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Abstract: The need for protection of electrical machines comes as a demand of safety regulations in
the automotive industry as well as a result of the general desire to obtain a robust and reliable electric
powertrain. This paper introduces a hybrid method for estimating the temperature of the rotor of
an Induction Machine (IM) based on a Nonlinear Autoregressive Network with Exogenous inputs
(NARX) used as a prediction function within a particle filter. The temperature of the stator case is
measured, and the information is used as an input to a NARX network and as a variable to a thermal
process with first-order dynamics which serves as an observation function. Uncertainties of the
NARX and thermal model are determined and used to correct the posterior estimate. Experimental
data are used from a real IM test-bench and the results prove the applicability and good performance.

Keywords: AC machines; neural network applications; recursive estimation; fault diagnosis

1. Introduction

The topic discussed in this paper is contextualized in the field of electric machine
protection. The goal is to protect the rotor of the Induction Machine (IM) from overheating
to increase the lifetime of the electrical machine. Improper thermal protection can lead to
serious defects and even life-threatening situations. The method presented here requires a
collection of data representing a sparse range of operating points of the electrical machine
(i.e., phase currents, voltages, angular speed, etc.). The RMS-current and the temperature
of the stator are measured with onboard sensors along with the angular speed while the
rotor current is derived from the current controller. With the a priori data we parametrized
the thermal model which serves as an observation function and trained a Nonlinear
Autoregressive Network with Exogenous inputs (NARX) neural network to predict state
transitions of the temperature. We tested the algorithm with input data acquired from a
Belt-Driven Booster (BDB) test-bench for 48 V Mild-hybrid Electrical Vehicles (Mild-HEVs).

To justify the importance of this work we must first contextualize it in the automotive
industry. It can be difficult to include in the end product expensive components such
as infrared sensors, mainly due to two reasons. First is the extra cost, which is hardly
acceptable in a tough competitive industry. Secondly, the reliability and accessibility of the
sensors play a key role. For example, often the sensor must be positioned in hard-to-reach
locations to provide useful data. This is the case of infrared sensors used in performance
electric motors with fast thermal dynamics. Impurities, long-term exposure to mechanical
vibrations can affect the precision of the measurements. We meet these rough conditions
often in vehicles.

Acquiring information about the temperature of the IM is important because the
thermal behavior of the IM influences the performance of the electrical drive train. Electrical
machines should be monitored and diagnosed as per safety criteria [1–3].

