
sensors

Communication

A Data-Driven Long Time-Series Electrical Line Trip Fault
Prediction Method Using an Improved Stacked-Informer Network

Li Guo 1,2,3, Runze Li 1 and Bin Jiang 2,*

����������
�������

Citation: Guo, L.; Li, R.; Jiang, B.

A Data-Driven Long Time-Series

Electrical Line Trip Fault Prediction

Method Using an Improved Stacked-

Informer Network. Sensors 2021, 21,

4466. https://doi.org/10.3390/

s21134466

Academic Editor: Hossam A. Gabbar

Received: 12 May 2021

Accepted: 22 June 2021

Published: 29 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Information Engineering, Hubei Minzu University, Enshi 445000, China;
gl-hbmzu@hbmzu.edu.cn (L.G.); Lrz-hbmzu@hbmzu.edu.cn (R.L.)

2 College of Automation Engineering, Nanjing University of Aeronautics and Astronautics,
Nanjing 211106, China

3 College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
* Correspondence: binjiang@nuaa.edu.cn

Abstract: The monitoring of electrical equipment and power grid systems is very essential and
important for power transmission and distribution. It has great significances for predicting faults
based on monitoring a long sequence in advance, so as to ensure the safe operation of the power
system. Many studies such as recurrent neural network (RNN) and long short-term memory (LSTM)
network have shown an outstanding ability in increasing the prediction accuracy. However, there
still exist some limitations preventing those methods from predicting long time-series sequences in
real-world applications. To address these issues, a data-driven method using an improved stacked-
Informer network is proposed, and it is used for electrical line trip faults sequence prediction in this
paper. This method constructs a stacked-Informer network to extract underlying features of long
sequence time-series data well, and combines the gradient centralized (GC) technology with the
optimizer to replace the previously used Adam optimizer in the original Informer network. It has a
superior generalization ability and faster training efficiency. Data sequences used for the experimental
validation are collected from the wind and solar hybrid substation located in Zhangjiakou city, China.
The experimental results and concrete analysis prove that the presented method can improve fault
sequence prediction accuracy and achieve fast training in real scenarios.

Keywords: data-driven; power system; line trip fault; long sequence prediction; stacked-informer
networks; gradient centralization

1. Introduction

Reliability and stability are the most important aspects to guaranteeing the safe
operation of electrical networks and power systems. Early and accurate fault prediction is a
valuable and urgent subject in electrical equipment maintenance and power grid operation.
An electrical line trip fault usually happens in a power grid system [1,2]; it will produce
a long sequence of fault data in the electrical sensor network, eventually cause power
outages and economic losses. The aim of fault prediction is to forecast faults that occur in
the power system by analyzing historical data, so as to prevent electrical accidents and
ensure system recovery.

In the past decades, many studies have been proposed in the power system faults pre-
diction area [3–14], such as expert systems [15,16], rough set [17], neural networks [18–22],
etc. In general, it is very meaningful to make adequate good use of those electrical mea-
surement data collected by the power station or state grid; this is valuable and first-hand
information for improving the fault prediction performance and for ensuring the reliability
and stability of power systems. In recent years, many deep neural network (DNN) methods
have been applied in power fault prediction [23,24]; the popularly used models are the
recurrent neural network (RNN) [23,25] and long short-term memory (LSTM) network [26].
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However, these methods have the main drawback that the prediction accuracy will de-
crease when the long sequence time-series data including a large number of input temporal
information is fed into models. In order to address these issues, a data-driven long time-
series line trip fault prediction method is used in this paper; it develops an improved
stacked-Informer network to capture temporal features of the long sequence input and
then achieves a higher prediction accuracy and superior efficiency. The performance of
the presented method obviously outperforms the novel developed conventional Informer
network and some other models. In fact, the proposed methodology can be applied in real
power systems for fault prediction; it helps to improve fault prevention and reduces the
losses caused by electrical accidents. The main contributions of this paper are summarized
as follows.

