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Abstract: Depth cameras are widely used in people tracking applications. They typically suffer from
significant range measurement noise, which causes uncertainty in the detections made of the people.
The data fusion, state estimation and data association tasks require that the measurement uncertainty
is modelled, especially in multi-sensor systems. Measurement noise models for different kinds of
depth sensors have been proposed, however, the existing approaches require manual calibration
procedures which can be impractical to conduct in real-life scenarios. In this paper, we present a
new measurement noise model for depth camera-based people tracking. In our tracking solution,
we utilise the so-called plan-view approach, where the 3D measurements are transformed to the
floor plane, and the tracking problem is solved in 2D. We directly model the measurement noise in
the plan-view domain, and the errors that originate from the imaging process and the geometric
transformations of the 3D data are combined. We also present a method for directly defining the
noise models from the observations. Together with our depth sensor network self-calibration routine,
the approach allows fast and practical deployment of depth-based people tracking systems.

Keywords: people tracking; depth cameras; measurement noise models; data fusion; multiple-
view tracking

1. Introduction

Computer vision-based people tracking has many applications from surveillance to
people flow analysis, smart environments and human–computer interaction. The typi-
cal vision-based people tracking system consists of several components such as people
detection and appearance modelling, data fusion and tracking, trajectory and behaviour
analysis, and sensor and system calibration. In recent decades, different sub-problems have
been addressed in numerous publications, where the main focus has been on methods
using monochromatic and RGB cameras. Other types of camera sensors such as depth
cameras have also been used, and the early depth-based people tracking methods have
relied on stereo disparity [1] and Time-of-Flight (ToF) cameras [2].

Depth sensors have many benefits compared to RGB cameras in people tracking. They
are privacy preserving and the person’s identity is nearly impossible to recognise from
the depth data by the human eye. ToF and structured light sensors are based on active
illumination, and they can also be operated in complete darkness. Depth sensors directly
capture the scene in 2.5D, and less geometrical assumptions (e.g., ground plane hypothesis)
are needed for people localisation and tracking. For the people tracking, the output of the
depth cameras directly provides features on the metric coordinate system.

Surveillance, smart environments and people flow analysis are examples of people
tracking applications where a typical camera set-up consists of a network of multiple,
possibly heterogeneous camera sensors. Multi-sensor systems are used to extend the
tracking area, to prevent occlusions and to produce more accurate state estimates for
the trajectories. In such systems, the data fusion plays a crucial role. The observations
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have to be mapped to the common coordinate frame for positioning and tracking and the
uncertainties of the measurements are used for optimal state estimation and to limit the
search space in data association step.

Depth cameras suffer from depth measurement noise, which may depend on various
factors such as environment’s lighting conditions and the scene geometry and materials
being observed [3–5]. The measurement noise typically varies across the depth image
pixels, but the most affecting factor is the measured distance. Typically structured light
(SL) sensors suffer more on the range-dependent measurement noise compared to ToF [3,6].
Specifically, with Microsoft Kinect SL cameras and similar, depth quantization plays an
important role. In a study by Smisek et al., the 1st generation Kinect was analysed, and
they reported the depth quantization of approximately 400 mm at the distance of 12 m [7].
Khoshelham et al. reported random errors of 40 mm at a 5 m distance, and the depth
resolution of 70 mm at 5 m, and both errors increasing quadratically with respect to the
range [4]. Zennaro et al. [6] evaluated and compared the performance of Kinect SL and ToF
devices for different applications including people tracking. Due to the higher precision
of the captured point clouds, their experiments with the people tracking approach of [8]
resulted in 20% better tracking accuracy with ToF sensors.

Depth measurement noise does not only depend on the distance to the measured
target, but also on the pixel position on the depth image. In a study by Belhedi et al. [9],
the depth measurement errors of ToF cameras were treated as normally distributed, and
a 3D thin plate spline (TPS) was used for modelling the standard deviation of the range
measurements across the depth image plane. In addition to the noise model, they presented
how the measurement errors of each depth image pixel are propagated to 3D, and how this
could be incorporated into 3D computer vision applications such as the size measurements
of objects. Nguyen et al. [5] developed a noise model for Kinect SL where axial and
lateral components are modelled separately, and which are functions of the measured
range and the angle between the measured surface and the optical axis of the sensor.
Previous methods require manual work determining the parameters for the measurement
noise models.

For depth camera-based people tracking applications, it is common to install the
sensors to top-view position, or project the captured 3D point clouds to the floor coordinate
system, and perform the tracking on so-called plan-view domain. Harville was one of
the first to introduce plan-view-based people tracking [1]. He used stereo cameras for
the depth imaging, and a Kalman Filter (KF)-based approach for the tracking. Harville
also pointed out that the sensor’s depth measurement noise increases proportionally to
the range. Stahlschmidt [10] et al. used a ToF camera in the top-view position, and they
searched for persons’ heads by finding the local maxima from the captured point clouds.
For the tracking, they used a KF-based approach with the Mahalanobis distance-based
gating of measurements and a global nearest neighbour data association. In [11], Muscoloni
et al. introduced an FPGA implementation of an embedded people tracking node using
the plan-view method. The tracking part was implemented by using a combination of KF
and the mean-shift algorithm. Liu et al. [12] presented an RGB-D camera-based people
detection and tracking approach that operates in the plan-view domain, and where the
combination of colour and spatial information was used to describe the appearance of
the tracks. In their solution, a KF-based tracker was used to predict the positions of the
tracks for reducing the search space of the data association. Almazan et al. [13] also
used a combination of KF and the mean shift algorithm for tracking across multiple non-
overlapping depth sensors in the plan-view domain. The predictions of the uncertainties
of the targets’ positions were used to narrow down the search space of the people detector.