The IM can be exposed to temperatures ranging from −50 ◦C to more than 150 ◦C
in Mild-HEVs. Asymmetric power supply caused by inverter faults can lead to thermal
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overload of the IM. Thermal overload can also be caused by inadequate cooling, air-gap
eccentricity, or overstress of the electrical machine (i.e., requesting high power from the
IM for an extended time) [4]. Aluminum, copper, or their alloys are primary materials
for the rotor bars of IM, while laminated steel is used for the inner portion of the stator.
To ensure the protection of the electrical machine, we need to know the melting points and
understand the deformation characteristics of the components. If an early failure is not
detected, deformation of the rotor bars will worsen, leading to the raising of the bars to
where the stator core and stator windings are damaged. Implicitly, the motor performance
is altered, and in the worst-case scenario, torque at the shaft becomes erratic. The algorithm
points to solve the problem of determining the temperature of the rotor of an IM used
in Mild-HEVs without using a rotor temperature sensor. For validation purposes, we
acquire the temperature of the rotor through an infrared sensor. Towards this, a hole was
drilled into the case of the IM and the infrared sensor was placed with the direct sight
of the rotor. On the final product, namely the BDB, this temperature sensor will not be
present due to reliability issues mentioned above and to keep the production costs low.
The target was to place the infrared sensor as close as possible to the assumed hot-spot
considering that in an IM most of the high temperatures are located at the joints of the
aluminum/copper bars-end with the end rings. Previously, we implemented a particle
filter for estimation of the hot-spot temperature on the stator windings of a Permanent
Magnet Synchronous Machine (PMSM) [5]. Different approaches to solve this problem
have been investigated. The Nelder-mead method is employed towards nonlinear pa-
rameter estimation of a thermal model and the impedance response over a temperature
range is determined. The impedance is measured with a specialized instrument (N4L
precision impedance/LCR analyzer) and relates to the temperature of the IM [6]. Thermal
Impulse Response modeling is employed to forecast the temperature in different areas of
an electric machine to localize the hot spots. A heat narrow impulse is applied convolving
with the loss of the machine and the temperature is calculated. The method is suitable
in the design phase of the electrical machines but is also useful because it provides prior
information about the most critical areas [7]. The paper describes an attempt to estimate
the spatial distribution of temperature of a permanent magnet in an electrical machine
based on the estimation of BEMF harmonics. The authors propose an empirical quadratic
law to capture the relation between the maximum and the minimum temperatures across
an interior permanent magnet synchronous machine and they emphasize the need for
a ground-based approach for the mathematical model [8]. A multiple-scale method is
applied to obtain the homogenized heat equation [9]. The case of an automotive switched
reluctance machine is considered, and the parameters of a lumped thermal network are
identified [10]. In another study, it is pointed out the effect of disturbance of the resolver
signal on the temperature of an IM. The authors propose a method of estimation of stator
temperature starting from the fixed frame where a DC signal is injected, and the stator
resistance is estimated in a field-oriented control scheme [11]. Pulse injection with zero
voltage average is used to estimate rotor parameters [12]. Contrary to invasive methods,
optimal or sub-optimal filters can be used to estimate the temperature of electrical machines
considering the dependence between the magnetic flux and rotor temperature. These ap-
proaches require prior knowledge of the electrical subsystem and often assume Gaussian
uncertainties [13,14]. A method is described for estimating the temperature of the magnet
of a PMSM using the dq frame model within a Kalman filter. The VSI distortion term is
included in the estimator [15]. The equivalent circuit parameters of an IM are estimated by
a particle swarm optimization algorithm in steady-state conditions. The authors emphasis
the applicability of the algorithm for continuous working conditions but mention the lack
of precision in transient operations [16]. Estimation of internal resistance of the rotor
through model reference adaptive is a technique used widely; however, it requires the
knowledge of the machine nominal parameters to provide good results [17]. Additional
search coils are mounted inside a reluctance machine on the stator windings to provide a di-
rect measurement of stator flux and further provide an estimation of temperature and shaft
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position [18]. In open-end wingdings PMSM applications where small torque ripples are
acceptable, zero current sequences are used to determine the stator resistance and further
the temperature [19]. The time constant of a first-order thermal model is computed based
on a polynomial function of the speed and stator temperature of a PMSM [20]. A design
procedure for guaranteed state estimation of unmeasurable states with practical application
to induction machines is discussed [21]. Related to the approach involving particle filter we
mention a few remarks. The particle filter is based on an effective sequential Monte Carlo
method to solve the recursive Bayesian filtering problem [22,23]. The computational power
allows now to use the particle filter in a wider range of applications. In the automotive
world is used to estimate the traffic conditions [24]. Temperature estimation of a satellite is
implemented considering a double lumped thermal model [25]. Particle filters are used
for fault prediction and diagnosis. IGBTs faults are predicted with application in power
electronics [26]. A simulation framework with practical results for temperature estimation
of IGBT is detailed in the work of authors [27]. Throughout the mentioned publications in
this field we could practically divide the described methods into three categories: (a) meth-
ods that rely on additional hardware (e.g., search coils, real-time impedance measurement
devices, magnetic flux sensors, etc.). (b) methods that are invasive and can alter the control
command of the electrical machine (e.g., DC injection, impulse injection) and methods that
rely on a precise thermal model and precise knowledge of nominal parameters.

The method proposed in this paper has the advantage of being simple despite the
complicated-look of the particle filter, it is straightforward and provides good results. It is
decoupled and can be modularized, allowing an update or change to the prediction and
observation model in a ‘plug and play’ manner. It can be seen as three individual parts:
two information channels and one merging strategy. Except for the fairly common particle
filter, the other two information channels can be adjusted or replaced without any impact
on the particle filter implementation, thus the overall implementation is somewhat simple.
Furthermore, we mention the most important features:

• The algorithm consumes data that is already available on most standard architectures
of power electronics used in electric machine control (i.e., phase currents sensors,
stator temperature sensor, position, and speed encoder).

• The method does not require additional components (e.g., real-time precision impedance
measurement, search coils, etc.)

• The method is not invasive and does not alter the control commands to the electrical
machine.

• In the common NARX network, the state is updated with the actual output of the
network. In the proposed algorithm, we update the state of the NARX network with
the posterior estimate. The posterior estimate is obtained after merging with the
particle filter the two information channels: the NARX and the thermal model. This
corrects the prediction of the neural network in the prediction stage. Thus, is obtained
a conditioned output of the NARX model with the thermal model which in the end
improves the precision of the estimated value. This approach is distinctive, and it was
not investigated before to the problem of temperature estimation.