(1) The long time-series line trip fault prediction method using the improved stacked-
Informer network is adopted; it exploits more comprehensive temporal information
of long sequence input measurement data, includes normal and abnormal current
and voltage data of power lines, and then predicts the short sequence output fault.
This method achieves a superior generalization performance.

(2) The strategy of gradient centralization (GC) technology is introduced and embedded
into the optimizer, replacing the original Adam optimizer usually used in the DNN
model for a GC+Adam optimization. GC can be viewed as a projected gradient
descent method with a constrained loss function; it operates directly on gradients
by centralizing the gradient vectors in order to have zero means. This technology
improves the training time of the long sequence time-series fault prediction markedly
and improves the accuracy and efficiency of the presented methodology.

(3) Real measurement long sequence data is collected by electrical sensors at a wind solar
hybrid power station, which is located in Zhangjiakou City, China. The recorded
long sequence data is divided into two datasets, and both of them are conducted
on the proposed methodology in order to prove a superior performance in real-
scenario application.

The rest of this paper is organized as follows. The related work is described in Section 2.
Section 3 introduces the architectures of the proposed method for the long sequence time-
series line trip fault prediction in a power system. Then, real collected first-hand data is
conducted on the presented methodology to validate an effective and efficient performance
in Section 3. Finally, the conclusion and prospective work are summarized in Section 4.

2. Related Work

Many real-world applications require a long sequence time-series forecasting (LSTF)
with a high prediction accuracy, and it has great significances for electrical fault sequence
prediction in power systems; this prediction will provide an early alarm to ensure a normal
and safe power grid operation. Some models, such as RNN, LSTM and Transformer [27],
are good choices for doing a prediction task, but their architecture limits the prediction
performance for LSTF. Similar to some illustrations provided by Zhou et al. [28]. Figure 1a
indicates that LSTF can extend to a longer period than the short sequence prediction after
training process. Figure 1b indicates that when the length of the input long sequence
reaches 48, the mean-square error (MSE) value is unacceptable and the inference speed
drops rapidly. The architecture of these existing models limits the performance of LSTF,
which fails to capture the inherent long-range feature between the output and input.

In order to deal with this problem, an efficient LSTF transformer-based model named
Informer was firstly proposed by Zhou et al. [28] in 2021, which has three special features:
(1) a probsparse self-attention block has a good performances on sequential alignment;
(2) the self-attention distilling draws the main attention by halving the cascading layer in
order to handle long input sequences efficiently; (3) the generative style decoder predicts
the long time-series sequence at one forward operation, which drastically improves the
inference speed of the long-sequence output. Experiments in Ref. [28] indicate that the
Informer model significantly outperforms some existing methods for LSTF. According to
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Ref. [28], we redraw the main structure of the Informer model and the single stack of the
encoder are illustrated in Figure 2a,b, respectively.
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The Informer network contains two main parts: encoder and decoder. In Figure 2a,
The encoder extracts input massive long sequences Xen (green series, e.g., 1–200 points
in the sequence), the self-attention blocks are ProbSparses, which extract the dominating
attention and reduce the network size. The decoder receives long sequence inputs Xtoken
(e.g., 150–200 points in the input sequence) and the padding element of 0 is X0; the con-
catenated feature map and attention composition are fused to predict the long sequential
output instantly (yellow series). Figure 2b represents a single stack of encoder in the
Informer network. The horizontal stack stands for an individual one of the encoder replicas
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in Figure 2a. The input long sequence is L, and K means convolution kernel. Then, the
second stack takes half slices of the input L after the convolution, and the subsequent stacks
repeat this process. After three layers of attention blocks and two convolution layers, we
will obtain a set of L/4 dimension feature maps. The layer stacking replicas increase the
robustness. Self-attention distilling and convolution on each layer can get the cascade to
decrease, and all stacks’ feature maps are concatenated as the encoder’s output.

3. The Proposed Methodology of Long Sequence Time-Series Fault Prediction

Line trip faults are usually existing electrical faults in the power system because of
aging, bad insulation and other reasons. It is dangerous to cause massive power blackouts.
In general, the recorded electrical measurement data collected by the wind-solar hybrid
power station includes the current and voltage during the operating process, and it reflects
the occurring faults according to some abnormal fluctuation of data.

