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Abstract: In the pioneer CAE stage, life assessment is the essential part to make the product meet
the life requirement. Commonly, the lives of flexible structures are determined by vibration fatigue
which accrues at or close to their natural frequencies. However, existing PSD vibration fatigue
damage estimation methods have two prerequisites for use: the behavior of the mechanical system
must be linear and the probability density function of the response stresses must follow a Gaussian
distribution. Under operating conditions, non-Gaussian signals are often recorded as excitation
(usually observed through kurtosis), which will result in non-Gaussian response stresses. A new
correction is needed to make the PSD approach available for the non-Gaussian vibration to deal
with the inevitable extreme value of high kurtosis. This work aims to solve the vibration fatigue
estimation under the non-Gaussian vibration; the key is the probability density function of response
stress. This work researches the importance of non-Gaussianity numerically and experimentally. The
beam specimens with two notches were used in this research. All excitation stays in the frequency
range that only affects the second natural frequency, although their kurtosis is different. The results
show that the probability density function of response stress under different kurtoses can be obtained
by kurtosis correction based on the PSD approach of the frequency domain.

Keywords: vibration fatigue test; non-gaussian excitation; kurtosis control

1. Introduction

The random vibration load closed to the mechanical components’ natural frequencies
will significantly affect their fatigue life. It is called vibration fatigue, which has become
a hot subject in recent years. For the fatigue-life estimation of random vibration, two
methods are usually used: time domain and frequency domain [1].

For the time-domain approach, the response-stress distribution and its number of
cycles are estimated through cycle counting. The cumulative fatigue damage is determined
by Miner’s law with the Wohler’s curve. It can be understood that at one stress level,
the number of cycles used is the damage. The total number of cycles that can be used
is the fatigue life. The computational power it needs is proportional to the amount of
data. The frequency-domain approach described random vibration by power spectral
density (PSD), which describes the power distribution along with the frequency content
of the process. The second-order spectrum analysis in the frequency domain can better
study the mechanical system excited by stochastic stationary Gaussian vibration. In the
aspect of signal extrapolation, the frequency-domain approach has advantages, because the
frequency distribution is not affected by signal duration. However, the dynamic behavior
of the mechanical system is linear in theory, so the stress process also has a Gaussian
distribution. In this manner, the response–stress distribution can be performed using the
stress PSD, which is the output of the dynamic analysis, through one of the frequency
methods present in the literature [2–6]. As well-known, the evaluation of an expected value
of any random parameter derived from PSD is equivalent to estimating the same parameter

Sensors 2021, 21, 4518. https://doi.org/10.3390/s21134518 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5805-4149
https://doi.org/10.3390/s21134518
https://doi.org/10.3390/s21134518
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21134518
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21134518?type=check_update&version=1


Sensors 2021, 21, 4518 2 of 22

in the unlimited time history in the random-stress process. Thus, it can be considered that
a fatigue-damage estimation performed in the frequency domain significantly reduces the
computational times. For this reason, an extension of the preliminary hypotheses of the
frequency-domain approach may be well received.

In a real case, however, the typical loading is non-Gaussian, and this can cause the
response to be non-Gaussian, which may lead to shorter fatigue life. This means that
sometimes the frequency-domain approach for fatigue estimation directly performed by
stress PSD cannot be applied. For this reason, non-Gaussian vibration fatigue has been the
focus. Typical non-Gaussian loads include the excitation of rail irregularity and pressure
fluctuations for an aircraft. It is proposed in military environmental standards that the
non-Gaussian loads case under extreme conditions need to be considered [7,8]. There are
several studies that were published in recent years to show how non-Gaussian excitation
impacts vibration fatigue life. In literature, Kihl et al. first proposed that the fatigue
damage caused by the stress-time history can be determined by the Gaussian damage Dg,
which is obtained from the methods mentioned above and the corrective coefficient of
non-Gaussianity λng [9]:

Dng = λngDg (1)

Winterstein obtained a polynomial to generate non-Gaussian time histories. Then
he obtained λng through the Wohler’s curve of the component and parameters from the
polynomial [10].

