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Abstract: Accurate dynamic pressure measurements are increasingly important. While traceability
is lacking, several National Metrology Institutes (NMIs) and calibration laboratories are currently
establishing calibration capacities. Shock tubes generating pressure steps with rise times below
1 µs are highly suitable as standards for dynamic pressures in gas. In this work, we present the
results from applying a fast-opening valve (FOV) to a shock tube designed for dynamic pressure
measurements. We compare the performance of the shock tube when operated with conventional
single and double diaphragms and when operated using an FOV. Different aspects are addressed:
shock-wave formation, repeatability in amplitude of the realized pressure steps, the assessment of
the required driver pressure for realizing nominal pressure steps, and economy. The results show
that using the FOV has many advantages compared to the diaphragm: better repeatability, eight
times faster to operate, and enables automation of the test sequences.

Keywords: dynamic pressure; shock tube; fast-opening valve; repeatability

1. Introduction

Dynamic pressure measurements are increasingly important to achieve accurate pro-
cess control. Examples include applications such as medical equipment, turbomachines [1],
and combustion engines [2], where the accuracy in pressure measurements influences
safety, emissions, and economy.

While traceable dynamic calibrations are lacking [3], several National Metrology Insti-
tutes (NMIs) and calibration laboratories are working to establish a traceability chain [4].
At the national laboratory for pressure in Sweden, a future standard for dynamic pressures
based on shock tube technology is under development. Shock tubes can realize pressure
steps with rise time well below 1 µs and are preferred when realizing high-frequency
dynamic reference pressures [5–7]. In calibration, shock tubes may either be used as a
pure pressure generator in combination with a reference sensor or be used as a primary
measurement standard [8]. Both applications, however, require the shock tube to produce
repeatable high-quality shocks to be relevant.

Traditionally, shocks have been initiated by the bursting of diaphragms [9]. This
method often results in high quality shocks but is tedious for the operator. Diaphragms
need to be exchanged between each shock realization. Fragments of ruptured diaphragms
involve a risk of damaging the sensors, including the test object, and must be removed
from the shock tube after each test. In effect, the use of diaphragms requires manual work
to produce multiple shocks, and the repeatability is limited.

Fast-opening valves pose an alternative approach to initiate shocks [10]. Recently they
have been applied to metrological purposes [11,12]. In principle, the fast-opening valves
(FOVs) require no manual work to operate and do not pose any danger to the test objects
due to debris. On the downside, FOVs typically have a considerably longer opening time
than bursting diaphragms [10], thus putting new constraints on the shock-tube design.
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In this work, we evaluate an installation of a fast-opening valve with focus on preci-
sion and repeatability of the generated pressure steps and compare the results with two
alternative methods to initiate shocks, using diaphragms. We also note the time required
to make two consecutive shocks, using the different methods. The operating time directly
affects the economy of the system and, thus, the viability of this future dynamic pressure
standard. A fast-opening valve furthermore enables fully automated operation of the shock.
This is, however, outside the scope of this work.

2. Experimental Setup

The work was carried out using the shock tube schematically depicted in Figure 1.
The shock tube consists of two parts: the driven section, filled with low-pressure driven
gas, separated by a fixture for diaphragm or by a FOV (KB-80-20, ISTA Pneumatics, Saint-
Petersburg, Russia) from the driver section that contains a high-pressure driver gas. The
two sections have an inner diameter of 100 mm and lengths L1 and L2, respectively. Three
different operating modes; single and double diaphragm and FOV were used in this work.
In case of diaphragm operating modes, the nominal length of the driven section L1 was
3 m, and the driver section had a length L2 of 2 m. In the case of using the FOV as an
operating mode, L1 was 7 m, and L2 was 3 m.

The driven section is equipped with piezo electrical (PE) pressure sensors (113A21,
PCB, New York, NY, USA) flush mounted at well-defined positions on the circumference
along a straight line parallel to the central axis of the shock tube. These sidewall sensors
allow for both monitoring of shock formation and measuring of shock propagation speed.
An identical PE pressure sensor was also flush mounted in the center of the endwall. The
PE sensors were connected to a signal conditioner (Model 483C Series, PCB, New York,
NY, USA) and digitized using an 8 channel 12 bit 60 MS/s per channel oscilloscope (PXI-
5105, NI, Austin, TX, USA). In this work, the data acquisition was performed by using
LabVIEW with a sampling rate of 3 MS/s and a sample size of 105 samples. The sensitivity
of individual sensors given by the manufacturer were used to scale the recorded pressure
amplitude.