The plan-view approach scales naturally to multiple camera systems. Crombrugge et al. [14]
transformed the point clouds from different sensors to the common plan-view coordinate frame,
and created a fused 3D point density map from which people were detected. For the tracking,
they used KF with a global data association scheme. They also conducted experiments on how
a sensor’s installation height, angle, number of the sensors and the depth measurement noise
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affected the tracking results. However, they did not address the range dependent noise. Tseng et
al. presented a similar approach, and they fused the input point clouds from different sensors
before performing the head detection step [15]. The approach of Munaro et al. [16] supports
multiple types of depth cameras for multiple sensor-based people tracking. They track the
people in the floor plane coordinate system, and utilize the unscented Kalman filter and constant
velocity state space model for state estimation. Although Munaro et al. use the Mahalanobis
distances between the predicted track positions and observations for gating and data association
tasks, they did not report details about the measurement noise models used in their approach.

Multiple-view depth camera systems have been used for skeleton tracking as well.
Zhang et al. [17] fused the point clouds from different depth cameras, and used a particle
filter-based method for estimating the pose of the skeleton. They used a signed distance
function for the goodness-of-fit measure, and assumed a zero-mean Gaussian measurement
noise. Carraro et al. [18] also fused the point clouds, but they detected the skeletons from
synthetic depth images rendered from the frontal view of the person. For the registration of
the point clouds, they used the iterative closest point algorithm (ICP). They argued that the
ICP is particularly effective for the sensors that have significant errors in depth estimation,
but they did not address the noise model itself.

Although the state estimation, the data association and the gating steps of any depth
camera-based people tracking system benefit from an accurate depth measurement noise
model, previous studies do not address the problem. On the other hand, the existing
depth camera noise models require a manual calibration step to be carried out before
use. In many practical people tracking applications, it would be beneficial to avoid any
manual calibration steps for the fast deployment of the systems. In this paper, we focus
on determining the uncertainty of the measurements in plan-view-based people tracking
systems. The main contributions of this paper are:

1. A non-parametric, state-dependent measurement noise model for depth camera-
based people tracking systems that utilise the plan-view approach. In our model, the
measurement noise is modelled in the plan-view domain as 2D Gaussian distribu-
tion. The measurements are expressed in the polar coordinate system, and the error
distributions for the bearing and range are separately defined as deviations from
predefined reference points;

2. A method for determining the noise model directly from the people detections. For ref-
erence, we use either the ground truth points or the trajectories that are reconstructed
in our depth camera network autocalibration method.

Our approach has the following benefits:

• As we do not have any explicit model for the measurement noise, the approach can
be used with different kinds of depth cameras, and even with depth sensor networks
that consist of a heterogeneous set of sensors.

• The noise model can be directly derived from people detections, and no separate
calibration routines or calibration targets (such as checkerboard planes) are needed.
When used in conjunction with our depth camera network self-calibration routine [19],
it allows fully automatic system configuration.

The rest of this paper is as follows. In Section 2, we describe our people tracking
system, and we present the context for the proposed measurement noise model. The
noise model is detailed in Section 3, and the experiments for evaluating it are described in
Section 4. The results of the experiments are presented in Section 5, and the discussion and
conclusion are in Section 6.

2. People Tracking with Depth Sensor Network
2.1. Overview

Our people tracking solution is based on a centralised tracker architecture where
each camera is responsible for independently providing observations from people. The
observations are sent to the server, which is responsible for data association and tracking.
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For the plan-view-based people tracking, the persons may be detected from the depth maps
directly and then transformed to the plan-view coordinate system. The other approach is
to first transform the raw input data to the plan-view domain, and detect the persons from
the result. We used the latter approach. The first step in the processing was to transform
the input point clouds to the plan-view coordinate system. From the transformed point
clouds, we construct the height maps by rendering the point clouds from the top-view
perspective using an orthogonal projection so that the topmost pixel value is saved. We
detect the persons from the height maps by utilising background subtraction, and searching
for the local maxima from the foreground pixels. The detections are then transmitted to
the tracking server, which transforms them to the global coordinate system, and performs
the tracking.

2.2. Plan-View Transformation

For each camera node, we construct the height map as follows. We first transform
the 2.5D depth maps captured from the camera to point clouds using the known
intrinsic calibration. It should be noted that as we use a non-linear mapping (see
Section 2.4) for transforming the observations from different sensors to the global co-
ordinate system, the intrinsics does not have to be accurate, and the lens distortions can be
ignored at this point. Let us denote a homogeneous depth image pixel at u = (u, v)> with
DU = (d · u, d · v, d, 1)>, where d is the measured distance from the camera to the object.
Then, the transformation of the pixel to the top-view height map image pixel HU can be
written as

HU = PRK−1 DU (1)

where K is the 4× 4 sensor intrinsic parameter matrix, R is a 4× 4 rotation matrix that
transforms the 3D point cloud so that the floor plane becomes parallel to the sensor image
plane, and P is a 4× 4 orthogonal projection matrix that scales the points to predefined
height map image size:

P =


s

∆y 0 0 − sx0
∆y

0 s
∆y 0 − sy0

∆y
0 0 −1 h
0 0 0 1

 (2)

where s is the height map image size in pixels, x0 and y0 are the minimum x and y values
of the top-view point cloud, and ∆x and ∆y are the ranges of the point cloud in x and y
dimensions. As mentioned previously, x and y dimensions are scaled with the same scale
factor, and the transformation corresponds to a square height map image.

2.3. Tracking

For the tracking, we used a standard Kalman filter (KF) state estimation. We assumed
that the changes in the target velocity are small, and we used a (nearly) constant veloc-
ity (CV) dynamic model. In KF-based tracking, the system process noise covariance Q
defines how fast the velocity is allowed to change. In our tracker, we used the following
approximation for the system process noise covariance [20]:

Q = q


1
3 ∆t3 1

2 ∆t2 0 0
1
2 ∆t2 ∆t 0 0

0 0 1
3 ∆t3 1

2 ∆t2

0 0 1
2 ∆t2 ∆t

, (3)

where ∆t is the sampling period, and the magnitude of the process noise is defined by the
design parameter q.

