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Abstract: Measuring the mass flow of sugarcane in real-time is essential for harvester automation
and crop monitoring. Data integration from multiple sensors should be an alternative to receive
more reliable, accurate, and valuable predictions than data delivered by a single sensor. In this sense,
the objective was to evaluate if the fusion of different sensors installed in a sugarcane harvester
improves the mass flow prediction accuracy. A harvester was experimentally instrumented, and
neural network models integrated sensor data along the harvester to perform the self-calibration
of these sensors and estimate the mass flow. Nonlinear autoregressive networks with exogenous
input (NARX) and multiple linear regression (MLR) models were compared to predict the mass
flow. The prediction with the NARX showed a significant superiority over MLR. MLR decreases
the estimated mass flow variability in the harvester. NARX with multi-sensor data has an RMSE of
0.3 kg s−1, representing a MAPE of 0.7%. The fusion of sensor signals improves prediction accuracy,
with higher performance than studies with approaches that used a single sensor. The mass flow
approach with multiple sensors is a potential approach to replace conventional yield monitors. The
system generates accurate data with high sample density within sugarcane rows.

Keywords: precision agriculture; artificial intelligence; machine automation; yield monitor; self-
calibration; data fusion

1. Introduction

Mass flow is an essential parameter for the automation of the control processes per-
formed by the harvester. These data support engine rotation control, harvester speed, clean
system rotation, chopper blade rotation, and feeder roll speed. The automation of these
systems can bring benefits such as a decrease in the damage to the billets [1], uniform billet
lengths [2], quality of cleaning, and reduction of losses of the harvested product [3,4]. The
mass flow predicted in the harvester provides data necessary for the localized management
of sugarcane plantations. Through the mass flow predicted, it is possible to calculate the
yield in a given area (e.g., ton ha−1), and together with the coordinates, yield maps can
be generated. Yield maps are the key to managing sugarcane spatial variability [5,6]. This
is the starting point for implementing Precision Agriculture (PA) practices, which aim to
assist decision-making and interventions in high spatial definition in the agricultural fields.

Different sugarcane yield monitors have been taken to predict the sugarcane mass
being harvested. The first approach to measure the mass flow for mapping sugarcane
yield was performed by [7,8]. From then on, yield monitors using load cells [9], optical
fiber [10], deflection plates [11], and 3D sensors [12] have already been tested on harvesters
to measure the amount of sugarcane processed in real-time. However, according to [13],
few are being used commercially due to their accuracy, the continual need for calibration,
and the fact that most were developed for research purposes.
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In a recent study, the prediction of sugarcane yield using four variables of the harvester
engine shows promising results, with fewer minor prediction errors than studies with a
single sensor approach [14]. In this sense, we hypothesize that the fusion of data generated
by sensors installed in the recollection may be an alternative to reduce the error in mass
flow prediction. Sensor fusions have the advantage of making information more significant
and precise than a single sensor, and can reduce sensor errors [15]. In agriculture, the
integration of the different sensor data is used to improve the autonomous navigation of
mobile robots [16], and increase the accuracy of the guide-line of an autonomous robot
for the weeding operation [17]. In the study by [18], data coming from heterogeneous but
complementary sensors were combined to generate a multi-layer map of the environment
and the supporting ground.

Among the models used for sensor data fusion, artificial neural networks (ANN)
provide a new approach to the problem of parameter estimation of linear and non-linear
models [19]. The learning ability of ANN allows them to adjust to changing, dynamic envi-
ronments, and is a more flexible predictive tool than traditional statistical models [20,21].
The nonlinear autoregressive networks with exogenous input (NARX) differ from the other
ANN in that the outputs of the model are feedback as an input for future predictions.
NARX has the advantage of not requiring many different input variables, and the integra-
tion of multiple variable inputs and autoregressive inputs benefits the modeling process
to provide more accurate estimates [22]. NARX was used to predict and compensate the
inertial navigation system position errors when global positioning system (GPS) is un-
available [23,24], diagnose faults for pneumatic control valves [25], predict marine engine
performance parameters [26], underwater passive target state estimation [27], undergo
multiple data fusion for rainfall estimation [28,29], and perform long-term machine state
forecasting [21].