3.1. Architecture

In this subsection, the architecture of the proposed methodology is introduced in detail.
The presented method is an improved stacked structure based on the Informer network.
Besides, the GC technique is introduced in the optimization instead of the previously used
Adam optimizer. Figure 3a is the whole framework of the presented methodology, and
it contains the training stage and testing stage. The long time-series sequence recorded
by the electrical monitoring sensor is the input long sequence. This input sequence is
split into three parts of data (short sequences): training set, validation set and testing set.
The training set and validation set are applied on the proposed methodology to obtain
a trained model with fine-tuned hyperparameters. The trained model is applied on the
testing set to obtain the fault sequence prediction. This predicted result is very vital for
indicating the operating state so as to remind the worker on duty. Figure 3b is the presented
stacked architecture; it is an improved stacked version of the multilayers Informer network.
According to the stacked informer structure, suppose the original input long sequence
time-series data is L, L is half sliced to L/2 and quartered to L/4, respectively. After that,
the input L passes through three attention blocks and two convolution layers, the L/2 long
sequence passes through two attention blocks and one convolution layer, and the L/4 long
sequence passes through one attention block. Finally, all three L/4 dimensional features
are merged into a whole feature map and fed into the decoder. The aim of this stacked
structure is to effectively extract the inherent temporal feature of the input long time-series
sequence and to improve the robustness of the predicted fault sequence output.

3.2. The Improved GC + Adam Optimizer

The optimization technique is very important to effectively and efficiently train a
DNN model. Different from most of the adopted optimizers, such as SGD and Adam used
in DNN, a new GC technique is embedded into the Adam of the presented methodology.
GC technology was firstly proposed by Yong et al. in 2020 [29]; it deals with gradients
directly and centralizes the gradient vectors to have zero means, which can be viewed as a
projected gradient descent method with a constrained loss function. This technique helps
to improve the training process and make it more efficient and stable. We briefly introduce
this technique below, and the details are explained in Ref. [29].

Suppose the gradient is obtained by back-propagation; then, for a weight vector
w whose gradient is ∇wi L(i = 1, 2, · · · , N), the GC operator denoted by φGC is defined
as follows:

φGC(∇wi L) = ∇wi L− µ∇wiL (1)

where µ∇wi L = 1
M ∑M

j=1 Wi,jL, M represents the dimension, and L is the objective function.
The GC formulation in Equation (1) is very simple and efficient, only the mean of the
column vectors of the weight matrix is computed, and the mean is removed from each
column vector to accomplish the GC technology. We can also rewrite a matrix form of
Equation (1) to be Equation (2):
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φGC(∇W L) = P∇W L, P = I − eeT (2)

where W is the weight matrix, P is the projection matrix in the hyperplane with a normal
vector in weight space, and P∇W L is the projected gradient [29]. After obtaining the
centralized gradient φGC(∇W L) we can directly use it to update the weight matrix. The
technique of GC embedded into Adam is detailed in Ref. [29] (Algorithm 2 in Page 6), so
we do not explain it here.
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4. Evaluated Experiments

In this section, we elaborate the performance of the presented methodology on two
real long sequence time-series line trip operating datasets collected by the wind-solar
hybrid power station. At first, the data description and experimental settings are detailed
in Section 4.1. Then, the performances of the improved GC+Adam optimization and
traditional Adam optimizer are discussed in Section 4.2. The overall performance of the
presented prediction method is given in the last Section 4.3.