Denoting a track with x at a timestep k, we first predict a new state estimate x̂k|k−1,
and propagate the uncertainty of the state Pk|k−1 using the standard Kalman filter predict
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equations. Denoting the observations with z, we calculate the squared Mahalanobis
distance for each track-observation pair with:

D = ỹ>k S−1
k ỹk (4)

where ỹk is the innovation:

ỹk = zk −Hx̂k|k−1, (5)

and Sk is the corresponding innovation covariance:

Sk = Rk + HPk|k−1H>. (6)

H denotes the observation model matrix and Rk is the noise covariance matrix that corre-
sponds to zk. In our state-dependent measurement noise model, the measurement noise
covariance depends on the target’s distance and angle relative to the sensor, and it is
updated whenever new observations are delivered from the sensors. The Mahalanobis
distances D are used to compute the cost for each track-measurement pair in the data
association step, and we solve the global optimum for the best pairs using the Hungarian
algorithm. Furthermore, the distances D can be used for gating and ignoring unlikely
match candidates. The states of the tracks are then updated using the standard Kalman filter
update equations. For this purpose, one needs to compute the Kalman gain, which involves
using Sk and it weighs the importance of the observations based on their uncertainty.

For track management, we used the following approach. The observations that are not
associated to any of the existing tracks initiate new tracks which are labelled as tentative.
The tentative tracks are updated similarly to the existing tracks, and as they are being
successfully updated for a predefined time interval, their status is set to confirmed. The
confirmed tracks that are not associated to any of the observations (due to occlusions, noise,
or a target moving out of the cameras’ view) are labelled as lost. The lost tracks’ states
and corresponding uncertainties are being updated without Kalman filter’s correction step
until an observation can be associated to the track again. If no observations are matched
for a predefined time interval, the track is deleted.

2.4. Transforming Observations to Global Frame

For the data fusion and tracking, the observations from different sensors are trans-
formed from the local camera plan-view coordinate frame to the global plan-view frame.
In an ideal case, 2D rigid transformations with three degrees-of-freedom (position and
direction angle) accurately align the observations, but inaccurate plan-view transformation
parameters, imprecise intrinsic calibration of the sensors, and the depth measurement
distortions induce linear and non-linear errors that cannot be modelled with the rigid
transformations only. We applied the thin-plate-spline (TPS) mappings [21] for both trans-
forming the observations to the global frame, and for directly compensating the errors
in the plan-view domain. The details of the approach are presented in [19], however, we
summarize the main points here. The TPS mappings have been widely used in many
computer vision applications, such as point set matching and image warping, and they
have also been applied for modelling depth camera distortions [22]. The TPS is an R2 → R
mapping that has an affine part MA and a non-linear part defined by a set of p control
points ci, TPS kernel φ and associated weights. For R2 → R2 TPS, two mappings that
share common control points are used. Denoting the 2D observations in the local camera
plan-view coordinate system with Cx, and the transformed points in the global coordinate
system with Gx, the mapping can be expressed with:

Gx = MA
Cx + WΦ(Cx), (7)

where W is a 3× p matrix of column vectors wi = (wxi, wyi, 0)> and wxi and wyi are the
weights in the x and y dimensions, and Φ(x) = (φ1(x), φ2(x), · · · , φp(x))>. The kernel
φi(x) is defined as φi(x) = d(x, ci)

2 log(d(x, ci)), where d = ||(cxi, cyi)− (x, y)||.
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2.5. Camera Network Calibration

The parameters of the TPS mappings are determined by using the camera observations
in the local plan-view domain and corresponding reference points of the global coordinate
system. The reference points can be collected, e.g., with a self-navigating mobile robot,
which knows its exact location at every time step. To avoid manual tasks in the calibration
process, we presented an autocalibration method in [19]. The goal of autocalibrating is
two-fold: first, we determine the optimal structure of the reference points, and second,
using the reference points, we can compute the TPS mappings for each camera, as well as
the measurement noise models as described in Section 3. In the following, we briefly revise
the method.

We first compute initial pairwise rigid transformations for each sensor pair. The
transformations map the observations from the first camera’s plan-view coordinate system
to the second camera’s plan-view coordinate system. For finding the mappings, we use a
temporal matching of the observations and an RANSAC-based approach. A specific score
is used to determine the convergence of the RANSAC, and for identifying the sensor pairs
that share the common view. One camera is selected as a base camera whose coordinate
system is used as a global frame. Then, using the initial pairwise mappings, we compute
the transformation chains from the base camera to the rest of the cameras. The inlier points
from the RANSAC scheme are used as initial reference points, and their positions in global
frame are computed by transforming them with the transformation chains and averaging
the results.

We apply a global optimisation routine similar to the 3D bundle adjustment for
optimising the reference point positions and the rigid mapping parameters. Denoting the
(homogeneous) 2D reference points in the global frame with G x̂i, and the corresponding
observations delivered by the sensor j with Cxj

i , the solution is obtained by solving the
following minimization problem:

arg min
MR,G x̂

{
n

∑
i=1

m

∑
j=1

v(i, j)ρd(G x̂i, Mj
R
Cxj

i)
2} (8)

where Mj
R is the rigid transformation of the jth sensor and v(i, j) is an indicator function

that has a value of 1 if the point i was measured by the jth sensor, and 0 otherwise. The
measurements Cxj

i are the inliers resulting from the RANSAC method. Finally, using the
original sensor observations and the optimized reference points, we compute the TPS
mappings for each camera.

3. Measurement Noise Model for Plan-View Tracking
3.1. Error Sources of Depth Sensors

According to various studies [3–5], depth cameras suffer from multiple types of
imaging errors. Lens distortion, inaccurate intrinsic calibration, image pixel and depth
noise, depth quantization and sensor-specific imaging processes cause systematic and
random errors to the depth images. Due to active illumination, the devices suffer from
temperature drift which may have a significant effect on depth estimation. Both structured
light and time-of-flight type of depth cameras use active illumination and emit near-infrared
light (NIR). Thus, the sunlight and other bright light sources emitting similar wavelengths
to NIR may disturb or even completely prevent the depth estimation process.