Benasciutti made it so that the non-Gaussian loading was modeled as a transformed
Gaussian process and defined λng with kurtosis, skewness and material parameter, also
the parameters which are used to generate non-Gaussian excitation [11,12]; Rizzi et al.
and Kihm et al. describe how non-Gaussian excitation affects the fatigue life of linear and
nonlinear structures [13–15]. Braccesi et al. propose a corrective coefficient to the narrow-
band formula in their research. He points the most significant field of the research consists
in the evaluation of non-normality indices without stress-time history reconstruction [16].
Nieslony verifies the case of a non-zero mean stress, non-Gaussian loading histories with
the use of the spectral method with the corrective factor and obtains successful results. The
only difference in λng is the power of the material parameter [17]. Palmieri et al. point out
that fatigue life due to burst and non-stationary excitations is significantly shorter [18].

It is a real challenge to obtain the kurtosis of the response stress at the critical position
only through the frequency-domain information without constructing the time-domain
signal, which makes the use of this method problematic. It is necessary to try to achieve
this goal through the kurtosis of the excitation signal rather than the kurtosis of response
stress. Although it is pointed out in the above literature that λng is only related to the
property of the material and the kurtosis and the skewness of excitation, no other material
is used to verify it. The author considers that a single corrective coefficient cannot reflect
the influence of non-Gaussian methods on fatigue-damage estimation. At high kurtosis, the
extreme value will aggravate the fatigue damage process and further shorten the fatigue
life. According to previous studies, kurtosis also has an effect on other links of fatigue-
damage estimation. For a more accurate response to fatigue damage, the breakthrough
point of the study was chosen to be the cycle counting of response stress.

In the present study, a series of finite duration data with the same PSD is designed to
demonstrate the effect of non-Gaussianity (kurtosis) on the response-stress distribution. The
PSD shape and frequency range never change in this study. The assumption is maintained
that the dynamic behavior of the mechanical system is linear and the excitation is stationary.
The aim of this study is to experimentally research the improved PSD method in the
frequency domain to infer the distribution of response stress under excitation with different
kurtoses. The advantage of this method is that it can directly reflect the range of stress
changes. Ultimately, more accurate damage can be estimated.
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This manuscript is organized as follows: in Section 2, the PSD approach in the fre-
quency for the response of the dynamic structure under vibration is presented. In Sections 3
and 4, the corrected PSD method is proposed for non-Gaussian vibration based on kurtosis
control and demonstrated. In Section 5, this method is verified under different PSD level
signals. In this paper, stress-distribution correction rather than damage correction is used
to solve the fatigue-damage estimation for non-Gaussian random vibration. It was verified
that the method proposed in this study can solve the fatigue-damage estimation at different
kurtosis levels with higher accuracy than previous methods.

2. PSD Approach in the Frequency Domain

Now, when calculating the general method of fatigue damage, according to Wohler’s
curve of the material, calculate the damage under the corresponding stress cycle and add
it to the total damage suffered by the structure. This result is based on the established
Miner’s law [19]. Therefore, obtaining the damage under the corresponding stress cycle is
called the key to calculate the fatigue damage. The more commonly used methods are the
rainflow counting method based on the time-domain signal (time-domain method) and
the PSD method based on the frequency-domain information (frequency-domain method).

The power spectral density (PSD) is a description of the power contained in the
frequency components of the random vibration signal and is a statistical characteristic in
the frequency domain of random vibration [2,20]. In random vibration, due to the time
history of vibration being significantly non-periodic, the power spectral density must be
used to calculate. The random vibration signal can be regarded as composed of an infinite
number of simple harmonic motions, so the power spectrum of the random vibration
signal is the sum of the harmonic vibration power in a given frequency range. For a
time-series x(t) of a classic random signal with zero mean, using PSD S(ω) to represent its
frequency-domain characteristic, Rx(τ) is the autocorrelation function of x(t):

Sx(ω) =
1

2π

∫ ∞

−∞
Rx(τ)e−iωτdτ (2)

The power spectral density at the specified frequency is the average of the mean
square values of the signal.