Static absolute pressure transmitters were mounted on the driven section (EJX 510A,
Yokogawa, Tokyo, Japan) and the driver section (EJX 310A, Yokogawa, Tokyo, Japan) to
monitor the initial pressures of these volumes. The buffer pressure, between the dou-
ble diaphragms, was monitored by using a static gauge pressure transmitter (EJX 530A,
Yokogawa, Tokyo, Japan). As the shock tube is positioned in a temperature-controlled
laboratory, the initial gas temperature was considered to be 21 ◦C.

The driver section, driven section, and buffer volume (in the case of double di-
aphragms) can be filled, vented, and evacuated independently. To prevent over-filling, the
buffer volume is filled by gas from the driver section. Two separate gas mixtures may be
routed to the different volumes. In this work, Ar (99.999%, Air Liquide) was used in all
volumes for pressure steps up to 500 kPa. For pressure steps above 500 kPa, Ar was used
in the driven section and He (99.999%, Air Liquide) in the driver. To ensure well-known
gas composition in driver and driven sections, the system is equipped with a dry roots
vacuum pump (NeoDry 15E, Kashiyama, Saku City, Japan) to evacuate the volumes before
filling with appropriate gases.

When using the single diaphragm mode, the driver volume was pressurized until the
single diaphragm spontaneously ruptured. For double diaphragms, the shock is initiated by
venting the buffer volume. The diaphragms used were either a single ply, or a combination,
of 23, 36, or 50 µm Mylar foil.

The resulting shock amplitudes were calculated from the measured shock propagation
speed and static initial conditions, using a 1D transport model described in Section 3.
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Figure 1. Schematic illustration of the shock tube. FOV, fast-opening valve; SD, single diaphragm;
DD, double diaphragm.

3. Theory

The amplitude of a 1D shock-wave propagating in a calorically perfect gas (having
constant specific heats with respect to temperature) can be expressed as follows [13]:

p2

p1
= 1 +

2γ1

γ1 + 1

(
M2

s − 1
)

(1)

where p2 denotes the pressure behind the shock front, p1 the pressure in front of the shock,
γ1 is the heat capacity ratio cp/cv of the driven gas, and Ms is the Mach number of the
incident shock given by the following:

Ms =
W
a1

(2)

where W denotes the speed of the shock front relative to the net speed of the gas molecules
in front of the shock, and a1 =

√
γ1R1T1 is the speed of sound in the undisturbed driven

gas at absolute temperature, T1. R1 is the specific gas constant of the driven gas.
Equations (1) and (2) are straightforwardly applied to the incident shock wave (i.e.,

directly after the rupture of diaphragms or opening of the FOV and when propagating in a
driven gas at rest). The quantitative values of p1 and T1 are given by static measurements
of the driven gas. W is calculated from the delay between the measured arrival of the shock
front at the sidewall mounted PE sensors and knowledge of their positions.

Equation (1) can also be applied to the reflected shock amplitude provided supplemen-
tary relations. The reflected shock propagates in the opposite direction through the tail of
the incident shock. Hence, for reflected shocks, p2 and p1 in Equation (1) instead denote the
reflected amplitude (p5) and the pressure behind the incoming shock front (p2), respectively.
The Mach number of the reflected shock (MR) is connected to the Mach number of the
incident shock (Ms) by the implicit expression [13]:

MR

M2
R − 1

=
Ms
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s − 1

√
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Hence, the amplitude of the reflected shock wave can be obtained as follows:

p5

p2
= 1 +

2γ1

γ1 + 1

(
M2

R − 1
)

(4)
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From Equation (4) and the measured driven gas static pressure, p1, the pressure step
amplitude (p5–p1) can be calculated. When employing a shock tube as a dynamic pressure
standard, the device under test is preferably flush-mounted on the endwall to record the
reflected pressure step (p5–p1), as this results in the highest amplitude and fastest rise-time
of the pressure step.