Similarly, in multi-sensor set-ups, the emitted light from one sensor may interfere with
another sensor and cause undesired results such as non-dense depth maps and flickering
depth pixels. The third source for the errors depends on the targets being observed. ToF
cameras suffer from depth estimation biases for low NIR reflectivity targets, which may
cause problems for tracking persons wearing certain types of clothes. Semi-transparent
and scattering materials do not perfectly reflect the light, and the depth measurement
errors are likely to occur with such objects. Highly reflective surfaces may induce multi-
path effects, where the emitted light does not travel directly from the target to the sensor.
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Such effects lead to wrong distance estimation, and part of the scene may appear at an
incorrect distance.

We aimed to model the systematic pixel and depth estimation noise of the depth
cameras. We did not take into account the random deviations that may occur due to the
multi-path effects, changing imaging conditions, flickering that occurs from low reflectivity
targets, or other phenomena that may change due to the imaging set-up. Furthermore,
it was assumed that the objects being observed did not have significant difference in
their depth response. However, we did not assume explicit function for the systematic
measurement noise. Instead, we used lookup-tables for modelling the measurement
noise. Thus, the model can be used with different kinds of depth cameras and detection
algorithms, as long as the measurement noise remains stationary.

3.2. Measurement Noise Model

The depth image pixels DU are transformed to the height map images in the local
camera coordinate system using Equation (1). We detected the people from the height
maps, and transformed the observations back to the metric plan-view coordinate system.
These observations are then transformed to the global plan-view coordinate frame by
the TPS mappings defined in Equation (7). Formally, the measurement error covariance
matrices of the depth image pixels Σ

DU are propagated to the global plan-view coordinate
system as follows:

Σ
Gx = JT1 Σ

DUJ>T1
, (9)

where T1 is the combined transformation from the depth image domain to the global
coordinate frame, and JT1 is the Jacobian of T1.

Similarly to [5], we model the measurement noise for each camera in camera-centric
polar coordinate system. We first transform the measurements Gx and the corresponding ref-
erence points G x̂ to the local plan-view domain of the camera, and convert them to the polar
coordinates. The uncertainty of a point is then defined by a 2× 2 error covariance matrix:

Σ
Cp =

[
σ2

θ 0
0 σ2

r

]
, (10)

where Cp denotes a point in the polar system, σ2
θ is the variance of the direction angle and

σ2
r is the variance of the observation’s distance from the sensor. In our model, σ2

θ and σ2
r

are both functions of θ and r:

σ2
θ = fθ(θ, r) (11)

and:
σ2

r = fr(θ, r). (12)

The measurement error covariance matrices can be then transformed to the Cartesian
system with:

Σ
Cx = JT2 Σ

CpJ>T2
, (13)

where T2 is the polar to Cartesian transformation, and JT2 is the corresponding Jacobian
matrix. Σ

Cx can be propagated to the global coordinate frame in a similar manner.
Since the errors in direction θ and range r are almost independent, the error covariance

matrix becomes (nearly) diagonal in camera-centric polar coordinate system. Thus, we
only need to estimate two functions to model the measurement noise. We did not make any
assumptions about fθ or fr. Instead, we created two 2D variance maps, one for σ2

θ and one
for σ2

r , which contain the variances in different parts of the sensor’s view in the camera’s
plan-view coordinate system. In practice, the maps are defined as lookup-tables which
are indexed by the values of θ and r, and where each element stores the corresponding
variance value.
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We estimated the values of the lookup tables by computing the average squared
deviation of the measurements from the corresponding reference points at each location.
As our goal was to directly compute the measurement noise model from the observations
of people, we cannot ensure that the points are collected from stationary objects, or that a
sufficient amount of measurements are collected from every part of the sensor’s view. Thus,
we allocate the observations to spatial bins of predefined size (e.g., 2 degrees × 500 mm),
and compute the variance in those bins. To filter out noise and to fill in the bins with no
data, we used the Barnes interpolation method, which is designed to work with sparse and
unevenly distributed data points.

4. Experiments
4.1. Experiment Set-Up

For the evaluation of the approach, we created a test area with four depth cameras
installed at the corners. The installation height of the cameras was 2.5 m, and the pitch angle
was 30 degrees downwards. The dimensions of the test area were approximately 8× 8 m,
and the cameras were set at the corners of a grid of an approximate size of 10× 10 m. The
cameras were oriented to maximise their coverage of the test area. We used Asus Xtion
PRO depth cameras in our experiments with the resolution of 640× 480 pixels and the
frame rate of 30 Hz. For operating the depth sensors, we used Raspberry Pi single board
PCs that were time synchronised using the network time protocol (NTP).

We experimented with the approach by using both remote controlled mobile robot
and a human as tracking targets. The benefit of using a mobile robot is that it provides a
controlled test scenario, and its self localization systems provide accurate ground truth
position data. The human experiments better reflect the applicability of the method in
real-life use. To mimic a human head, a Styrofoam ball with a diameter of 40 cm was
installed on the robot at a height of 150 cm. We drove the robot at a constant speed of
0.5 m/s. The position of the robot in the global plan-view frame was determined by using
the wheel odometry, Hokyo UTM-30LX scanning range finder and the adaptive Monte
Carlo localisation method as implemented in [23]. The robot localization accuracy was
that of a few centimetres, however, the movement caused the Styrofoam ball to randomly
wobble at the magnitude of approximately five centimetres. The robot and the person
followed the same route in the test area. Figure 1 shows the robot-generated ground
truth trajectory, the reconstructed trajectory and the corresponding measurements from
different cameras.