For linear structures, the vibration of a multi-degree of a freedom system can be
described as [21]:

M
..
x + C

.
x + Kx = f (3)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, x is the
vector of degrees of freedom and f is the excitation vector. By constructing the modal matrix
of the system and using the modal superposition method, the displacement mode shape
can be obtained. Then, the frequency-response equation of structural stress is obtained by
the relationship between displacement and stress [22–24]:

Hσ(ω) =
n

∑
i=1

ϕσ
i ϕT

i
ki + ω2mi + jωci

(4)

where Hσ(ω) denotes the stress-frequency-response function and ki, mi, ci are the i-th modal
stiffness, modal mass and modal damping, respectively. ϕσ

i is the corresponding modal
strain component of the system.

In this project, the stress PSD function Sb( f ) at the structural hazard point is deter-
mined by the following function:

Sb( f ) = Aa( f )H2
ba( f ) (5)

Aa( f ) is excitation applied to point a and Hba( f ) is the frequency-response function
at point b, and the structure excitation is at point a. The N-order moment of inertia is
defined as
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mn =
∞

∑
i=1

f n
i Sb( fi)∆ f (6)

The root mean square (RMS) values of the stress response σRMS and the input excita-
tion obtained by the 0-order moment of inertia are

σRMS =
√

m0 =

√√√√+∞

∑
i=1

Aa( fi)H2
ba( f )∆ f (7)

The frequency domain usually uses the moment of inertia, the approximate estimate,
the zero-value positive pass expectation E(0) and the peak expectation E(p):

E(0) =
√

m2/m0 (8)

E(p) =
√

m4/m2 (9)

In the frequency domain, the random process is usually described using the spectral
irregularity factor α and the spectral width factor ε:

α = E(0)/E(p) (10)

ε =
√

1− α2, ε ∈ (0, 1) (11)

Dirlik used Monte Carlo to simulate the power-spectral density function in 70 different
shapes and proposed an exponential distribution and two Rayleigh distributions to describe
the probability density function of approximate rain flow cyclic amplitude. The Dirlik
method has high accuracy [4,25,26].

The rainflow cycle amplitude probability density estimate is given by:

p(S)DK =
1

2
√

m0

[
G1

Q
exp
(
− Z

Q

)
+

G2Z
R2 exp

(
− Z2

2R2

)
+ G3Zexp

(
−Z2

2

)]
(12)

where Z is the normalized amplitude and Xm is the mean frequency, as fellow

Z =
S

2
√

m0
and xm =

m1

m0

(
m2

m4

) 1
2

and other parameters are defined as:

G1 =
2
(

xm − α2
2
)

1 + α2
2

, G2 =
1− α2 − G1 + G2

1
1 + R

, G3 = 1− G1 − G2

R =
α2 − xm − G2

1
1− α2 − G1 + G2

1
and Q =

1.25(α2 − G3 − G2R)
G1

For Gaussian signals, the stress-probability density equation obtained from the PSD
and rainflow count results obtained under the time-domain signal should be consistent.
From Wohler’s curve of the material, structural damage can be determined. The classical
method is the linear damage accumulation principle proposed by Miner’s Law, which is:

n(S) = E(0)p(Si)∆Si (13)

The whole life under the corresponding stress level can be obtained from Wohler’s
curve of the material. Through Miner’s law, the damage corresponding to the stress level
can be obtained.

D = ∑
n(s)
N(s)

(14)
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3. Non-Gaussian PSD Method in the Frequency Domain

Generally, a random vibration signal x is distinguished as a Gaussian signal if its
probability density function P(x) is given as

P(x) =
1√

2πσ2
e
(x−µ)2

2σ2 (15)

where µ is the mean and σ is the standard deviation. The i-th central moment was defined as

Mi =
1
n

n

∑
j=1

(
xj − µ

)i (16)

n is the number of data points related to time and sample rate. Commonly, the
second-order central moment (i = 2) M2 is the same as variance σ2.