The eventual Mach number of the incident shock partly depends on the conditions of
the undisturbed driver gas (composition, temperature, and pressure). The relation between
the pressure ratio of the undisturbed driver and driven gases, p4/p1, and the Mach number,
Ms, is given by the following [14]:

p4

p1
=

1
α1

(
2γ1M2

s
γ1 − 1

− 1
)(

1−
(1/α4)(a1/a4)

(
M2

s − 1
)

Ms

)−2γ4/(γ4−1)

(5)

where α1 = (γ1 + 1) / (γ1−1), α4 = (γ4 + 1) / (γ4−1), γ4 is the heat capacity ratio, cp/cv, of
the driver gas, and a4 is the speed of sound in the undisturbed driver gas.

For realizing a nominal Mach number (Ms), Equation (5) can be used to estimate
a preliminary value of the required driver pressure (p4) at a given driven pressure (p1).
Deviation between experimental and estimated values of p4 and possible reasons for it are
discussed in the next section.

4. Results and Discussion

A comparison of the three operating modes with respect to shock formation, estimation
of the required driver pressure (p4), repeatability, and economy is presented and discussed.

4.1. Shock Formation

Typical shock waves generated by the shock tube are shown in Figure 2. Figure 2a
presents the shock wave generated by bursting the double diaphragm mode. Shock waves
generated by the FOV at two different lengths of the shock tube, 5 and 10 m, are shown in
Figure 2b,c, respectively. For all three realizations, the nominal pressure step was 500 kPa
and the driven pressure was kept at 100 kPa(a). The shock waves were recorded by the
endwall sensor and the sidewall sensors 1–3. Figure 2a shows that the measured amplitude
of the generated pressure step is about 500 kPa and that the pressure remains constant
during a period of about 4 ms before it interacts with the contact surface between the driver
and driven gases. Figure 2 shows a similar behavior when using the FOV albeit that the
generated shock front is not fully developed, resulting in a non-constant pressure during
the high-pressure part of the pressure step. The length of the driven section (L1 = 3 m) is not
enough for the formation of the shock wave at the present opening speed of the valve. This
can be seen in Figure 3a, comparing the shock profiles at three locations along the shock
tube. The pressure traces in the figure are recorded by sidewall sensors 6, 4, and 1, which
are located at distances of about 1.4, 2.2, and 2.8 m, respectively, from the FOV (c.f. Figure
1). The pressure profiles were shifted in time for ease of comparison. The shock front is
progressively converging from a softer transition close to the FOV into a more ideal step
further down the shock tube. We argue that the opening time of the FOV is considerably
longer than the rupture time of diaphragms that will lead to a slower development of the
shock front. As illustrated in Figures 2b and 3a, this relatively slow opening time results in
not fully developed shocks at the end of the 3 m driven section. Furthermore, the shock
speed along the tube was calculated at different positions, using the sidewall sensors. The
distance between the sidewall sensors and the FOV is xi, and the arrival times of the shock
front at the sensors positions is ti, i = [1 − 6]. The shock speed at the middle distance
between every two successive sensors is Wi = (xi + 1 − xi) / (ti + 1 − ti). Figure 3b shows
the shock speed at different positions from the FOV. The figure shows that the shock wave
is accelerating when propagating along the shock tube that confirms that the shock was
not fully developed when reached the back plate. To generate a fully developed shock,
the driven section was elongated to 7 m. The generated shock wave after elongating the



Sensors 2021, 21, 4470 5 of 11

shock tube is shown in Figure 2c. A shock-wave profile similar to that generated using
diaphragms was obtained. The shock speed measured by the sidewall sensors at different
positions after elongating the shock tube is presented in Figure 4. The deceleration of the
shock wave as it propagates toward the back plate—this is the expected behavior of fully
developed shocks [13]—can be seen in the figure.

Figure 2. A typical shock wave generated by the shock tube. (a) Double diaphragms; (b,c) fast-
opening valve before and after elongating the shock tube, respectively.
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Figure 3. (a) The development of the incident shock front generated by the FOV at three different positions. (b) The shock
speed at different positions from the FOV. Driven section length (L1) is 3 m.

Figure 4. The shock speed at different positions from the FOV. Driven section length (L1) is 7 m.