4.1. Data Description and Experimental Setting

The real operating data used in the experiments were collected from the wind-solar
hybrid substation above 220 KV located in Zhangjiakou city, China. It includes transmis-
sion buses, distribution bus lines, and wind-solar hybrid components. The main electrical
connection circuit diagram is shown in Figure 4. The electrical measurement data included
the three-phase current and voltage values of bus lines, wind motors, circuits, main trans-
formers and capacitors, which were closely related to the faults because of the gradual
process of the distribution line. The measurement data was recorded from 10:03:45 a.m. to
10:03:50 a.m. on 17 December 2020, and the sampling period was five seconds. Because
the electrical line trip fault happened during a very short moment, the relay protection
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response unit is us (0.000001 s), which means that the data recording frequency was very
high. Although the fault data was only recorded in 5 s, the number could reach up to
13,000 samples. Due to the sudden changes in the current and voltage caused by the line
trip fault, the fault-wave recorder records data produced by the electrical sensor in the
power system, which is shown in Figure 5. Section 1 represents normal samples recorded
in 100 ms by the fault-wave recorder before the fault occurred, and Section 2 is the samples
recorded in 2000 ms at the beginning stage of when the fault occurred. The frequency
of those two sections is 5000 Hz. Section 3 represents samples recorded in 3 s during
the middle and late stages of the failure occurring; the sampling frequency was 1000 Hz.
In the early stage of the failure occurring (Section 1), the change is very rapid, so the
data sampling frequency is very high (5000 Hz). In the middle (Section 2) and late stages
(Section 3) of the recording process, the failure occurs relatively rarely, so the data sam-
pling frequency is low (1000 Hz) so as to reduce the storage cost. We extensively perform
experiments on two collected real-world datasets. Dataset 1 is a long time sequence, and it
was recorded at 08:17:12:635–08:17:17:736 a.m., on 14 September 2020; the sampling time
was 5 s and 101 ms. Dataset 2 is also a long time-series sequence, and it was recorded at
11:36:23:402–11:36:28:503 a.m., on 1 October 2020; the recording time was 5 s and 101 ms.
Both datasets contain 13,500 sampling data. All datasets include normal data and fault
data in the real sequence, 70% data is used for the training set, 10% of the data is used
for the validation set, and the remaining 20% of the data is used for the testing set in
our experiments.
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For the experimental settings, all of the experiments are conducted on a PC equipped
with two GPUs (Nvidia Geforce Titan X × 2ea), Intel Xeon E5-2650 v3 @2.3GHz CPU,
and 128GB RAM. The operating system is Windows 10, and the deep learning framework
is PyTorch.

4.2. Different Optimizer Validation

For the long sequence time-series line trip fault prediction, the major task is to forecast
whether there are faults or not during the operation of a power system. The experimental
validations of the improved GC+Adam optimizer and original Adam optimizer are dis-
cussed in this subsection, respectively. In order to evaluate the performance of the different
optimizers, the base architecture selects the original Informer network and the proposed
improved stacked-Informer network for an extensive comparison, respectively. All of the
parameters are listed in Table 1. For datasets, 13,500 points of the three-phase current and
voltage are recorded, and all of those data contain fault data, samples before the line trip
fault occurred and normal operation data. The length of the input sequence is 200, and the
length of the predicting short sequence is 50. The training loss of the epochs is considered
in this experiment, and the training is stopped if the accuracy is stable according to the
repeated process.

Table 1. Parameters in the experiment.

Parameters Value

Length of input sequence 200
Length of predicting short sequence 50
Batch size 32
Learning rate 0.0001
Dropout rate 0.05
Decay 0.001

In this subsection, we select the original Informer network and improved stacked-
Informer network as the base architecture to evaluate the performance of the improved
GC+Adam optimizer and Adam optimizer, respectively. Comparative results are shown
in Figures 6 and 7. All of these curves reflect that the training loss is high and unstable at
the beginning of the training because the parameters of the networks need to be trained,
and the loss value decreases in the latter part. In general, the different base networks with
GC+Adam obviously outperform the networks with the original Adam optimizer; it has a
faster convergence rate and lower loss value.

