neural networks [53]

2019 To compare RNN and LSTM
to predict load in STLF

MTLF and LTLF.

RNN, LSTM,
ARIMA, MLP,

DNN

ARIMA for STLF
RNN and LSTM for

MTLF and LTLF.

Short-term load forecasting in
grid-connected microgrid [14]

2019 To compare the performance
of algorithms for STLF in

microgrid.

GMDH, MLP-LM RMSE MLP:
0.062%

Short-term load forecasting at
different aggregation levels with

predictability analysis [54]

2019 To compare different
algorithms for STLF at

different aggregation levels.

MLP, LSTM, GBRT,
Linear regression,

SVR

N/A

Short-term residential load
forecasting based on LSTM

recurrent neural network [31]

2019 To compare the performance
of forecast algorithms

depending on the level of
aggregation of AMI data.

LSTM+BPNN
variants, KNN and

mean.

MAPE LSTM: ind
44.39%, aggregated

forecast: 8.18%,
forecast

aggregation: 9.14%

Day-ahead prediction of
microgrid electricity demand

using a hybrid Artificial
Intelligence model [49]

2019 To compare different
optimization algorithms
before using FFANN for

STLF using load and
economic input variables.

SA-FFANN,
WT-SA- FFANN,

GA-FFANN,
BP-FFANN,

(PSO)-FFANN

MAPE WT-SA
-FFANN: 2.95%

Electricity consumption
probability density forecasting

method based on
LASSO-Quantile Regression

Neural Network [45]

2019 To compare LASSO-QRNN
for electricity consumption
probability density LTLF

LASSO-QRNN MAPE LSTM:
0.02%

Forecasting electric load by
aggregating meteorological and

history-based Deep Learning
modules [32]

2020 To compare the combination
of LSTM and DNN for STLF

with LSTM alone.

LSTM+DNN,
LSTM and DNN

MAPE
LSTM+DNN:

4.28%

A Deep Learning approach to
forecasting monthly demand for
residential–sector electricity [44]

2020 To compare LSTM with
other algorithms for MTLF.

SVR, MLP, ARIMA,
MLR, LSTM

MAPE LSTM:
0.07%

6. Conclusions

The use of ANN-based ML algorithms for electricity demand forecasting is an idea
that goes back to the 1990s, but continues to be the subject of intensive research presently.
Chronologically, the papers we have reviewed show how ANNs evolved from a sensible
and promising concept—due to the cyclic nature of load demand—to a widely used reality
in production environments.

This review is aimed at providing a valuable asset for researchers. Bearing this goal
in mind, we analyzed 50 research works to extract their common patterns and also the
main differences in terms of methodology and algorithms. We want to highlight four
aspects to be considered for future forecasting experiments: performance comparison, best
performing algorithms, influence of aggregation level, and experiment reproducibility.
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6.1. Performance Comparison

The generalized use of MAPE to measure the performance of the algorithms allows to
extract some relevant conclusions. The first is that ANN-based algorithms (and especially
LSTM, which is the most used algorithm in the reviewed papers) have proved to achieve
very good results in aggregated load forecast, and that their predictions get typically more
accurate as the number of electricity consumers grows. A significant number of recent
papers show MAPE values below 3% for the best cases.

Regarding the ability to compare the different algorithms, we understand that just
comparing the MAPE values from different papers can give a raw orientation for future
research works. However, we are also aware that this is not the best approach, since they
are making predictions over different datasets, which in many cases are not accessible to the
scientific community. Additionally, using the MAPE as the single KPI may not be always
fair, since the RMSE may be a better metric for many applications where high forecast
errors must be avoided. It is worth noting that recently published papers typically include
(at least) both values, which a positive practice to enable more complete comparisons in
the future.

6.2. The Best Performing Algorithms

ANN-based approaches that can capture recurrent patterns (such as RNN and, specifi-
cally, LSTM) proved to perform well for load demand problems. In consequence, most of
the papers covered in this survey featured one ANN-based algorithm as the best alternative
compared to other approaches. However, there are some exceptions. For instance, in [58] a
combination of PSO with SVR turned out to perform slightly better than PSO with ANN-
based algorithms; Ref. [43] found the autoregressive models of ARIMA to outperform
RNN and LSTM for STLF problems; SVM worked better than MLP in an STLF problem
in [3]; and SVM was found to be more reliable and stable than ANN for mid-term load
forecasting in [29].