Two parameters are used to determine whether random variables follow Gaussian
distribution, skewness S and kurtosis K, which are defined as follows:

S =
M3

σ4 and K =
M4

σ4 (17)

The skewness is an index of asymmetry of the mean value. The kurtosis is an index of
sharpness. Generally, the contribution of skewness in fatigue-damage estimation is tiny,
and it is a common practice to focus only on kurtosis.

As discussed in the first section of this paper, Braccesi’s method is more acceptable
than other methods. In this paper, this method is selected for comparison [16]. m is the
coefficient of Wohler’s curve:

λng = exp

(
m

3
2

π

(
K− 3

5
− S2

4

))
(18)

According to the 1986 Moors’ paper, kurtosis is actually used to represent the dis-
persion of the data between the mean ± RMS [27]. High kurtosis values will appear for
two reasons:

1. Most data concentrated around the mean, but also contain occasional values far from
the mean;

2. The trailing distribution weight is too large.

On the contrary, higher kurtosis means that there is a sizeable extreme value. For the
same PSD response stress, the higher the kurtosis, the higher the extremum. The fatigue
characteristics of materials, Wohler’s curve, has a high sensitivity to stress, especially on
the left side of the curve; with the increase of stress, life decreases sharply. Therefore, the
author’s view is that a single corrective coefficient cannot accurately reflect the influence
of high kurtosis (higher than 5) on the fatigue-damage estimation under non-Gaussian
random vibration. Moreover, the maximum stress may exceed the yield limit or even
fracture limit at high kurtosis. Besides, the nonlinear damage-accumulation principle
needs to be considered due to the influence of the loading sequence at high kurtosis [28].
Therefore, it is necessary to obtain the probability distribution function of response stress
under non-Gaussian random vibration.

So, the stress distribution function in the non-Gaussian frequency-domain method
can be hypothesized as

p(s)NG = αp(β(s− ∆Sc))G, s ∈ (0, pRMS) (19)

The commonly used stress range 0–6 RMS becomes 0–p RMS. Among them, α is the
maximum distribution adjustment value, also called enlarge scale; β is the α concentration
adjustment coefficient; ∆Sc is the center offset and p is the stress maximum-range coefficient.
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Through parameter-fitting, the relationship between these four parameters and kurtosis
is established.

4. Virtual Experiment

In order to highlight the differences from the kurtosis effect and avoid the interference
of other factors, the virtual test system is used to repeat the response process of specimens
under the excitation of non-Gaussian signals. The virtual test system uses actual test data
to build a finite element specimen and adjusts the material density, stiffness and damping
coefficients to make the entire model match the real situation. Double-notched specimens
are used as research objects in this study. The experiment system is shown in Figure 1.
The material card of the specimen shown in Table 1. Through the modal analysis for the
specimen both experiment and virtual experiment, the density and modal information of
the specimens are obtained.
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Figure 1. The experiment system and the virtual experiment of two notch specimens.

Table 1. Material card of AISI304.

Density Elastic Modulus Yields Strength Ultimate Tension Strength m

7942.2 kg/m3 161 GPa 365 MPa 710.5 MPa 17.92

According to the modal analysis result, the second-order mode 88 Hz is selected and
the frequency radius of the excitation is 40 Hz. In the beginning, 30 min total length time
series of acceleration were generated. They have the same PSD level and form but different
kurtosis. Here, a relatively safe PSD level is selected to facilitate the observation of damage
at high kurtosis. The sample rate is 512 Hz according to the Shannon formula. Due to the
computational power, the excitation signal with a length of 10 min is intercepted from each
datum and it is the minimum that can pass the ergodicity test. Eight different kurtosis
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levels are studied, from three to twenty and two cases for each kurtosis level. The tolerance
of the kurtosis is ±0.4. At this stage, a total of 16 time series are created. They have the
same frequency domain information, as shown in Table 2.