The paper continues with a brief description of the self-contained BDB with IM in
Section 2, while Section 3 introduces the mathematical models considered in the particle
filter. In Section 4, the equations of the recursive Bayesian filter and particle filter are
provided with the application for rotor temperature estimation. In Section 5 are presented
the experimental results from the motor-load test-bench. Finally, Section 6 concludes this
work and points to some possible improvements.
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2. System Description—Belt-Driven Booster

The BDB consists of a three-phase IM with an integrated inverter and control unit
which is capable of offering a continuous power of 6KW and a torque of 60NM on a 48 V
power net system. The system is especially efficient in diesel hybrid cars. The nitrogen
oxide emissions are reduced during accelerations from low speed when some of the torque
is produced by the BDB. This system allows a fast engine start and energy recuperation.
Additionally, engine-off coasting can be permitted (i.e., the internal combustion engine
is shut down after the vehicle reaches a higher speed and the propulsion is ensured by
the BDB). Additionally, the IM can be maintenance-free mainly, due to the lack of slip
rings, thus reducing the costs. The commands to the BDB are sent through a Controller
Area Network (CAN)/Flexray channel by the electrical vehicle main controller, thus the
system presents itself as a self-contained, compact solution Overall, the 48 V systems
(DC/DC, inverter) are, at the moment, one of the most affordable and quick solutions for
electrification in the automotive industry. Figure 1 shows a conceptual representation of a
48 V traction system.

Figure 1. A conceptual illustration of a 48 V electrification system.

The dynamics of the electrical quantities of the IM are modeled by a 4th order system.
The variables and parameters are expressed in the two-axis reference frame. The voltage
equilibrium equations of the stator (Vds, Vqs) and of the rotor (Vdr, Vqr) are defined by (1):

Vqs = Rsiqs +
dψqs

dt
+ ωψds (1)

Vds = Rsids +
dψds

dt
−ωψqs

Vqr = Rriqr +
dψqr

dt
+ (ω−ωr)ψdr

Vdr = Rridr +
dψdr

dt
− (ω−ωr)ψqr

where ω is the mechanical angular velocity, ωr is the electrical angular velocity, ids, iqs are
the stator currents and idr, iqr are the rotor currents. The rotor is squirrel-cage type and
Vqr = 0, Vdr = 0. Rs and Rr are the stator and rotor resistances, respectively. The stator
fluxes ψqs, ψds and the rotor fluxes ψqr, ψdr are defined by:

ψqs = Lsiqs + Lmiqr (2)

ψds = Lsids + Lmidr

ψqr = Lriqr + Lmiqs

ψdr = Lridr + Lmids

where Ls = Lls + Lm, Lr = Llr + Lm define the total inductance of the stator and of the
rotor, respectively. Lm is the mutual inductance and Lls and Llr are the leakage inductance
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of the stator and rotor, respectively. ir is an estimated value of the magnetization current.
In our case ir was approximated by low-pass filtering ids with the time constant of the rotor
electrical dynamics τr = Lr/Rr. The speed-torque characteristics is plotted concerning the
DC voltage bus in Figure 2. The parameters of the IM are listed in Table 1.

Figure 2. The speed-toque characteristic w.r.t to the DC voltage bus.

Table 1. The parameters of the induction machine.

Rr[Ω] @ 20 °C Rs[Ω] @ 20 °C Lls[H] Llr[H] Lm[H] Pole Pairs

0.0023 0.0024 5.23× 10−6 5.23× 10−6 1.586× 10−4 4

fs[Khz] Pn[KW] Vn[V] Tmax[Nm] ηmax[RPM] ηn[RPM]

200 6 48 60 18,000 4500

fs is the inverter switching frequency, η denotes the angular speed, V is the nominal
DC voltage bus, Pn is the nominal mechanical power. Index n is used for nominal values.

3. The Mathematical Models of the State Transition and Observation Functions

We propose to use the model defined by (3) considering that the major heat source in an
IM is the rotor and the stator will follow to a certain extent the rotor temperature curve. The
model is a simple heat transfer function of first-order which includes a thermal resistance
through which heat is dissipated and a thermal capacitance that absorbs heat. τ is a time
constant introduced for realizability. The model is not meant to be a precise description of
the thermal process but rather to act as a filter/preconditioner of the NARX network.

τ
dTα(t)

dt
+ Tα(t) = α1

dTs(t)
dt

+ α2Ts(t) (3)

Tα is the rotor temperature computed from the model (3) and Ts is the measured stator
temperature. The coefficients α ∈ R2x1 are calculated offline with the least-squares equation:

α = (C∗Tα C∗α)
−1C∗Tα T∗r (4)

where C∗α ∈ RNx2 is defined as:
C∗α = [∆T∗s T∗s ] (5)
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and ∆T∗s is the gradient of the stator temperature sensor:

∆T∗s =


(T∗s [1]− T∗s [0])/h

...