4.2. Detecting Moving Targets

For detecting moving targets from the depth images, we used a simple background
subtraction technique. We first transformed the raw depth maps to height maps in cameras’
local plan-view coordinate system using the method presented in Section 2.2. To model the
background for each height map pixel, we maintained long-term and short-term circular
buffers of five elements. The short-term buffer was updated at each frame. As a predefined
time interval (10 s in our experiments) has elapsed, we updated the long-term buffer with
the maximum value of the corresponding short-term buffer. We subtracted the background
model from the input height map, and to prevent noise, we placed a threshold on the
results using a predefined margin (300 mm in our experiments). For the detection, we
used a local maxima search with a search radius of 40 cm. Furthermore, to remove speckle
noise from the resulting foreground height map images, we applied a 2D median filter
with the kernel size of 5× 5 pixels. As the goal was to investigate the measurement noise,
not the reliability of the detection method, we manually removed coarse outliers from
the observations.
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Model-based calibration Autocalibration

(a) (b)

Figure 1. Coloured dots refer to the observations from four different depth cameras, and the white dots refer to the reference
points used to perform the geometric calibration, and computing the measurement noise models: (a) calibration results
from the model-based calibration using the mobile robot’s route as the reference; and (b) results from the autocalibration
method with the reconstructed route. The tic marks are at two-metre intervals.

4.3. Computing and Evaluating the Measurement Noise

We evaluated the proposed measurement noise model in three use-cases. In the first
use-case, we used the mobile robot as a tracking target, and we calibrated the cameras with
the TPS mappings using the ground truth robot trajectories as the reference points. In the
second use-case, we applied our autocalibration method, and we used the reconstructed
robot trajectories as the reference. In the third use-case, we repeated the autocalibration
procedure with measurements collected from a person moving along the same route as
the robot.

The sensors used in the experiments produce highly distorted data, which we com-
pensate with the TPS mappings. In the autocalibration case, this approach accurately aligns
the measurements to the common coordinate system, however, the non-linear errors persist
in the reconstructed trajectories. To make the results comparable with the model-based
calibration approach, we searched for the TSP mapping between the robot-generated route
and the reconstructed route from the autocalibration method, and transformed the mea-
surements using this mapping as well. Figure 1 shows the observations from different
sensors, and the corresponding reference points in robot-based experiments.

The variance maps were estimated as described in Section 3.2. Both the robot and the
person moved along the straight lines between the grid points so that each segment was
traversed at least twice. As the grid points were used to collect the data for computing
the true measurement noise, we removed measurements from those areas from the robot
data. For the binning of the measurement values, we used a grid of 2 deg × 500 mm. We
estimated the variance maps from the data of the moving target, and we could not assume
that all the bins have enough data points for computing the variance. Thus, we searched for
the bounding polygon of the populated bins to determine the area for which we interpolate
the values. For the Barnes interpolation method, we used an implementation of [24]. The
method has three parameters, which we selected manually: 10.0 and 5.0 for the smoothing
length scales in the angle and range dimensions, and 3 for the number of iterations.

For the evaluation, we measured the true measurement noise distributions by collect-
ing approximately 10 s observation sets from stationary targets. The measurement sets
were collected from the 12 grid points (see Figure 1) so that between 7 and 10 positions
were covered by each camera. Figure 2 illustrates the robot measurements from Camera 1,
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and the corresponding variances are shown in Figure 3. We used two metrics to compare
the true measurement noise covariance and the estimated measurement noise covariance
matrices. As an error metric, we used the Kullback–Leibler (KL) divergence from Octave’s
mvn package [25]. As a similarity metric, we used the cross-correlation of their density
functions, defined as the normalized inner product:

R(a, b) =
∫

ab√∫
a2 ×

∫
b2

. (14)

This can be calculated from the error covariance matrices Σa and Σb using the formula:

R = 2×

√
λp1λp2√

λa1λa2 × λb1λb2
, (15)

where λa1,2 and λb1,2 are eigenvalues of the corresponding matrices, and λp1,2 are those of
their product distribution, the covariance matrix of which we obtain by

Σp = Σa(Σa + Σb)
−1

Σb. (16)

A common approach to model the measurement noise in Kalman filter-based people
trackers is to use zero-mean Gaussian noise with predetermined variance, which does
not depend on the camera’s orientation or the target’s location relative to the camera. We
compared our approach to the static noise model using the standard deviation values of
σ = 10 mm, σ = 50 mm and σ = 100 mm.
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Figure 2. The variation of the observations (red dots) of a static robot (black dots) from Camera 1: (a) results in the Cartesian
frame; and (b) corresponding points transformed to the camera-centric polar coordinate frame. The location and orientation
of the camera as in Figure 5.



Sensors 2021, 21, 4488 11 of 20

0 2000 4000 6000 8000 10000 12000

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

r (mm)

an
gl

e 
(ra

d)

0

5000

10000

15000

20000

0 2000 4000 6000 8000 10000 12000

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

r (mm)

an
gl

e 
(ra

d)

0

0.1

0.2

0.3

0.4

0.5

(a) (b)

Figure 3. True variances of the observations computed from the data points shown in Figure 2: (a) the angle variance (deg2);
and (b) the range variance (mm2). The values are computed in 2 deg × 500 mm bins.

4.4. Tracking

For experimenting on the proposed noise model with our tracking solution, we
conducted experiments with three different camera configurations (tracking experiments
1–3). We computed the variance maps as described in Section 4.3, and we used the same
data for the tracking experiments, as follows. For experiment 1, we used the observations
from all four cameras, and for experiments 2 and 3, we used the data from two cameras
only. Each experiment was conducted using the observations captured from both the
mobile robot and the person. To experiment on the performance of the tracker with
targets moving at a constant speed and relatively straight paths, we removed all the
duplicate segments and turning points from the robot-based data. Figure 4 illustrates
the measurements and the corresponding reference trajectories. For each experiment, we
applied our measurement noise model with the model-based calibration (for the robot
experiments) and the autocalibration methods. We compared the results to the constant
measurement noise models with σ = 10, σ = 50 and σ = 100.