Table 2. Frequency-domain information (g = 9.81 m/s2).

Frequency (Hz) PSD (g2/Hz) PSD (m2/s4)/Hz

48 0.25 24.05
128 0.25 24.05

RMS 4.472136 g 43.87 m/s2

From Figure 2, the difference in the maximum values of the signals with different
kurtosis is obvious. Figure 3 shows that the energy distribution of the signal is consistent
in the frequency domain. The details of each signal are shown in Table 3.

In the process of the virtual experiment, through finite element simulation by Abaqus,
all parameters are verified in the reality modal analysis process with the specimen data.
Wohler’s curve of the specimen is also checked in order to reduce the possible difference
from manufacturing [29].

The maximum response stress occurred at the center section of the first notch. One
of the four nodes is selected as the observation object, shown in Figure 4. Although it is
mentioned in the article by George and Michalis that materials will exhibit a non-linear
response under non-Gaussian excitation, temporarily this effect is ignored in this study [30].
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From the response-stress results shown in Table 4, it was found that the response
stress’s kurtosis was attenuated. As the acceleration of kurtosis increases, the kurtosis of
the response stress decays more significantly. The RMS is 42.86 MPa. There is no significant
effect from kurtosis on the RMS and PSD. The details are shown in Figure 5.
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Table 4. The RMS and Kurtosis of response stress.

Duration 10 min Sample Rate 512

No. 1 2 3 4 5 6 7 8
RMS (MPa) 43.32 43.02 43.31 43.02 43.07 43.05 43.17 43.08

Kurtosis 9.67 9.49 5.63 5.69 4.99 4.84 3.68 3.69
No. 9 10 11 12 13 14 15 16

RMS (MPa) 42.97 43.13 43.19 43.15 43.12 43.12 43.10 43.14
Kurtosis 3.55 3.56 3.40 3.38 3.17 3.19 2.98 2.98
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By comparing the stress-cycle distribution results of different kurtoses, it can be found
that as kurtosis increases, the peak of the distribution function increases; the highest point
shifts to the low-stress region, and the maximum stress distribution range increases [31].
However, according to research, the maximum and minimum values of response stress
are related to the value of the input signal, which means that it is determined by the value
of the excitation acceleration. It can be concluded that the magnitude of the response
stress is related to the input kurtosis. Therefore, in the relationship between kurtosis and
damage in subsequent studies, kurtosis refers to the input kurtosis, that is, the kurtosis of
the excitation acceleration. In addition, most of the time, it is more difficult to obtain the
response stress than excitation.

Through the rainflow counting method, the probability density distribution of re-
sponse stress can be obtained. Here we also need to pay attention to the maximum stress.
It accounts for a tiny proportion but cannot be ignored.

According to the results shown in Figure 6, it can be clearly observed that when
the kurtosis is three, the results obtained by the time-domain method and the frequency-
domain method are the same. The result from the frequency-domain method clearly finds
the effect of kurtosis on the stress-cycle distribution [32].
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According to Kihm’s research, the peak-to-valley value of non-Gaussian signals has
a corresponding proportional relationship with RMS [15]. And it is also resented in this
study, as shown in Table 5. Therefore, adjusting the rainflow counting results obtained
in the frequency-domain method and obtaining the stress cycle distribution results at the
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corresponding kurtosis according to the kurtosis, stress RMS value and the Wohler’s curve
should be considered. Next, based on the yield limit of the material, a decision is made as
to whether to consider the plastic strain portion and then the damage of the elastic strain
and the plastic strain are calculated separately. Finally, the expected total damage at the
current kurtosis is obtained. Of course, in the actual signal, the distribution of high-stress
areas is very random due to the length and low probability. Considering that the zero-mean
random signal is symmetric on both sides of the 0 point, the probability and magnitude of
positive and negative occurrences are equal, and thus the trend of peak and valley values
with kurtosis is considered to be the same. The difference Peakk of the peak and valley
values is used. Then, only a curve equation is calculated here to fit the ratio of Peakk to RMS.