On the other hand, there are still no reports on the use of the NARX to process signals
from sugarcane harvester sensors. Thus, this study makes the first approach to investigate
the use of the NARX on harvested sugarcane. The NARX can incorporate the dynamics of
signals from sensors [25], such as those installed in sugarcane harvesters that monitor the
harvester’s operational processes. In this way, the use of the data generated by the sensors
already installed in the harvester and harvester instrumentation to measure sugarcane
parameters during harvest would be an essential advancement in harvester automation
and agricultural operations [30].

The use of the fusion techniques with the sensors in the sugarcane harvester to obtain
a single output for the flow mass monitor can be an option to improve the accuracy of
prediction. Embedded sensors in the sugarcane harvester can collect high resolution data
to guide site-specific management within each sugarcane row with high resolution [30].
However, there is still no knowledge about the use of a combination of hydraulic pressure,
strain gauge, and potentiometric displacement sensors on a single harvester for sugarcane
mass flow prediction. Our goal was to test machine learning based on a neural network
model to integrate sensors installed at various points in a sugarcane harvester. Moreover,
the objective was to evaluate if the fusion of different sensors installed in a sugarcane
harvester improves the mass flow prediction accuracy.

2. Materials and Methods
2.1. Mass Flow Prediction

The approach to predicting mass flow in this study is based on sensor signals as input
data for models generated through machine learning (ML) (Figure 1). First, the calibration
curve was created for the n sensor installed on the harvester. The model generated in the
initial calibration was used to perform the first preliminary prediction (PPn) of the mass
flow. Due to the characteristics of the sensors and the harvester mechanical factors, it is
necessary to recalibrate the sensors over time. Thus, an ML model was used in the n sensor
to perform the self-calibration, maintaining the accuracy in predicting the mass flow (PPCn)
over the harvester’s operation time. Finally, the fusion of the PPCn from the n sensor was
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performed using a supervised model to predict the mass flow in the harvester in real-time.
Data processing and model training was performed offline for later use in the harvester.
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Figure 1. Flowchart of mass flow prediction.

2.1.1. Sensor Calibration

The calibration curve was obtained by fitting a linear response function (Equation (1))
to a set of experimental data consisting of the sensor measured signal relative to a known
ground truth [31].

y = β0 + β1 x (1)

where y is the ground-truth flow mass value, x represents measured sensor signal, and β0,
and gain β1 are the calibration coefficients. The constant β0 is the offset that arises when
the measured value differs from the true value, and it can be determined by measuring the
sensed value when the ground-truth value is zero. Gain β1 refers to the rate or the amount
of change of the measured value to the change in the underlying ground-truth value [32].

2.1.2. Sensor Self-Calibration Approach

To ensure a good precision of a measurement made by the sensors, it is necessary to
recalibrate the sensors installed in the harvester. For each sensor, the calibration curve is
applied (Equation (1)), generating a preliminary prediction (PPn). After the PP for each n
sensor, the mean of the values (Mppn—Equation (2)) and the standard deviation (SDppn—
Equation (3)) are calculated. In this way, it is possible to calculate the prior error of each
sensor. If the calculated error (Equation (4)) of sensor n is greater than 2%, the data is
discarded, and not used for yield prediction. If the sensor keeps registering errors greater
than 2% over 10 cycles (10 data collected by the sensor), a warning message is reported. In
this way, it is possible to detect a sensor with problems and perform maintenance. In this
study, several sensor configurations were tested so that if one of the sensors is defective it
is possible to use a prediction model without this sensor, not affecting the yield prediction.