In general, combinations of MLP or LTSM with other algorithms do not attain a
substantial advantage over the original algorithms, but the papers that compare innovative
combinations typically show them as the optimal option. There are innovative models,
though, whose authors claim to obtain MAPE values below 1% [71]. However, without an
extensive validation using different datasets, it remains unclear whether the model really
shows a very good performance for generic load demand problems, or the results may be
due to an over-fitted model (e.g., one that provides very good results only for the dataset
with which it has been trained). An alternative to obtain more accurate models—at the
cost of a higher complexity—could be the kind of combinations of different ANN-based
algorithms as proposed in [32].

6.3. Influence of the Aggregation Level in Model Performance

The accuracy of STLF and MTLF predictions for aggregated demand of a huge number
of consumers is good in general, which makes modern ANN-based algorithms a good
tool for commercial and research purposes. In turn, load forecasting in microgrids is a
challenging problem according to the results provided by the analyzed papers. The MAPE
results are typically above 10%. Still, this could be good enough, inasmuch as recent
advances in energy storage techniques can easily absorb the forecast errors.

The problem of individual user load forecasting seems to be the hardest to resolve,
which is understandable due to the nature of some human behaviors. The high MAPE
values attained by the few papers that tackle this problem (such as [31]) suggest that ANN
may not be the best approach if very high precision is needed. Again, the importance of
individual consumer forecast is lower than aggregated load from the point of view of the
industry, due to the recent improvements in power storage technologies that can absorb
load oscillation in isolated systems. In any case, we understand that there is still room for
improvement for microgrids and individual load demand forecast models.
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6.4. Benchmarks and Reproducibility

To make an unbiased assessment of the performance of the different algorithms, load
demand papers should use a common reference benchmark, which does not exist yet. This
could use publicly available datasets, in addition to other specific ones. For example, the
comprehensive list of smart meter time series included in [73] could be used as a starting
point to define a reference dataset to test the performance of the different algorithms in
equivalent conditions. In the same line, the publication of results without making the
source code and datasets available makes it hard or impossible to reproduce the results.
Fortunately, sharing the source code is also becoming common in recent years [70], so we
are optimistic in this sense. Without a doubt, this will help to take forecasting closer to the
limits of ML techniques in the next few years.
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Abbreviations
The following abbreviations are used in this manuscript:

AMI Advanced Metering Infrastructure
ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Network
ARIMA Autoregressive integrated moving average
ARMAX Autoregressive–moving-average model
BFGS Broyden–Fletcher–Goldfarb–Shanno
BP Back-Propagation
BPN Back-Propagation Network
BR Bayesian Regularization
ENN Evolving Neural Network
FFNN Feed Forward Neural Network
FFANN Feedforward Artificial Neural Network
GBRT Gradient Boosted Regression Trees
LM Levenberg Marquardt (BP algorithm)
DNN Deep Neural Network
GA Genetic Algorithm
GMDH Group Method Data Handling
KPI Key Performance Indicator
MAE Mean Absolute Error
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MAPE Mean Absolute Percentage Error
MHS Modified Harmony Search
ML Machine Learning
MLP Multi-Layer Perceptron
MLR Multiple Linear Regression
MTLF Medium-Term Load Forecast
LASSO Least Absolute Shrinkage and Selection Operator
LSTM Long-Short Term Memory networks
LTLF Short-Term Load Forecast
PCA Principal Component Analysis
PDF Probability Distribution Function
PDRNN Diagonal Recurrent Neural Networks
PJM Pennsylvania, New Jersey, and Maryland
PSO Particle Swarm Optimization
RBF Radial Basis Function
RBM Restricted Boltzmann Machine
RMSE Root Mean Square Error
RMSPE Root Mean Square Percentage Error
RNN Recurrent Neural Network
SBMO Sequential Model-Based Global Optimization
SFNN Self-organising Fuzzy Neural Network
SOM Self-Organizing Map
STLF Short-Term Load Forecast
SVM Support Vector Machine
SVR Support Vector Machine Regression
WEFuNN Weighted Evolving Fuzzy Neural Network
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