Table 5. Accelerated statistical comparison among different kurtoses.

Kurtosis 20.06 10.06 8.00 4.98 4.54 4.02 3.50 3.00
Mean (m/s2) 0 0 0 0 0 0 0 0
RMS (m/s2) 43.78 43.87 43.86 43.83 43.77 43.88 43.86 43.85
Peak/RMS 16.88 13.87 14.13 9.96 10.05 8.57 8.63 4.44

Valley/RMS −20.05 −15.16 −13.52 −12.20 −10.47 −9.07 −8.25 −4.30
P-V/RMS 36.93 29.03 27.65 22.16 20.51 17.64 16.88 8.73

According to the contour of the curve, the double exponent is selected as the ba-
sis function.

p
Peakk
RMS

= 12.5 ∗ exp(0.0225 ∗ (k− 3))− 7.5 ∗ exp(−0.75 ∗ (k− 3)) (20)

Next, the stress response function of the structure could be used to obtain the stress
at different acceleration values according to Figure 7. The changes in the distribution of
the rain flow counting results should be considered in the next stage. Mainly focus on the
center offset, the maximum distribution rate and the concentrate change.
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The stress probability distribution of the structure in the frequency range and the
RMS value of the stress could be calculated by the PSD approach. The max distribution
position will move to the negative direction of the x-axis while kurtosis is increasing. The
specific value is related to the maximum stress range. It can be known from the previous
description that all signal’s mean and root mean square is the same. For the random
process with different kurtosis, if the first-order or second-order statistic is constant during
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the growth of the maximum distribution range, as the kurtosis grows, the stress value of
the maximum distribution rate will decrease, and the distribution rate of the maximum
distribution will increase. So, the degree of increase in both the offset and the distribution
rate based on the maximum distribution range can be inversely found. According to the
characteristic of the Gaussian distribution, the change of the main distribution interval can
be calculated, which refers to the distribution range of 1σ stress.

In fact, the difference in offset is not very obvious at low kurtosis. At the same time,
using the ratio of the maximum probability density distribution under different kurtoses to
the maximum probability distribution under the Gaussian signal, the growth rate of the
rainflow counting result could be determined. All coefficient fittings are performed using
the double-exponential function as the basis function.

Center-position offset fit by kurtosis:

∆Sc = 5.7 ∗ 104 ∗ exp(−0.03010 ∗ (k− 3))− 5.7 ∗ 104 ∗ exp(−0.03012 ∗ (k− 3)) (21)

Enlarged-scale fit by kurtosis:

α = 1.048 ∗ exp(0.00651 ∗ (k− 3))− 0.04663 ∗ exp(−0.6225 ∗ (k− 3)) (22)

Select the middle part of the curve and distribute the same numerical points to
investigate the change of the curve span, here the value of 33% was chosen.

Enlarged scale fit by kurtosis:

β = 0.006886 ∗ exp(−1.042 ∗ (k− 3))− 0.9922 ∗ exp(−0.003538 ∗ (k− 3)) (23)

Then, according to this coefficient, combined with Equation (18), the stress distribution
density of any kurtosis at this node in the model under the same PSD form can be obtained.

Next, fit Figure 8 to obtain the relationship between the offset of the center position
and the enlarged scale with kurtosis. In this process, it could be found that between
2 RMS stress and 6 RMS stress (86.4~259.2 MPa), the distribution of non-Gaussian signals
is actually smaller than the distribution of Gaussian signals. So set within this interval,
use a negative offset. This reduction factor is determined by the total number of cycles.
Since the total number of cycles is constant, the number of cycles obtained by enlarging the
curve growth should be subtracted within this stress range. The curve is processed using a
smoothing function when kurtosis is higher than 5.