Mppn =

√
1
n

n

∑
i=1

PPn (2)

SDppn =

√
1
n

n

∑
i=1

(PPn −Mppn)2 (3)

Errorn (%) =

[
PPn

(Mppn ± SDppn)

]
× 100 (4)

where Mppn is the mean and SDppn is the standard deviation of the preliminary prediction
(PPn) of the n sensor.
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2.1.3. Sensor Fusion

We combine the PPn from the n sensor into a common MSf predicted in the stage. To
merge the multiples PPn, machine-learning approaches were used to achieve one fused
output. The MLR was used because all commercial sensors for sugarcane flow measure use
a linear approach, and NARX was used due to the algorithm having good adaptation with
multivariable and nonlinear data. The accuracy of predictions using data fusion methods
was compared with those of individual sensors, and among these data fusion methods.

NARX Neural Network

The nonlinear autoregressive network with exogenous input (NARX) [33] was chosen
due to the excellent ability of this neural network to have good adaptation with multivari-
able and nonlinear data [34]. A typical NARX regression neural network consists of three
layers (input, hidden, and output layer), input and output delay, and the number of hidden
layer neurons before application [35] (Figure 2).
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is the neural network output layer activation function [35].

The NARX neural network model is a nonlinear autoregressive model that has ex-
ogenous inputs. That is, the model relates the current PPn value of each sensor used in
the model, and the value predicted by the model using previous PPn data. In addition,
the model contains an “error” term that relates to the fact that knowledge of other terms
will not allow the present value of mass flow to be accurately predicted. The NARX was
developed using the Neural Network Toolbox of MATLAB R2018b (MathWorks, Natick,
MA, USA) and was calculated as:

y(t) = f (y(t − 1), y(t − 2), . . . , y(t − ny), u(t − 1), u(t − 2), . . . , u(t − nu)) (5)

where the next value of the dependent output signal y(t) is regressed on previous values (y)
of the output signal and previous values of an independent input (u) [36]. The function
f in Equation (5) was trained by the network, which depends on the number of neurons
in the hidden layer. In this first study, we used only a hidden layer in the NARX. To find
a set of the model’s parameters to produce the best performance, four different numbers
of neurons (m = 10, 15, 20, and 25) and three order delays (d = 3, 5, and 10) were tested.
The absolute error between the NARX output and the mass flow value observed was used
as the performance measure. The optimal parameters for the NARX were m = 15 and
d = 3. These values obtained the best performance of the model in predicting the sugarcane
mass flow.

Multiple Linear Regression

The Multiple Linear Regression (MLR) is a parametric model and a supervised learn-
ing algorithm that uses a linear approach between the variables. It is the most widely used
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method to establish relationships between a single dependent and small set of independent
variables (Equation (6)).

yf = β0 + β1xi1 + β2xi2 + . . . + βnxin + ε (6)

where yf is the dependent variable (mass flow, kg s−1), xi is exploratory variables, β0 is
the y-intercept (constant term), βn is the slope coefficients for each exploratory variable
deduced from the training dataset, and ε is the model’s error term. The exploratory
variables considered were PPCn from the n sensor.

2.2. Harvester Instrumentation

A sugarcane harvester, model Valtra BE1035 (AGCO Corporation, Mogi das Cruzes,
SP, Brazil), was instrumented with three sensors with different operating principles to
predict the mass flow (Figure 3). The sensors were installed in eight different mechanisms
throughout the sugarcane flow in the harvester. These mechanisms carry out the processing
and transport of sugarcane or are related in some way to the sugarcane flow. Previous re-
searchers on sugarcane yield prediction have already studied the sensors used individually
in this study [8,37]. Until this moment, only the scale installed at the end of the elevator can
measure the mass flow as a direct response; however, the scale system presents problems
such as tilt compensation, vibration, and tare change caused by mineral material, sediment,
and debris. [10] use optical sensors to predict sugarcane mass flow in a harvest. Another
approach was the installation of instrumentation to monitor the opening of the feeder
rollers made by [38,39]. The measurement errors obtained in the reported tests are still
about 100% higher than those obtained on grain mass flow used on combines and forage
harvesters. In addition, there are reports of only short tests, usually with a calibration
adjusted for a full over-flow load. There are no reports of continuous measurement so that
the actual behavior of the sensors can be assessed. In this way, we start from the premise
that the sensors and the place where they were installed have the potential to predict the
mass flow in the harvester.