(T∗s [N]− T∗s [N − 1])/h

 (6)

τ is the time constant of the low-pass filter introduced for realizability and h is the sampling
time of the algorithm.

The NARX is a recurrent network with feedback connections encircling several layers
of the network. The NARX structure is built on the linear ARX model, which is generally
used in time-series modeling [28]. We use the structure of the recursive neural network
with delay action because it accounts for the intrinsic memory of thermal processes.

The defining equation for the NARX model is:

Tnet[k] = narx(ir[k], is[k], η[k], Ts[k], Tnet[k− 1]) (7)

where is the stator current and η is the angular speed. We added one hidden layer, fully
connected, to the network structure which is enough to capture the dynamics of the
predicted temperature Tnet. Increasing the size of the hidden layer or the number of layers
did not contribute to significant improvements in the precision but rather to the increase
of the computational run-time. Thus, f1 is the hidden layer’s sigmoid activation function,
while f2 is the output layer’s linear activation function. The hidden layer’s weights and
biases are Wli,j and bLi, whereas the output layer’s weights and biases are WLi and b0.
The indexes are in the range of i = 1. . . 10 and j = 1. . . 4.

Data Acquisition and Network Training

Figure 3 illustrates the data acquisition chain. The data available at the level of
the Electronic Control Unit (ECU) is the RMS stator current (is) acquired through the
phase current sensors, the stator temperature Ts acquired through the stator thermocouple,
the mechanical position of the shaft acquired through the position sensor. The ECU
estimates the rotor temperature and calculates the angular speed from the position sensor.
The role of the power analyzer is to provide analysis of the active and reactive power and
can provide a redundant measurement of the phase currents, voltages, and torque. In the
training process, we used data received from the ECU through the CAN bus transducer
(ir, is, Ts, η) and the real rotor temperature from the infrared-sensor acquisition board.
The currents are acquired with a sampling time of 100 µs, the angular speed is acquired
with 10 ms, and the temperature with a sampling time of 100 ms. Because of the different
sampling times, we performed linear interpolation for the low-sampling variables to have
the same size of data before the training process. Figure 4 illustrates the structure of the
neural network.

For training the network we recorded different operating points with ranging speeds
from 0 to 15,000 RPM and torque from 0 to 50 Nm summing a total of approximately 5 h
of recordings.

The model was validated on the test set by comparing the estimated temperature T̂net
with the real temperature acquired with the infrared rotor temperature sensor Tr Figure 5
shows the error distribution of the NARX network.
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Figure 3. Illustration of the data acquisition chain.
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Figure 4. NARX Neural Network.

The training was carried out using Matlab’s neural network utility (trainlm) and in-
cluded two steps of preparation: first, converting data from DAT representation (test-bench
data acquired via XCP protocol) to MAT format (Matlab’s particular format), and second,
normalizing all variables prior to the training process. The weights Wli,j, WLi and biases bLi,
b0 are updated during the backpropagation training with the Levenberg-Marquardt (LM)
optimization algorithm. For training, we used the open-loop architecture in which the
real temperature of the rotor is used as feedback in the backpropagation algorithm instead
of the estimated temperature. This offers two benefits. The first is that the feedforward
network’s input is more accurate. The second benefit is that the resulting network has a
feedforward design, allowing for the usage of a more efficient training procedure such as
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the LM method. Comprehensive literature and one of the earliest applications of the LM
method to neural network training is documented by the authors of [29,30]. This approach
is still one of the fastest for training intermediate-size feedforward neural networks of up to
several hundred weights [30]. The implementation of the LM algorithm is fairly common,
and a Matlab-specific example may be consulted here [31].

The error Probability Density Function (PDF) of the neural network and observation
model as derived from the test-bench data are depicted in Figures 5 and 6.

-P(TnarxlTr = 0)

2.5 
- -Papprox

2 

o... 1.5 

0.5 RMSD: 4.3641  °C 

0 L__.......,_.....,._ ... ��__J -��-=----------...J 

-25 -20 -15 -10 -5 0 5 

Temperature error [0G] 
10 15 20 25 

Figure 5. The error distribution of the neural network.
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Figure 6. The PDF of the observation model.