Furthermore, the driver section was elongated to 3 m. When using He as a driver
gas, the time duration of the constant pressure step is shortened as the expansion wave
moves faster than the shock wave. A short constant pressure limits the minimum sensor
response frequency that can be characterized by the shock tube. To generate reasonable
constant pressure steps, the driver section was elongated, and this delayed the arrival of
the expansion wave.

These settings (L1 = 7 m and L2 = 3 m) were used in all FOV experiments.
The effects of different operating modes on the pressure step parameters, namely

amplitude, step duration, and rise time, were investigated. There is no difference between
the three operating modes for realizing specific step amplitude (p5–p1) at specific Mach
number, provided that the proper initial conditions are used (see Figure 2a,c). The step
duration depends on the length of the shock tube, the used gases in different sections
(driven and driver), and the operating mode. Qualitatively, the same design rules are
applicable for different operating modes. However, we did not investigate it quantitively.
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The rise time of the generated step is not possible to be measured in the current setup.
However, we have no reason to believe that it is affected by the operating mode, as long as
the generated shock is fully developed.

4.2. Driver Pressure (p4) and Mach Number

When realizing the pressure steps, we observed that the required driver pressure
differs from the ideal value given by Equation (5). The behavior of this discrepancy differs
between various operating modes. When using the diaphragm modes (single and double),
the value of (p4 experiment/p4 equation) was constant for all pressure steps and driver gas
compositions. It is 1.1 in case of single diaphragm and 1.2 for double diaphragm. In contrast,
in the case of using the FOV, it changes with the Mach number and the composition of the
driver gas. Figures 5a and 6a show the behavior of p4 from the experiment using FOV and
calculated from Equation (5) at different Mach numbers when using Ar and He as a driver
gas, respectively. The value of (p4 experiment/p4 equation) was calculated at different
Mach numbers when using Ar and He as a driver gas and is shown in Figures 5 and 6b,
respectively. In all cases, p1 was kept at 100 kPa(a). The Mach number was calculated by
using Equation (2), where the shock speed was calculated by using the linear regression of
the time–position relation measured by the sidewall sensors 1–3 shown in Figure 1.

Figure 5. (a) The driver pressure (p4) as a function of Mach number and (b) (p4 experiment/p4 equation) as a function of
Mach number when using Ar as a driver gas; p1 is 100 kPa(a).

Figure 6. (a) The driver pressure (p4) as a function of Mach number and (b) (p4 experiment/p4 equation) as a function of
Mach number when using He as a driver gas; p1 is 100 kPa(a).
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The figures show that ratio (p4 experiment/p4 equation) increases linearly with the
Mach number for both Ar and He as a driver gas. The slope of the line depends on the
driver gas properties (heat capacity ratio and molecular weight). When using Ar as a driver
gas, p4 ratio = 0.98×Ms + 0.19, while in case of using He, p4 ratio = 0.57×Ms + 0.40. We
argue that the geometry of the interface between driver and driven sections affects the
relation between driver pressure and Mach number. While the geometry for the diaphragm
fixtures is constant with respect to both pressure and time after burst, the geometry of the
valve is varying with both pressure and time. The valve is spring-loaded in its closing
direction, and the opening is partially actuated by the driver pressure (p4). Therefore, both
the speed and stroke of the valve stem and disc upon valve opening are depending on p4.
This naturally results in a more complicated relationship between p4 and Ms.

Since the FOV required higher driver pressure compared to the diaphragm, the
accessible Ms and the resulting pressure steps may be limited by the highest allowable
driver pressure. The accuracy of the assessed pressure steps is not affected by the driver
pressure if Ms or a reference sensor is used. Thus, we strongly recommend not to use p4 to
assess the pressure steps.

4.3. Repeatability

Figure 7 presents the repeatability of the generated pressure steps, using the three
different operating modes. Three repetitions of five nominal pressure steps (p5–p1) ranging
between 200 and 1000 kPa were realized, using each mode of operation. The difference
between the maximum and minimum values at each pressure level and operating mode
were calculated and are shown in the figure.