2.2.1. Pressure Sensor

The pressure sensor, model SCP01-400-14 (Parker Hannifin Corporation, Cleveland,
OH, USA), was used to measure the hydraulic pressure in the chopper motor (CEP) and
elevator conveyor motor (EPS). This sensor has a reading range from 0 to 400 bar with a
response time of ≤1.0 ms. Its non-linearity and hysteresis error was specified as ±0.1% at
full scale. This study assumes that the differential hydraulic pressure (bar) in the elevator
hydraulic motor is proportional to the amount of sugarcane transported on the elevator
conveyor. Also, we consider that differential hydraulic pressure (bar) in the chopper motor
is proportional to the amount of sugarcane being chopped.

2.2.2. Strain Gauges Sensor

Unidirectional strain gauges, model P1L11-5/350 (Exel Sensores, Taboao da Serra,
SP, Brazil), were used to measure the deformation of elements in the elevator. The strain
gauge grid had an area of 1.0 mm2, electrical resistance of 350 Ω, and a gauge factor of 2.18.
Strain gauges are commonly used to measure mechanical strain and are applied to load
cells, torque, and pressure sensors. A finite element model was used to define the strain
gauge installation points. Based on this model, it was possible to determine which regions
in the elevator would be most sensitive to small sugarcane flow mass variations. The strain
gauges were installed in four points in the elevator: left base (LBSG), right base (RBSG),
right hydraulic cylinder (LCSG), and left hydraulic cylinder (RCSG). At each point, the
strain gauges were configured as a full Wheatstone bridge.
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the hydraulic cylinder of the elevator (f). The pressure sensor in the hydraulic motor of the elevator (g).

2.2.3. Displacement Sensor

A potentiometric displacement sensor, model WPS-1000-MK46 (Micro Epsilon Amer-
ica, Raleigh, NC, USA), was used to measure the gap between two feed rollers. This sensor
has a reading range from 0 mm to 350 mm. Its nonlinearity and hysteresis error was
specified as ±0.1% at full scale. This study assumes that the separation of the feed rollers
is proportional to the volumetric flow rate. In the feed rolls, the sugarcane bundle has
already spread over the entire width of the rollers, allowing for the uniform processing
of the sugarcane in the chopper. The sugarcane flow speed in the last set of feed rollers
is constant, as the chopper rollers pull the bundle at a uniform rate to obtain a constant
stalk length.

2.3. Data Collection

The study field is located in Santa Lucia, SP, Brazil (21◦41′13.2” S 48◦05′29.3” W).
The variety is RB985879, spaced 1.5 m between the rows. The harvest was performed at
an average speed of 1.5 m s−1. The data was collected using a harvester that processes
only a single row of sugarcane. A data logger with analog inputs was used to connect the
sensors. A script was written in LabVIEW software to control the start and end of data
acquisition and records the sensor signal data in a text file. The data collection frequency
of the pressure sensor was 10 Hz; strain gauge and potentiometric sensors were 400 Hz.

An external sensor was used to measure the mass flow in real-time to train the
predictive models and compare the predicted values. This data was used as a dataset to
train and test the NARX. Load cells in the infield wagon were installed to measure the
amount of sugarcane mass dumped into the infield wagon by the harvester. The load cells
in the infield wagon have an independent system for mass acquisition at an acquisition
frequency of 10 Hz. Mass data was collected using a timing trigger to evaluate the input
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time until the mass flow output time. Sensor data and infield wagon data were collected
during the harvest of 9 sugarcane rows with 600 m length, giving the data set necessary to
train and compare the prediction models proposed in this study (Table 1).

Table 1. Amount of data used for training, testing, and validation of the models in this study.