4. Particle Filter for Rotor Temperature Estimation

Figure 7 is a block representation of the estimation strategy. First, the inputs sta-
tor temperature Ts, rotor current ir, stator current is, angular speed η and the previous
posterior temperature set Tpost feed the recursive neural network block and several Np
particles are obtained. The PF block pulls a measurement out of the observation model and
merges the uncertainties PDF (i.e., Gaussian distributed Rm and Rnet) around the newly
estimated temperature.
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Figure 7. Block representation of the estimator.

The motivation of using the particle filter for the task of merging data from models (3)
and (7) is that the predicted temperature with the NARX network is nonlinear and both
models can reveal non-Gaussian noise. In our thermal process the uncertainties can be
roughly approximated with the Gaussian distribution (Figures 5 and 6). However, this
can vary with the positioning and precision of the sensors. Except for the few mentioned
papers, the particle filter was not used in the temperature estimation but it can undertake
this task well since the heat exchange is a slow process and computational power is enough
for this task. In the prediction step of the recursive Bayesian filter, the temperature Tnet
is calculated as in (7). The corresponding PDF of the prior is given by the Chapman-
Kolmogorov equation [22,23] adapted to our set of data d:

p
(
Tnetk / d1:k−1

)︸ ︷︷ ︸
prior PDF

=
∫ p

(
Tnetk / Tnetk−1 , Tsk−1 , ηk−1, ..

..irk−1 , isk−1

)︸ ︷︷ ︸
transition model (NARX net function)

· p
(
Tnet,k−1 / d1:k−1

)︸ ︷︷ ︸
posterior PDF

dTnetk−1

(8)

where p denotes the probability, d defines the set of data (will be define below) and
k is the iteration index. Thus, to calculate the prior rotor temperature the NARX net
is sampled (i.e., Equation (7) is evaluated) and the weighting is done according to the
prediction of the observation model (3). Consequently, the prior precision depends on the
precision of the NARX prediction and posterior precision. Following, the posterior PDF is
derived from the prior density function of the neural network (8) and from the observation
function (3) [32,33] with a normalization factor:

p
(
Tnetk / d1:k

)︸ ︷︷ ︸
posterior PDF

= p
(
Tαk / Tnetk

)︸ ︷︷ ︸
observation model

p
(
Tnetk / d1:k−1

)︸ ︷︷ ︸
prior PDF

/ p
(
Tαk / d1:k−1

)︸ ︷︷ ︸
normalization PDF

(9)
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The normalization PDF is defined as [22]:

p
(
Tαk / d1:k−1

)
=
∫

p
(
Tαk / Tnetk

)
p
(
Tnetk / d1:k−1

)
(10)

In the previous equations d1:k and d1:k−1 define the set of data (i.e., observation model
predicted temperature Tα, stator temperature Ts, angular speed η, rotor current ir and stator
current is) available at recurrence k and k− 1, respectively:

d1:k = Tα1:k , Ts1:k , η1:k, ir1:k , is1:k (11)

d1:k−1 = Tα1:k−1 , Ts1:k−1 , η1:k−1, ir1:k−1 , is1:k−1

The PF approximates the PDFs with a finite number of samples, rather than computing (10)
at each sample time which can be time consuming in the case of complex analytical forms.
As a result, a series of samples (particles) characterizes the PDF of the posterior temperature
p(Tnetk / d1:k) . An approximation of the functional form of the posterior PDF is obtained for
an infinitely large number of particles. The posterior PDF in its discrete form is defined by [32]:

p
(
Tnetk / d1:k

)
≈

Np

∑
i=1

w(i)
k δ(Tnetk − T(i)

netk
) (12)

The PF generates a set of rotor temperatures and their corresponding weights {(w(i)
k , T(i)

netk
) :

i = 1 . . . Np}. Np is the number of temperature points in the set. In this work Np = 60 was
determined experimentally and provides satisfactory results. The weights are chosen at each
sample time according to the principle of ‘importance sampling’. Hence, the prior PDF is
represented as [32]:

p
(
Tnetk /d1:k−1

)︸ ︷︷ ︸
prior PDF

≈
Np

∑
i=1

w(i)
k−1 p

(
Tnetk / T(i)

netk−1
, Tsk , ηk, irk , isk

)︸ ︷︷ ︸
transition model (NARX net function)

(13)

The PDF of the posterior temperature is given by [22,34]:

p
(
Tnetk /d1:k

)︸ ︷︷ ︸
posterior PDF

≈ ψ p
(
Tαk /Tnetk

)︸ ︷︷ ︸
observation model

p
(
Tnetk /d1:k−1

)︸ ︷︷ ︸
prior PDF

(14)

In (14) ψ is the normalization constant analogous to (9).
A three-step process is followed to implement the PF: predict, update, re-sample. The

NARX function (7) with inputs Ts, ir, is and η is evaluated in the prediction step for each
temperature point from the set of posterior estimates. There is a total of Np temperature
points in the posterior set. The obtained vales at the output of the network represent the
projected rotor temperatures which are distributed conforming to the prior PDF (13) [22,34].