Figure 7 shows that the repeatability realized when using the FOV is better than that
in the case of using the diaphragm modes. In absolute numbers, the repeatability is within
±4 kPa for FOV compared with ±16 kPa for diaphragm modes. At low pressure steps up
to 300 kPa, the relative repeatability of the FOV is within ±1% and improved to ±0.6% for
pressure steps above 300 kPa. On the other hand, in the case of using diaphragm modes,
the relative repeatability is within ±3.7% up to 300 kPa and within ±2.2% for pressure
steps above 300 kPa.

Figure 7. The deviation spread at different nominal pressure steps, using the three operating modes.

Sources for variations in shock amplitude common for all modes of operation com-
prise variations in initial parameters, such as driven pressure (p1), driver pressure (p4),
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temperature of driven gas (T1), and driver gas (T4) and purity of respective gases. These
variations put a lower limit on the repeatability common for all modes, and their influence
on the final pressure step can be estimated by using Equations (1)–(5). Theses equations
imply that ± 1 ◦C variations in T1 and T4 individually affect the pressure step by ± 1 kPa.
An observed ± 0.1% variation in p4/p1 affects the step amplitude by ± 0.2 kPa.

Additional effects from diaphragm rupture or valve opening appear to be present as
the observed variations in pressure step exceed the projection from variations in the input
parameters.

For single diaphragm operation, the driver pressure is determined by the ultimate
pressure the individual diaphragm can withstand before rupture. That pressure is in
turn determined by the material properties of the individual diaphragms, as well as any
irregularities and strains induced by the operator upon mounting the diaphragms. The
dependence of the bursting pressure, p4, on the diaphragm thickness is presented in detail
in Figure 8. Here different diaphragm thicknesses ranging from 23 to 200 µm were tested.
The driven pressure (p1) was kept at 100 kPa(a) in all measurements. The driver pressure
was increased gradually until the diaphragm burst. Three measurements were taken at
every thickness. The figure shows that the driver pressure increases linearly from 200 kPa(a)
at a diaphragm thickness of 23 µm to about 1000 kPa(a) at 200 µm. In this study, only three
different ply thicknesses were used to build a diaphragm, resulting in that only a selection
of discrete levels in p4 is achievable. As can be seen in Figure 8, there is only a practical
problem for lower pressures as the variance in p4 becomes dominant at higher pressures.

Figure 8. The bursting pressure of the single diaphragm as a function of the diaphragm thickness; p1

is 100 kPa(a).

When double-diaphragm mode was applied, the problems with variations in driver
pressure were, to a large extent, mitigated, as the ruptures of the diaphragms are initiated by
venting of the buffer volume. This method allows for better control of the initial parameters.
The double-diaphragm mode is expected to have considerably better repeatability than
the single diaphragm; this also proves to be the case according to Figure 7. However, the
irregularities and mounting effects are still unavoidable.

The FOV allows for better control over the initial pressures. We argue that the re-
peatability of the shocks generated by the FOV is mainly limited by uncertainties of the
variations of the gas temperature and the opening behavior of the valve.
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4.4. Economy

We used this measure to estimate the time needed to perform standard calibrations. A
comparison of the operation time of the three modes is shown in Figure 9. Even without
automation, the FOV mode requires one-fifth of the operation time of the single diaphragm
and one-eighth of the double-diaphragm operation time.

The additional time for operating the diaphragms stems from disassembly and re-
assembly of the fixture for the diaphragms and cleaning the shock tube from debris. In
the double-diaphragm mode, the changing of diaphragms is time-consuming, and there is
also more debris to clean compared to the single-diaphragm mode. The setting of initial
pressures is also more time-consuming for double diaphragms, as care must be taken
to maintain a correct pressure gradient over the double diaphragms in order to avoid
accidental rupture.

Furthermore, using the FOV eliminates the risk of damaging the sensors, including
the test object, due to debris from the ruptured diaphragm in the driven section.

Figure 9. A comparison of the operation time of the three operating modes.

5. Summary

In this work, the performance of a shock tube retrofitted with a fast-opening valve
(FOV) was evaluated. The shock tube is the candidate of the Swedish national laboratory
for pressure as a primary measurement standard for dynamic pressure calibration. Shock
waves were initiated by spontaneous rupture of single diaphragm, controlled rupture of
double diaphragm, and an FOV. A comparison of the three operating modes was performed.
The FOV allows for the realization of shocks with a better repeatability that is comparable
to diaphragm operation modes and with a repetition rate up to eight times faster.
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