Row Number Train and Test Validation

1 389 69
2 358 63
3 301 53
4 309 55
5 351 62
6 331 58
7 344 61
8 332 59
9 343 60

To validate the best models developed, data was collected on a commercial sugarcane
field of 49 ha. The instrumented harvester was used to predict the sugarcane yield and the
infield wagon was instrumented with load cells to generate the observed data. The data
generated by the harvester and the instrumented infield wagon were georeferenced using
a Global Navigation Satellite System (GNSS).

2.4. Pre-Processing and Training Models

In the first process, null values and global outliers were excluded. Values out of
the measurement scale of each sensor were excluded. The global filtering method for
identifying outliers was the Interquartile Range (IQR) [40]. After filtering processes, a time
offset was applied for each sensor to correct the time lag difference. Therefore, the sensor
signals, located at different points in the harvester, were synchronized, by the time, with
mass flow observed (measured by a load cell in the infield wagon).

The random sampling method was used to split the dataset into train and test data
with a 70:30 ratio. The same ratio was used to carry out the training of each model used in
this study. Nine combinations between the different sensors were evaluated (Table 2). The
first combination consists of all eight points with the sensors on the harvester. One or more
sensors were removed from the data set, and the new models were tested.

Table 2. Combinations between the different sensors tested in this study.

Models Input Variables Sensor

Fusion 1 = {CPS, EPS, FRO1, FRO2, RCSG, LCSG, RBSG, LBSG} PS, SGS, DPS
Fusion 2 = {CPS, EPS, FRO1, FRO2, RCSG, LCSG} PS, SGS, DPS
Fusion 3 = {EPS, RCSG, LCSG} PS, SGS
Fusion 4 = {CPS, FRO1, FRO2} PS, DPS
Fusion 5 = {FRO1, FRO2} DPS
Fusion 6 = {CPS, EPS} PS
Fusion 7 = {RCSG, LCSG, RBSG, LBSG} SGS
Fusion 8 = {EPS} PS
Fusion 9 = {CPS} PS

PS: Pressure sensor. SGS: Strain gauge sensor. PDS: Potentiometric displacement sensor. LBSG: SGS in the left
base. RBSG: SGS in the right base. LCSG: SGS in the right hydraulic cylinder. RCSG: SGS in the left hydraulic
cylinder. FRO1: PDS in the feeder roll #1. FRO2: PDS in the feeder roll #2. CPS: PS in the chopper hydraulic
motor. EPS: PS in the conveyor hydraulic motor.

2.5. Analysis

The prediction error was calculated for each sampled point in the test data set, which
is the difference between the predicted mass flow by the MLR and NARXs and observed
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mass flow. The metrics Root Mean Square Error (RMSE, Equation (7)) and Mean Absolute
Percent Error (MAPE, Equation (8)) were used to evaluate and compare the models.

RMSE =

√
1
n

n

∑
i=1

(yi − xi)
2 (7)

MAPE =

[
1
n

n

∑
i=1

|yi − xi|
xi

]
× 100 (8)

where n is the number of the sample, yi is the predicted variable response, and xi is the
observed variable response.

3. Results and Discussion

In the mean comparison analysis, there was no significant difference in the mean of
the values predicted by the different models tested (Figure 4). However, the predictions
using the NARX had a larger range of values than the predictions using MLR. That is, the
MLR reduced the variability of the predicted data. This is a first indication that the NARX
is each able to identify the mass flow variation within the harvester It is common for mass
flow variation peaks to occur over short periods, since sugarcane has high yield variability
over short distances within the row. In this way, the MLR may not be identifying these
variations, which leads to a concentration of data close to the mean, as shown in the boxplot
(Figure 4). The MLR with only the potentiometric displacement sensor in the feed roller
(Fusion 5), and model with only a strain gauge sensor (Fusion 7), has the lower amplitude
of the estimated data. On the other hand, there was no reduction in the amplitude of this
data using the NARX.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 4. Boxplot of the mass flow (kg s−1) predicted by the models. The same letters above the box indicate no significant 
difference between the mean mass flow predicted value of the models (Tukey test; p < 0.05). MLR—multiple linear 
regression (blue box). NARX—nonlinear autoregressive networks with exogenous input (red box). The description of the 
different fusion models is in Table 2. 