T(i)
netk
∼ p

(
Tnetk /d1:k−1

)
(15)

Following, the observation model (3) is evaluated in the update step and a set of
Np rotor temperature points are weighted based on the PDF of the observation function.
For each projected temperature, the weight is determined as follows [22]:

w(i)
k = p

(
Tαk / Tnetk

)
(16)

The weights w(i)
k approximate the densities of the rotor temperature points and are normal-

ized so that:
Np

∑
i=1

w(i)
k = 1 (17)
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Consequently, the Np particles will be dispersed conforming to:

T(i)
netk
∼ p

(
Tnetk /d1:k

)
(18)

The effect of degeneracy is avoided in the re-sample step where a new group of Np
particles are generated from the posterior PDF (14). In this step we integrate (i.e., sum)
the values in the set w for each particle and we obtain a cumulative real sum denoted in
Algorithm 1 as csw ∈ [0, 1]. In the continuous-time domain, this is analog to the cumulative
distribution function. We generate a set X of Np real values distributed uniformly X ∈ [0, 1].
We used a built-in function that will not be covered in this paper. However, a good reference
for uniformly distributed numbers generator can be found here [35]. In the next step, we
searched the indices of X for each particle that correspond to the csw. These represent the
re-sampled indices of the prior estimate Tnet. Following, the posterior estimation of the
rotor temperature is determined as the mean value of new posterior particles:

T̂rk =
1

Np

Np

∑
i=1

T(i)
netk

(19)

The re-sampling part of the algorithm is the most computational expensive from the
particle filter since it requires the generation of random variables from given distributions.
It is more expensive than inferring the neural network. The computational complexity of
the re-sampling stage is linear increase with the number of particles. This complexity could
be decreased if, for example, we would use a hardware generator of uniform distributions.

The implementation of the estimation algorithm can be synthesized as shown in
Algorithm 1. The algorithm is illustrated for 1 sample time.

The parameters of the observation model and particle filter are listed in Table 2.

Table 2. Table of parameters for the observation model and particle filter.

Model Coefficient Model Coefficient Filter Time Constant

α1 α2 τ[s]
14.8052 1.3332 0.01

Sample Time Measurement Noise Number of Particles

h[s] Rm[°C] Np
0.0015 4.3641 60

Figure 8 details the test-bench setup.

Load Machine

Ground standstill

48V Induction
Machine 3-phase Voltage

Source  Inverter

3-phase
connections

Liquid
Coolant 

Figure 8. View of the test-bench.
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Algorithm 1 Particle filter for rotor temperature estimation

Initialization
Initialize posterior distribution: p

(
Tnet,k−1 / d1:k−1

)
← p0

Generate Np particles with initial distribution p0 and place them in a set called Tpost.
Run
Compute Tα[k]

Tα[k] = h
(h+τ)

[
h
τ Tα[k− 1]− α1

h Ts[k− 1] + (α1+hα2)
h Ts[k]

]
while i ≤ Np do

Predict
Tnet[i] = narx(ir[k], is[k], η[k], Ts[k], Tpost[i])
Update
Calculate the weight associated with each projected state:
w(i) = 1/

√
2πRmexp[−(Tα[k]− Tnet(i))2/(2Rm)];

i = i + 1
end while
Normalize weights: w(i) = w(i)/ ∑

Np
i=1 w(i)

Re-sample
Sample the discrete distribution w to generate Np random samples which will represent the
posterior Tpost :
X = rand(Np, 1); fetch Np values from a uniform distribution X ∈ [0, 1];
for j = 1: Np do

csw(j) = ∑
j
L=1 w(L) ; Cumulative Sum of W; csw ∈ [0, 1]

end for
for j = 1: Np do

ip(j) = argmini|X(i)− csw(j)|; ip will be the index of the posterior after re-sampling
end for
for j = 1: Np do

Tpost(j) = Tnet[ip(j)]
end for
T̂r(k) = 1

Np
∑

Np
i=1 Tpost(i)

5. Results and Discussions

To simulate and validate the temperature estimation method, recorded data of rotor
current, stator current, and stator temperature along with angular speed information is
provided to the estimation algorithm. The IM is set in torque control mode while the load
machine is controlled in speed mode. The angular velocity of the load machine is controlled
by a dedicated voltage source inverter with own control unit. Torque steps with various
amplitudes are requested from the BDB. Different ranges of torque and speed setpoints are
measured. Validation is done on separate data sets.