Now we could infer the rainflow counting results of non-Gaussian signals based
on the rainflow counting results obtained from the frequency-domain method and Gaus-
sian signals.

To check the results, use the Bendat method in the narrow-band and the Dirlik method
in the wide-band, respectively, as the fundamental equations which are modulated by
using the center position offset and the enlarged scale.

So in the stress range 0–p RMS :

p(S)nGNB = α ∗ β(S− ∆Sc)

σRMS
2 exp

(
− β(S− ∆Sc)

2

2σRMS
2

)
(24)

p(S)nGDK =
α

2
√

m0

[
G1

Q
exp
(
− Z

Q

)
+

G2Z
R2 exp

(
− Z2

2R2

)
+ G3Z·exp

(
−Z2

2

)]
(25)

where Z is the normalized amplitude and Xm is the mean frequency, as fellow

Z =
β(S− ∆Sc)

2
√

m0
and xm =

m1

m0

(
m2

m4

) 1
2
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Other parameters are defined as:

G1 =
2
(
xm − α2

2
)

1 + α2
2

,

G2 =
1− α2 − G1 + G2

1
1 + R

,

G3 = 1− G1 − G2,

R =
α2 − xm − G2

1
1− α2 − G1 + G2

1
and Q =

1.25(α2 − G3 − G2R)
G1

The new results by kurtosis increase comparison with time series as follows: by the
moving-average method, the new results look similar to the original rainflow counting
results. The results for a total of 5 kurtosis levels are presented in Figures 9–14.
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The actual operation method is to sum according to the probability density distribution
function, which is usually around 98%, and the remaining 1–2% is evenly supplemented
on 6RMS–pRMS. Next, it is only necessary to calculate according to the damage-estimation
method proposed previously. Errors are unavoidable, especially for random signals; only
approximate damage can be estimated. Each adjustment coefficient and the degree of
attenuation of the kurtosis are affected by the material properties and the structure of the
specimen. Therefore, before applying, the coefficients of the specific structure need to be
verified by actual experiments.

By comparing the damage with the different kurtoses levels from the time domain
method, the results obtained by Braccesi’s method and the new method are compared,
shown in Figure 15. The considerable difference may come from Wohler’s curve of
the material.
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The advantage of this method is that there is no need to simulate the stress time
series, but the distribution of the excitation time series needs to be made. However, the
probability density distribution function has a smaller probability value in a high-stress
range. When the size of data cannot meet the requirements, the results are greatly affected
by randomness.

So, this method can be summarized as follows: first, according to the requirements,
establish the time-domain signal under the demand kurtosis. Through the frequency-
domain method, the probability distribution of the structural response stress of the material
in a specific frequency range under the Gaussian signal is obtained. The corresponding
relationship between acceleration and stress at the point of interest is obtained using
experimental or simulation methods. The fitting method was used to infer the maximum
value of the stress range, the maximum distribution position and the magnification factor.
Finally, the stress probability density function under the Gaussian signal obtained by the
frequency domain method is used to infer the stress-probability density function under
the non-Gaussian signal at a specific kurtosis for damage estimation. It should be pointed
out that the form of the coefficient is not unique; only the one with better adaptability is
selected this time. The flowchart is as follows in Figure 16.
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5. Verification Experiment

In order to verify the validity of this result, the following signals are used for further
verification; details are shown in Table 6. In this process, the length and frequency range
of the non-Gaussian signal and PSD shape are consistent with those previously used as
illustrated in the Figures 17 and 18. In this case, 0.4 g2/Hz is the highest load that the
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shaker can accept when kurtosis is 10. As the PSD is increasing, the shaker would overload.
However, in the case of Gaussian random vibration, this situation will not occur.

Table 6. Input loading in the verification experiment.