Table 3. Mass flow prediction assessment metrics of the models tested in this study. 

Models Input Variables 
Correlation RMSE (kg s−1) MAPE (%) 

MLR NARX MLR NARX MLR NARX 
CPS, EPS, FRO1, FRO2, RCSG, LCSG, RBSG, LBSG 0.63 0.99 1.6 0.3 4.9 0.7 

CPS, EPS, FRO1, FRO2, RCSG, LCSG 0.62 0.98 1.6 0.4 4.9 0.8 
EPS, RCSG, LCSG 0.56 0.96 1.7 0.5 6.3 2.4 
CPS, FRO1, FRO2 0.50 0.97 1.8 0.5 5.4 1.3 

FRO1, FRO2 0.32 0.96 1.9 0.5 7.3 1.0 
CPS, EPS 0.61 0.97 1.6 0.4 5.1 1.6 

RCSG, LCSG, RBSG, LBSG 0.17 0.93 2.0 0.7 8.8 1.2 
EPS 0.49 0.95 1.8 0.6 5.7 1.2 
CPS 0.56 0.94 1.7 0.6 6.5 2.5 

LBSG: strain gauge in the left base. RBSG: strain gauge in the right base. LCSG: strain gauge in the right hydraulic cylinder. 
RCSG: strain gauge in the left hydraulic cylinder. FRO1: potentiometric sensor in the feeder roll #1. FRO2: potentiometric 
sensor in the feeder rolls #2. CPS: pressure sensor in the chopper hydraulic motor. EPS: pressure sensor in the conveyor 
hydraulic motor. 

Mass flow prediction with the NARX showed a significant superiority over MLR 
(Table 3). NARX with all input variables had an RMSE of 0.3 kg s−1, representing an MAPE 
of 0.7%. The RMSE of the MLR was 240% higher than the NARX. In previous studies using 
parameters of the harvester engine [14], the ANN model performed better (MAPE = 5.6%) 
than the MLR (MAPE = 7.8%) to predict sugarcane mass over the collection time. The error 
of the prediction by NARX shows that this approach can be an alternative for predicting 
sugarcane yield in a harvester. This approach, using a new multi-sensor model, has 
similar or even superior performance to the approach using a single sensor or system for 
measuring sugarcane yield, such as using fiber optics [10], load cells [9], or a deflector 
plate [11]. However, although the NARX model with multi-sensors had a smaller error 
than the other approaches. A disadvantage with the other approaches for yield prediction 
is the use of multi-sensors, which can increase the cost of implementing this system. 

Figure 4. Boxplot of the mass flow (kg s−1) predicted by the models. The same letters above the box indicate no significant
difference between the mean mass flow predicted value of the models (Tukey test; p < 0.05). MLR—multiple linear regression
(blue box). NARX—nonlinear autoregressive networks with exogenous input (red box). The description of the different
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All fusion models using NARX had a high correlation between the predicted and
observed mass flow (Table 3). The best model was with all variables with input to the
NARX, with a correlation of 0.99. The model with only the strain gauge sensors has a
correlation of 0.17 with observed values, a lower value than other combinations of variables
using the NARX. Using the MLR, the best correlation was found (r = 0.63), using all sensors
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as input variables of the model (Table 2). The removal of the input variables RBSG and
LBSG did not affect the estimation of the mass flow by the MLR, presenting a moderate
correlation with the observed mass flow (r = 0.62). There was no correlation of predicted
values with that observed (r = 0.17) using only data from the four locations with strain
gauge sensors as input variables in the MLR. A similar result was obtained using only the
displacement of the feeder rollers 1 and 2 as MLR input (r = 0.32).

Table 3. Mass flow prediction assessment metrics of the models tested in this study.