In the first scenario represented in Figures 9–13 the IM is accelerated up to 9000 RPM
and decelerated to 0 RPM, 0 A to capture part of the cooling behavior. The phase current
peaks are up to 350 A and are caused by peak torque requests as can be seen in Figure 12.
The magnetization current has a peak of 250 A. The raw (unfiltered) output of the NARX
is seen in Figure 9. With the first-order thermal model process the effect is of filtering
high frequencies at the output of the NARX network. This is accomplished by the particle
filter in the update step where the prior estimated is smoothed considering the uncertainty
model of the recursive network. As expected according to the Chapman-Kolmogorov the
effect is of filtering ripples in the prior estimate (according to the transition PDF). In all
experiments, the initial temperature guess is the stator temperature.
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Figure 9. Estimated and actual rotor temperature (test scenario I).
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Figure 10. Post estimate temperature deviation (test scenario I).
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Figure 11. Shaft angular speed (test scenario I).

Figure 12. Stator current (RMS) (test scenario I).
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Figure 13. Rotor current (RMS) (test scenario I).

Higher speed interval is tested in the case represented in Figures 14–18. The speed
is varied in the range of 1000 RPM to 15,000 RPM with different steps. We allow partial
cooling of the machine, then we repeat the speed and torque requests. The RMS stator
current has a peak of 360 A, while the magnetization current reaches approximately 250 A.
Cooling of the machine is captured well by both the thermal model and NARX network
and overall we obtain a precision with less than 4 error.
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Figure 14. The estimated and the actual rotor temperature (test case II).
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Figure 15. Post estimate temperature deviation (test scenario II).

Figure 16. Shaft angular speed (test scenario II).
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Figure 17. Stator current (RMS) (test scenario II).

Figure 18. Rotor current (RMS) (test scenario II).

In the test case represented in Figures 19–23 the IM is rotated nearly to the maximum
speed. Over the entire test set the estimated temperature shows an average deviation of
3.3 ◦C (Figure 24).
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Figure 19. Estimated and actual rotor temperature (test scenario III).
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Figure 20. Post estimate temperature deviation (test scenario III)
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Figure 21. Shaft angular speed (test scenario III).

Figure 22. Stator current (RMS) (test scenario III).

Figure 23. Rotor current (RMS) (test scenario III).

The performance metrics for the considered test cases are summarized in Table 3.

Table 3. Performance metrics for test scenarios 1–3.

Test Scenario MSE MAE MAX VAF

I 3.42 1.30 °C 6.90 °C 98.15%
II 2.86 1.16 °C 6.31 °C 98.52%
III 3.80 1.79 °C 7.21 °C 97.56%
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Figure 24. The error histogram of the estimated temperatures over the entire test set.

Figure 24 depicts the error histogram for the entire test set. The parameters of the
neural network are provided in Table 4.
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Table 4. Table of weights and biases of the NARX network for 100 epochs.

Wl1,1 Wl1,2 Wl1,3 Wl1,4 Wl1,5 Wl1,6 Wl1,7 Wl1,8 Wl1,9 Wl1,10
0.1403 1.2166 0.1194 −1.4536 −1.1580 −1.4596 −0.0907 0.9794 0.0861 1.1758

Wl2,1 Wl2,2 Wl2,3 Wl2,4 Wl2,5 Wl2,6 Wl2,7 Wl2,8 Wl2,9 Wl2,10
2.0016 −0.5212 1.8543 −1.4572 −0.1994 −1.4414 0.0046 −1.7634 −0.6388 −0.4281

Wl3,1 Wl3,2 Wl3,3 Wl3,4 Wl3,5 Wl3,6 Wl3,7 Wl3,8 Wl3,9 Wl3,10
0.5346 −1.2230 −0.8087 0.1372 −1.4326 1.0812 −1.6871 −0.6863 0.7085 0.3366

Wl4,1 Wl4,2 Wl4,3 Wl4,4 Wl4,5 Wl4,6 Wl4,7 Wl4,8 Wl4,9 Wl4,10
−1.9551 0.7925 −1.0801 0.6204 −0.3679 −0.2235 −0.5951 0.8561 2.0562 1.2913