The q value of Equation (3) defines the magnitude of the internal uncertainty of the
state vector of the tracker. In practice, using a small value of q, we did not allow rapid
changes in the velocity, and the target was assumed to move along smooth curves in
space. With a high value of q, the uncertainty of the state is assumed higher, and the track
is allowed to perform more rapid manoeuvres. Human movement does not necessarily
follow the constant velocity model, and the right value for q depends on the situation. In
our experiments, we used the values q = 10, q = 100 and q = 1000.

We used the root mean squared error (RMSE) values between the estimated target
positions and the corresponding reference point positions as an error metric for the accuracy.
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(d) (e) (f)

(a) (b) (c)

(g) (h) (i)

Figure 4. Reference trajectories and measurements used in the tracking experiments—Top-row: (a) robot route (ground
truth) used in model-based calibration; (b) robot route obtained from the autocalibration method aligned with the ground
truth; and (c) person’s route obtained from the autocalibration method. Middle row: (d–f) measurements of the robot used
in tracking experiments 1–3. Bottom row: (g–i) measurements of the person used in tracking experiments 1–3.

5. Results
5.1. Measurement Noise Covariances

An example of a robot trajectory and the corresponding measurements from Camera 1
are illustrated in Figure 5, which shows that the measurement noise depends on the target’s
distance to the camera. The depth quantization effect is also visible. An example of the
estimated variance maps is presented in Figure 6. The original variance values computed at the
bins have lots of variation and missing data, and the Barnes interpolation method effectively
fills in and smooths out the final variance maps. The true measurement noise measured
from the static robot is shown in Figure 2, where the deviation of the measurements in an
angular dimension is visible as well. The ground truth variance maps computed from the
robot locations of Figure 2 are shown in Figure 3.

Figure 7 shows the error covariance ellipses resulting from the ground truth measure-
ments, from the constant noise model (σ = 50) and from our method at the confidence level
of 95%. The results are in the Cartesian frame. As expected, the shape of the error ellipses
of the true measurement noise depends on the range, and the major axes become longer at
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high distances. The widths of the ellipses do not vary much. However, there are observable
variations between the shapes of the ellipses of different cameras. For example, at the
distance of approximately 10 metres, the lengths of the major axes of the ellipses of Camera
1 are approximately two times longer compared to Camera 3. At the Cartesian frame,
the shape of the constant noise model’s covariance error ellipse is circular throughout the
imaging area, whereas the shape of the error ellipse of our model follows closer to the
ground truth. The error covariance ellipses from the human measurements are shown in
Figure 8. Visual comparison to the results from the robot measurements suggest that the
results are close to similar.

The cross-correlation and KL divergence values from all the cameras and test points
are shown in Figure 9. Visual inspection suggests that the measurement error covariance
matrices obtained with the autocalibration method are the most similar to ground truth
covariance matrices, and that the covariance matrices of the constant noise model with
σ = 10 are the least similar. Using the cross-correlation as the metric for similarity, the
constant noise model with σ = 50 performs close to the results obtained with our method.
However, using the KL divergence as the error metric, both our methods outperform the
constant noise model with σ = 50. The KL divergence values form more compact groups
for our methods indicating that our noise model adapts better to the varying measurement
angles and distances. The quantitative results for each camera and both metrics are
provided in Tables 1 and 2. The results obtained by the human measurements are shown in
Figure 10. The relative performance of different methods are similar to the results obtained
from the robot data, but the absolute performance is on average slightly worse.

Table 1. The mean cross-correlation values and the standard deviations (in parenthesis) between the ground truth error
covariance matrices and the estimated error covariance matrices from each camera. The top five rows correspond to the
robot measurements, and the bottom four rows correspond to the human measurements.

Camera 1 Camera 2 Camera 3 Camera 4 All

Model-based 0.88 (0.07) 0.86 (0.07) 0.82 (0.09) 0.82 (0.17) 0.85 (0.11)
Auto 0.91 (0.06) 0.88 (0.06) 0.87 (0.06) 0.83 (0.14) 0.87 (0.09)

σ = 10 0.45 (0.16) 0.49 (0.15) 0.50 (0.15) 0.52 (0.25) 0.49 (0.18)
σ = 50 0.84 (0.09) 0.83 (0.07) 0.86 (0.11) 0.75 (0.17) 0.81 (0.12)
σ = 100 0.65 (0.11) 0.61 (0.11) 0.63 (0.14) 0.59 (0.20) 0.62 (0.15)

Auto 0.87 (0.09) 0.79 (0.09) 0.76 (0.20) 0.80 (0.17) 0.81 (0.14)
σ = 10 0.51 (0.15) 0.54 (0.17) 0.54 (0.17) 0.52 (0.20) 0.53 (0.17)
σ = 50 0.82 (0.05) 0.77 (0.11) 0.76 (0.21) 0.71 (0.14) 0.76 (0.14)
σ = 100 0.60 (0.13) 0.56 (0.14) 0.56 (0.20) 0.53 (0.16) 0.56 (0.15)

Table 2. The mean Kullback–Leibler divergence values and the standard deviations (in parenthesis) between the ground
truth error covariance matrices and the estimated error covariance matrices from each camera. The top five rows correspond
to the robot measurements, and the four bottom rows to the human measurements.