Models Input Variables
Correlation RMSE (kg s−1) MAPE (%)

MLR NARX MLR NARX MLR NARX

CPS, EPS, FRO1, FRO2, RCSG, LCSG, RBSG, LBSG 0.63 0.99 1.6 0.3 4.9 0.7
CPS, EPS, FRO1, FRO2, RCSG, LCSG 0.62 0.98 1.6 0.4 4.9 0.8

EPS, RCSG, LCSG 0.56 0.96 1.7 0.5 6.3 2.4
CPS, FRO1, FRO2 0.50 0.97 1.8 0.5 5.4 1.3

FRO1, FRO2 0.32 0.96 1.9 0.5 7.3 1.0
CPS, EPS 0.61 0.97 1.6 0.4 5.1 1.6

RCSG, LCSG, RBSG, LBSG 0.17 0.93 2.0 0.7 8.8 1.2
EPS 0.49 0.95 1.8 0.6 5.7 1.2
CPS 0.56 0.94 1.7 0.6 6.5 2.5

LBSG: strain gauge in the left base. RBSG: strain gauge in the right base. LCSG: strain gauge in the right hydraulic cylinder. RCSG: strain
gauge in the left hydraulic cylinder. FRO1: potentiometric sensor in the feeder roll #1. FRO2: potentiometric sensor in the feeder rolls #2.
CPS: pressure sensor in the chopper hydraulic motor. EPS: pressure sensor in the conveyor hydraulic motor.

Mass flow prediction with the NARX showed a significant superiority over MLR
(Table 3). NARX with all input variables had an RMSE of 0.3 kg s−1, representing an
MAPE of 0.7%. The RMSE of the MLR was 240% higher than the NARX. In previous
studies using parameters of the harvester engine [14], the ANN model performed better
(MAPE = 5.6%) than the MLR (MAPE = 7.8%) to predict sugarcane mass over the collection
time. The error of the prediction by NARX shows that this approach can be an alternative
for predicting sugarcane yield in a harvester. This approach, using a new multi-sensor
model, has similar or even superior performance to the approach using a single sensor
or system for measuring sugarcane yield, such as using fiber optics [10], load cells [9],
or a deflector plate [11]. However, although the NARX model with multi-sensors had a
smaller error than the other approaches. A disadvantage with the other approaches for
yield prediction is the use of multi-sensors, which can increase the cost of implementing
this system.

Other studies comparing prediction models have also shown higher prediction accu-
racy using an NARX compared to an MLR [41,42]. According to some studies, the NARX
was the best performing model compared with the MLR due to its ability to dynamically
adapt its trajectory based on previous errors [43,44]. Using the values previously predicted
by the NARX minimizes the current prediction error, while MLR does not have the dynamic
ability to learn from the error values of previous predictions. The ability of a model to
self-calibrate is important when it comes to sensing crops with high yield variability, such
as sugarcane [45]. This high variability over small distances directly influences the feeding
rate of the harvester during the sugarcane harvest and, consequently, there will be high
mass flow variation over a short time interval.

The removal of strain gauge sensors from the elevator base (RBSG and LBSG) did
not influence mass flow prediction. The NARX had an RMSE of 0.4 kg s−1 without these
sensors, a tiny difference (0.1 kg s−1) to the model with these two sensors. The vibrations
caused by the displacement of the conveyor during the transport of the billets, together
with the vibrations resulting from the harvester displacement, may interfere with the strain
gauge signals. On the other hand, this can explain the low performance (compared to
the other models tested in this study) of the NARX and MLR in predicting the mass flow
using only the four points instrumented with a strain gauge. MLR with the input variables
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RCSG, LCSG, RBSG, and LBSG has the worst performance of the models tested in this
study. The lower deformation sensitivity of the base material related to the sugarcane
mass in the elevator is a factor that may be related to low performance. That is, the mass
contained in the elevator may be insufficient for the sensor-capable deformation at the base
of the elevator.