WD1 WD2 WD3 WD4 WD5 WD6 WD7 WD8 WD9 WD10
0.8833 0.0223 1.0860 −2.0130 −0.1146 −0.9997 1.4808 −0.3406 −1.8001 1.6212

WL1 WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL9 WL10
−0.6887 −0.4060 −0.3728 0.4766 −0.7304 −0.6666 0.5783 −0.5917 0.7903 −0.7827

bL1 bL2 bL3 bL4 bL5 bL6 bL7 bL8 bL9 bL10
2.0631 −2.0804 −0.7474 0.1600 −0.5823 −0.0132 −0.2237 −0.4601 1.7474 2.1912

bo - - - - - - - - -
−0.0661 - - - - - - - - -

6. Conclusions

I. There are different development perspectives of this estimation strategy. A recurrent
neural network can offer a solution when the thermal modeling capabilities are missing
but a high quantity of data are available. Training a neural network involves time for
acquiring collections of data. At no supplementary development time, the same data are
used to identify the parameters of the observation model and to obtain the uncertainty of
the model. Then, we merge both channels through the particle filter. The observation or the
transition models can be improved but this means investing more time in the development
of a mathematical description with a deeper insight into the thermal physics. The transition
and observation functions can be a well-defined mathematical characterization of the
thermal process of multiple variables instead of an empirically structured neural network.
Thus, one who must decide between these two paths must evaluate the capabilities of the
development team and the time constraints. Obtaining a detailed thermal model could
involve more time and effort than a simple job of acquiring data on a test-bench, train a
network and identify coefficients of a simple first-order process. We saw that a simple first-
order process captures well to some extent the cause-effect of the relation rotor temperature
→ stator temperature. Not enough, but this is compensated by the particle filtering with the
neural network’s prediction.

II. It is important to highlight that to obtain a precise online estimation of the rotor
temperature, the appropriate experiment should be performed built around the targeted
application. Therefore, it is advised that the data measurement for identification be done
on the actual environment of the IM (e.g., with the BDB mounted inside the vehicle). This
is due to possibly different temperature behavior and other heating sources. The external
temperature sensor can be placed not only on the stator windings but also on the stator case
or at proximity to the electrical machine (such that it exists somewhat thermal conductivity).
The sensor could also play the role of an environment temperature sensor and we expect
that the NARX network can accommodate during training and can capture the contribution
of the external sensor to the estimated temperature of the rotor. We believe that this method
is general enough to apply to a wide range of electrical machines and other types of thermal
processes. Further development of this work will be in the direction of (a) increasing the
precision of the thermal model for this particular application (b) develop a theoretical
generic framework for the combined model and data-driven estimation approach to be
used in other applications.
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Abbreviations
The following abbreviations are used in this manuscript:

BDB Belt-Driven Booster
CAN Controller Area Network
ECU Electronic Control Unit
HEV Hybrid Electrical Vehicle
IM Induction Machine
LM Levenberg-Marquardt
Mild-HEVs Mild-hybrid Electrical Vehicles
NARX Nonlinear AutoRegressive network with eXogenous inputs
PDF Probability Density Function
PF Particle Filter
PMSM Permanent Magnet Synchronous Machine

List of Symbols
The following nomenclature is used throughout the manuscript:

Vds, Vqs [V] voltage equilibrium of the stator in rotating frame;
Vdr, Vqr [V] voltage equilibrium of the rotor in rotating frame;
ω [rad/s] mechanical angular velocity;
ωr [rad/s] electrical angular velocity;
ids, iqs stator currents in rotating frame;
idr, iqr [A] rotor currents in rotating frame;
ψqs, ψds [Wb] stator fluxes in rotating frame;
ψqr, ψdr [Wb] rotor fluxes in rotating frame;
Ls [H] inductance of the stator;
Lr [H] inductance of the rotor;
Lm [H] mutual inductance;
Lls [H] leakage inductance of the stator;
Llr [H] leakage inductance of the rotor;
ir [A] estimated value of the magnetization current;
is [A] stator current;
τr [s] time constant of the rotor electrical dynamics;
fs [Hz] inverter switching frequency;
Rr [Ω] nominal rotor resistance;
Rs [Ω] nominal stator resistance;
Rm, Rnet normal distribution variances of observation and transition model;
τ [s] time constant of the low-pass filter introduced for realizability;
α1, α2 coefficients of the thermal model;
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Ts [◦C] stator temperature;
Tr [◦C] rotor temperature;
Tα [◦C] predicted temperature with the thermal model;
Tnet [◦C] predicted temperature with the NARX model;
T̂r [◦C] posterior-estimated value of the rotor temperature;
h [s] sample time;
η [RPM] mechanical speed of the rotor measured in revolutions per minute;
∆ gradient;
∗ reference value;
w [-] particle filter sample weights;
f1 sigmoid activation function of the hidden layer;
f2 linear activation function of the output layer;
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