Camera 1 Camera 2 Camera 3 Camera 4 All

Model-based 0.39 (0.23) 0.46 (0.21) 0.56 (0.29) 0.58 (0.59) 0.49 (0.37)
Auto 0.31 (0.19) 0.38 (0.19) 0.41 (0.19) 0.53 (0.45) 0.41 (0.29)

σ = 10 43.9 (55.4) 28.4 (30.4) 19.3 (11.5) 37.9 (37.4) 33.2 (37.6)
σ = 50 1.21 (1.55) 0.83 (0.78) 0.50 (0.32) 1.32 (0.93) 1.00 (1.03)
σ = 100 1.17 (0.42) 1.25 (0.44) 1.20 (0.58) 1.47 (0.96) 1.28 (0.64)

Auto 0.43 (0.25) 0.65 (0.28) 0.83 (0.84) 0.66 (0.61) 0.63 (0.54)
σ = 10 23.7 (18.1) 20.4 (14.6) 24.2 (28.4) 44.3 (72.1) 28.8 (41.5)
σ = 50 0.71 (0.17) 0.81 (0.40) 1.09 (1.06) 1.76 (2.17) 1.11 (1.29)
σ = 100 1.28 (0.52) 1.49 (0.66) 1.65 (1.25) 1.72 (0.77) 1.53 (0.81)
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Figure 5. Measurements from Camera 1 (red dots), and the corresponding ground truth (robot’s position, black dots): (a) the
measurements in the Cartesian frame; (b) the measurements transformed to the polar coordinate system of the camera. The
location of the camera in (a) is at the top right corner, and the viewing direction towards the bottom left. In (b), the camera
is at the origin with the optical axis along the r dimension.
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Figure 6. The process for computing the variance maps: (a) the variance of the detection angle (deg2) in different bins
along the route of a moving target; (b) the variance of the range (mm2) measurements; (c,d) the variance maps after the
interpolation step. The observations are transformed to the plan-view coordinate system of the camera with the origin on
the left. The bin size is set to 2 deg × 500 mm.



Sensors 2021, 21, 4488 15 of 20

0 2000 4000 6000 8000 10000 12000

-4000

-2000

0

2000

4000

Camera 1

0 2000 4000 6000 8000 10000 12000

-4000

-2000

0

2000

4000

Camera 2

0 2000 4000 6000 8000 10000 12000

-4000

-2000

0

2000

4000

Camera 3

0 2000 4000 6000 8000 10000 12000

-4000

-2000

0

2000

4000

Camera 4

Figure 7. Measurement error ellipses at the confidence level of 95% computed from the robot experiments. The solid black
ellipses refer to the ground truth, the smaller dashed black circles to the constant noise model with σ = 10, the larger dashed
ellipses to the constant noise model with σ = 50, the red ellipses to the results obtained with the model-based calibration, and
the blue ellipses to the results obtained with the autocalibration method. The error ellipses are shown in the camera-centric
Cartesian plan-view coordinate system.
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Figure 8. Measurement error ellipses at the confidence level of 95% computed from the human experiments. The solid
black ellipses refer to the ground truth, the smaller dashed black circles to the constant noise model with σ = 10, the larger
dashed ellipses to the constant noise model with σ = 50, and the blue ellipses to the results obtained with the autocalibration
method. The error ellipses are shown in the camera-centric Cartesian plan-view coordinate system.
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Figure 9. The cross-correlation (a) and the Kullback–Leibler divergence (b) values between the ground truth error covariance
matrices and the estimated covariance matrices computed from the robot measurements. C10 refer to the constant noise
model with σ = 10 mm, and C50 and C100 to the constant noise models with σ = 50 mm and σ = 100 mm, respectively.
In (b), the C10 values (marked with ×) are divided by a factor of 100 for visualisation purposes. Horizontal lines indicate
the mean values.

(a) (b)

0

0.2

0.4

0.6

0.8

1

Auto C10 C50 C100
-1

0

1

2

3

4

5

Auto C10 C50 C100

x 0.01

Figure 10. The cross-correlation (a) and the Kullback–Leibler divergence (b) values between the ground truth error
covariance matrices and the estimated covariance matrices computed from human measurements. C10 refer to the constant
noise model with σ = 10 mm, and C50 and C100 to the constant noise models with σ = 50 mm and σ = 100 mm, respectively.
In (b), the C10 values (marked with ×) were divided by a factor of 100 for visualisation purposes. Horizontal lines indicate
the mean values.

5.2. Tracking

The RMSE values from each tracking experiment are shown in Tables 3–5. Constant
noise models with σ = 10 and σ = 50 clearly outperform our method when using the
q value of 10. However, when using the q value of 100 or 1000, our method gives more than
5% better accuracy in 19 out of 36 cases, and 1% or better accuracy in 25 cases. Compared
to the constant noise model with σ = 100, our method gives 5% or more accurate results in
16 out of 27 cases (all q values), and performs as good or better in 25 cases.

Figure 11 shows that with a small q value, the tracker does not give as much weight to
the observations, and the changes in the system state are relatively slow. The phenomenon
is clearly noticeable in the sharp turns that the person makes at the grid points. The constant
noise model with σ = 10 makes an exception, and the position estimates of the tracker
follow the reference trajectory relatively well. As the q value is increased, the trackers
using our measurement noise model and the constant measurement noise models with
σ = 50 and σ = 100 start to follow the reference trajectories more closely. However, the
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tracker with the constant measurement noise model with σ = 10 starts to follow the noisy
observations which results in the higher variance of the position estimate.

(d) (e) (f)

(a) (b) (c)

C10

C50 C100

Ours

Ref

Figure 11. Example trajectories from tracking experiment 1: images (a–c) show the estimated trajectories using the q values
of 10, 100 and 1000; images (d–f) show the zoomed-in trajectories obtained with our noise model, and with the constant
noise model with σ = 10. C10 refers to the constant noise model with σ = 10 mm, and C50 and C100 refer to the constant
noise models with σ = 50 mm and σ = 100 mm, respectively. In (a–c), the tic marks are at two-metre intervals; and in (d–f)
these are at 0.5 m intervals.

Table 3. RMSE values between the estimated position of the target and the reference points in tracking
experiment 1. Green cells indicate the cases where our method outperforms the reference method by
5% or more, and light green by 1% or more. Red cells indicate the cases where the reference method
outperforms our method at the same thresholds. Gray cells indicate the cases where the difference is
in between ±1%.