PSD
Level Kurtosis Corrective Method

(Numerical)
Virtual Experiment

(Time Domain) Experiment

0.45 g2/Hz 10 10 min 10 min
0.6 g2/Hz 10 10 min 10 min
0.4 g2/Hz 10 10 min 10 min Failure
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A totally new specimen is applied to non-Gaussian random vibration excitation until
failure by the shaker. In the process, the failure standard of the virtual fatigue test is based
on the failure of the node; thus, ΣD = 1. The actual fatigue test standard is based on the
appearance of visible cracks at critical locations. According to the established finite element
virtual model, the load of the same level is applied to Abaqus, and the response stress of
the critical node is recorded.

After 1.5 h, visible cracks appeared in the middle of the first notch of the specimen.
The location of the crack generation is shown in Figure 19, which is consistent with the
expected location. In fact, the lifetime of Gaussian random vibration at a PSD of 0.7 g2/Hz
is the same as the above damage. It is clear that the harm of kurtosis is more worthy
of attention.
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In order to reduce the simulation time, the duration time of the input signal is selected
as 10 min. The non-Gaussian random vibration excitation with the same characteristics
as the experiment is applied to the virtual specimen. By recording the response stress of
critical nodes within 10 min, the damage value during this period can be estimated; the
process is shown in Figures 20 and 21.

According to the material property and the above rainflow counting results, it can be
calculated that the damage is about 0.067 within 10 min. Therefore, when the damage is
equal to 1, the life of the specimen is 149.25 min or 2.48 h. With the same PSD level, the
average life of the Gaussian signal is 71.4 h. The results of other methods are shown in
Table 7. Relatively speaking, this method further improves the accuracy of the calculation.

Table 7. The result of the fatigue of validation experiment.

PSD Level Kurtosis Corrective Method Braccesi’s Nieslony’s Experiment

0.45 g2/Hz 10 2.48 h 70.9 h 66.9 h 1.5 h
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6. Discussion of Results

By comparing the rain count results, three fundamental parameters should be focused
on: maximum stress, maximum distribution value and location of the maximum distribution.

By Figures 9–14, it is confirmed that the new correction method can well infer the
fatigue damage of the structure under different kurtosis signal excitations with the same
PSD level. A comparison using two methods as basic functions, Dirlik and Bendat, reveals
little difference. This means that this correction can be applied to both narrow-band and
wide-band. Unfortunately, this study was not available to validate wide-band.
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In this method, the strain-stress transfer function of the structure is used. With
Figures 17 and 18, it can be confirmed that this transfer function is only related to the
structure. When the structure is constant, the results obtained by this method can be
applied to different PSD classes. That is, it is possible to use low PSD levels to obtain a
correction relationship to solve fatigue damage for high PSD levels. Note that random
vibrations with high PSD peaks have very high equipment requirements for laboratory
simulations. However, using this method, the study will become possible.

Based on the validation tests, it can be determined that the method further improves
the accuracy of damage calculation, shown in Table 7. At the same time, it can be found
that a larger kurtosis has a significant effect on fatigue damage, making the fatigue damage
under excitation at low PSD levels reach the damage under Gaussian excitation at high
PSD levels.

7. Conclusions

In this paper, the dynamic behavior of double-notch specimens was studied in order
to find how the kurtosis of the excitation affects the response stress. The relation of kurtosis
with the excitation and response stress of the critical position is found, which makes fatigue
estimation with excitation kurtosis possible.

In fact, the new method has good performance under high kurtosis, which was proved
by experiments. Additionally, it applies to all PSD levels and is not limited to the PSD
level used to obtain the model. So, it is possible to predict fatigue damage at a high PSD
level by using a lower PSD level in the same structure, especially when the test conditions
are limited. At present, this method can be close to the real situation in high kurtosis; the
accuracy now is 66%, much better than the previous. Both the fitting method and the choice
of basis function affect accuracy. In this paper, the more usable double exponential function
model is used. However, this result can be further optimized.
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21. Mršnik, M.; Slavič, J.; Boltežar, M. Frequency-domain methods for a vibration-fatigue-life estimation—Application to real data.

Int. J. Fatigue 2013, 47, 8–17. [CrossRef]
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