Using only the variables EPS and CPS obtained excellent results using the NARX, with
RMSE values of 0.4 kg s−1. RMSE equal to the previous model without the variables RBSG
and LBSG, but with a higher MAPE value (1.6%). This shows that the power required in
the chopper hydraulic system [46] and the elevator conveyor are directly correlated with
the sugarcane mass flow. A previous study [47] has shown that the feeding rate is one
significant variable affecting chopping quality. In this way, the increase in the chopping
quality can be with the automation of chopper roller speed utilizing the accurate mass flow
prediction by the NARX. The mass flow can also be used to increase the power demand
efficiency during sugarcane chopping. The chopper system is the one that demands the
highest potency in the sugarcane harvester [48], and the automation of the chopper system
using mass flow predicted can significantly increase the harvester efficiency.

MLR decreases the estimated mass flow variability in the sugarcane harvester (Figure 5).
With MLR, the error was higher in the extreme values. It decreased close to the mean
value, increasing the linear trend, with results similar to the use of engine parameters as
data input of the MLR on sugarcane mass prediction [14]. The MLR overestimated the
lower mass flow observed (errors closed to 19.2 kg s−1) and underestimated the high mass
flow observed with errors of 20.4 kg s−1. The smoothing of mass flow data leads to loss
of detail of the variability of essential information within the context of PA, especially
for decision-making and management of variability of sugarcane fields. Knowing the
sugarcane yield at small spatial distances is fundamental to the site-specific investigations
in sugarcane rows [45]. Erroneous mass flow values can influence decision-making during
the automation of the harvester’s control processes, reducing machine efficiency.
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NARX has lower dispersion error than MLR (Figure 5). The nonlinear model has
a lower error dispersion than the MLR because of its ability to explain more response
variability [32]. Moreover, the nonlinear method performs a better job at re-calibration,
as NARX is better at prediction in the short term. Its descending gradient learning tends
to become more effective due to its integrated memory that provides a smaller path
for propagating the information gradient when the network is opened, instead of back-
propagating the error signal [49].

Using the validation data it was possible to spatially analyze the performance of the
MLR and NARX models (Figure 6). Using MLR and NARX with all sensors (Fusion 1,
Table 2), which had the best result in the previous tests (Table 3), it was possible to obtain
prediction errors under 2%. It was evident that the MLR underestimated the yield within
the field, with the predicted error upper of 1%, while the data predicted by NARX were
similar to the observed data. However, it is probably less accurate in short-distance
predictions, because there has been smoothing in the short-distance. Nevertheless, the
model was able to capture larger-scale patterns of spatial variability, which is suitable for
AP applications. The spatial variability found in the yield map can be used to identify
patterns with high yield potential or patterns with low yield potential where yields are
unlikely to increase.
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From this study, a harvester instrumented with multi-sensors to predict mass flow
with the NARX does not require different calibrations in the field. However, a study with
multiple harvesters within the same field is necessary. Multi-harvesters with different
calibration settings are typical in agricultural fields; these cause discontinuity of the data
values within the field, and require post-processing of the data to remove this calibration
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difference [50,51]. Overall, the approaches in this study help support different applications
in PA. The data sensors and the processing needed to generate the mass flow data can be
easily embedded and implemented in a sugarcane harvester to develop its automation
in the adjustments over the operation time, facilitate adoption, and promote site-specific
management of sugarcane fields.

4. Conclusions

The fusion of sensor signals improves the accuracy of mass flow prediction. The non-
linear autoregressive networks with exogenous input (NARX) may be a viable alternative
to conventional regression models for predicting mass flow from this study. It generates
accurate mass flow data without the need to post-process the data. These data provide
accurate information essential for the automation of the control processes in the harvester.
The sugarcane mass flow approach with multiple sensors is a potential approach to replace
conventional yield monitors. The system generates accurate data with high sample density
within sugarcane rows. With a GNSS, it will be possible to spatialize the data within the
field, generating spatialized yield information, which is the most valuable information for
the localized management of sugarcane fields.
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