Calibration Ours σ = 10 σ = 50 σ = 100
Model based 125.6 122.1 132.5 156.9

q = 10 Auto, robot 107.9 89.6 103.0 129.5
Auto, person 202.0 103.5 173.6 279.0

Model 105.6 126.2 122.9 122.3
q = 100 Auto, robot 82.5 92.5 89.5 89.4

Auto, person 101.4 100.4 98.9 103.5
Model 113.9 139.5 129.0 126.3

q = 1000 Auto, robot 94.1 109.7 96.2 92.4
Auto, person 101.3 115.1 102.8 101.0
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Table 4. RMSE values between the estimated position of the target and the reference points in
tracking experiment 2. Cell colours are as in Table 3.

Calibration Ours σ = 10 σ = 50 σ = 100
Model based 194.1 134.7 165.6 209.1

q = 10 Auto, robot 165.5 106.3 133.8 178.2
Auto, person 336.6 143.0 259.9 427.2

Model 134.1 132.8 132.8 135.8
q = 100 Auto, robot 109.0 107.6 105.3 107.0

Auto, person 131.5 132.6 135.9 143.8
Model 130.9 144.9 135.2 132.9

q = 1000 Auto, robot 108.5 122.4 110.7 107.9
Auto, person 132.1 143.1 133.1 132.0

Table 5. RMSE values between the estimated position of the target and the reference points in
tracking experiment 3. Cell colors are as in Table 3.

Calibration Ours σ = 10 σ = 50 σ = 100
Model based 147.0 126.2 140.6 173.7

q = 10 Auto, robot 126.0 96.6 116.3 152.7
Auto, person 254.2 117.6 223.0 369.8

Model 117.1 131.1 127.8 126.9
q = 100 Auto, robot 92.6 99.7 96.7 96.9

Auto, person 111.5 111.0 111.8 118.0
Model 124.6 151.4 135.5 131.6

q = 1000 Auto, robot 97.7 122.9 104.4 99.9
Auto, person 110.8 122.9 113.1 111.9

6. Discussion and Conclusions

Depth cameras generally suffer from range measurement noise. Typically, the noise
depends on the target being observed, and especially on its distance and direction rela-
tive to the sensor. The accurate measurement of noise estimates optimally weights the
observations, and gives more importance to the measurements with higher confidence.
In applications such as people detection and tracking, this measurement noise should be
modelled for more precise trajectory estimation, and data association and fusion in multi-
sensor systems. We presented an approach for modelling the measurement noise for the
plan-view-based people tracking applications. In our approach, we treat the observations
in a camera-centric polar coordinate system parallel to the floor plane. Both bearing and
range measurement noise values are dependent on the position of the observed target
relative to the sensor. In our implementation, we model the functions with two variance
maps, one for the range measurement noise and one for the angle measurement noise.

We compared the estimated noise covariance matrices to the true measurement noise
captured from static targets. Additionally, we compared our noise model to the constant
measurement noise model typically used in people tracking applications. For comparison
metrics, we used the cross-correlation and the Kullback–Leibler divergence values. The
results show that our approach outperforms the constant noise model in both metrics.
The constant noise model is sensitive to the selected value, and it does not adapt to the
target’s state.

We evaluated the performance of the proposed measurement noise model with our
Kalman filter-based people tracker system as well. The filter uses a (nearly) constant
velocity state-space model, and the allowed rate of the changes in the velocity depends
on the magnitude of the process noise covariance, defined by the q value of Equation (3).
We conducted experiments with q values of 10, 100 and 1000. With the low values, the
tracker weights less the measurements, and trusts more the dynamic model. Thus, with our
measurement noise model, the tracker produces trajectories that lag behind the reference
and overshoot when the target performs relatively fast changes in terms of velocity. The
constant measurement noise model with low variance (σ = 10) gives excessive weight
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to the (noisy) measurements, and the output of the tracker follows the reference with
higher accuracy. However, such a measurement noise model does not follow the real error
distribution which may cause non-optimal performance in data association and gating
tasks. In this paper, we had only one target being tracked, and we did not limit the search
space for the data association. The comparison of different noise models in those tasks are
left for future investigations.

As we increased the process noise magnitude, the constant measurement noise model
with σ = 10 started to follow the noisy measurements, and the result started to strongly
deviate around the reference. However, our approach, and the constant measurement noise
models with higher variances, produce more stable and accurate results. On average, using
q values of 100 and 1000, our method delivers as good or better accuracy than the other
measurement noise models we tested. In real-life scenarios, the people being tracked may
perform rapid manoeuvres, and a relatively high intensity shall be used for the process
noise covariance.

The measurement noise of the depth cameras depends on various factors, which can be
completely unknown, or difficult to model in practise. Our approach provides a relatively
simple and practical way for determining the measurement noise model for depth camera-
based people tracking applications. It is especially beneficial in the autocalibration context,
where we assume that the camera network is constructed ad hoc, and any pre-calibration
steps should be avoided. Additionally, the method adapts to the sensors with different
measurement noise characteristics. Our approach does not model random errors that
originate, e.g., from low NIR reflectivity materials or multi-path effects. To model such
errors, one possible approach could be to include contextual information to the system. For
example, with a more advanced object detection and classification approach it could be
possible to determine object-specific measurement noise models.

Our approach operates in plan-view domain, and using the highest points of the
persons as observations, tracks the people in 2D floor plane coordinate system. However,
the suggested method is not only limited to 2D, and could be extended to 3D tracking
as well. For example, a skeleton detection algorithm cloud be used for detecting body
joints from the depth camera images, and the variance maps could be generated as 3D
lookup-tables. In our experiments, the measurements used to construct the variance maps
were sparsely and unevenly distributed on the floor-plane coordinate system. In such a
scenario, the interpolation method and associated hyperparameters may have a significant
effect on the results. Extending the approach to 3D, and experimenting with a wider set of
interpolation methods and parameter values are plans for future work.
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