4.3. Comparative Results of the Presented Method and the Original Informer Network

To better explore the superior characteristic of the presented method using the im-
proved stacked-Informer network with the ADM + GC optimizer, it is compared with
many other original Informer networks with different optimizers, respectively. For the final
fault sequence prediction result, Figure 8 shows the evaluation metric of MSE and MAE
on the two provided datasets. We can see that for method D (this represents improved
stacked-Informer with Adam + GC), the MSE is 2.55 and the MAE is 0.57; it is obviously
lower than the other methods, and this superior performance is improved by the stacked
structure and GC optimization technology. The performance of the training time is given
in Table 2. We can see that the methods with Adam + GC are obviously more efficient than
those with only the traditional Adam optimizer, and the training time of Adam + GC is
obviously faster than Adam with the same base network architecture.



Sensors 2021, 21, 4466 8 of 11

Sensors 2021, 21, 4466 8 of 12 
 

 

proposed improved stacked-Informer network for an extensive comparison, respectively. 
All of the parameters are listed in Table 2. For datasets, 13,500 points of the three-phase 
current and voltage are recorded, and all of those data contain fault data, samples before 
the line trip fault occurred and normal operation data. The length of the input sequence 
is 200, and the length of the predicting short sequence is 50. The training loss of the epochs 
is considered in this experiment, and the training is stopped if the accuracy is stable ac-
cording to the repeated process. 

Table 2. Parameters in the experiment. 

Parameters Value 
Length of input sequence 200 
Length of predicting short sequence 50 
Batch size 32 
Learning rate 0.0001 
Dropout rate 0.05 
Decay 0.001 

In this subsection, we select the original Informer network and improved stacked-
Informer network as the base architecture to evaluate the performance of the improved 
GC+Adam optimizer and Adam optimizer, respectively. Comparative results are shown 
in Figures 6 and 7. All of these curves reflect that the training loss is high and unstable at 
the beginning of the training because the parameters of the networks need to be trained, 
and the loss value decreases in the latter part. In general, the different base networks with 
GC+Adam obviously outperform the networks with the original Adam optimizer; it has 
a faster convergence rate and lower loss value. 

  
(a) Loss value of different optimizers in Informer network on Dataset 1 

   
(b) Loss value of different optimizers in Informer network on Dataset 2 

Figure 6. Comparative loss results of the Adam optimizer and improved Adam + GC optimizer in original Informer net-
work (the left is training loss and the right is validation loss). (a) Loss value of different optimizers in Informer network 
on Dataset 1; (b)Loss value of different optimizers in Informer network on Dataset 2. 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Epoch

5

6

7

8

9

10
Adam
Adam + GC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Epoch

3

4

5

6
Adam
Adam + GC

2 3 4 5 6 7 8 9 10 11 12 13

Epoch

5

6

7

8

9

10

11
Adam
Adam + GC

1 2 3 4 5 6 7 8 9 10 11 12 13

Epoch

3

4

5

6

7
Adam
Adam + GC

Figure 6. Comparative loss results of the Adam optimizer and improved Adam + GC optimizer in original Informer
network (the left is training loss and the right is validation loss). (a) Loss value of different optimizers in Informer network
on Dataset 1; (b)Loss value of different optimizers in Informer network on Dataset 2.
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Figure 8. Comparison results of different models for the line trip sequence fault prediction. (Note: A
represents Informer with Adam; B represents Informer with Adam + GC; C represents the improved
stacked-Informer with Adam; and D represents the improved stacked-Informer with Adam + GC.).

Table 2. Comparison of different models in training time (s).

Datasets A B C D

Dataset 1 885.26 538.86 539.23 384.85
Dataset 2 381.52 267.26 572.89 496.34

4.4. Comparative Result of the Different Lengths of the Prediction Output Sequence

In order to further validate the performance of the long time-series fault sequence
prediction, we give the evaluated MSE and MAE results in Figure 9, conducted on the
proposed method (improved stacked-Informer with Adam + GC) with different lengths
of the output prediction sequence. In this experiment, the length of the input long-series
sequence is fixed to be 200, and this selection is the same as the experimental setting in the
above subsections. From Figure 9, we can see that a longer length of the output prediction
sequence will slowly produce an increase in the prediction error, e.g., when the length of
the prediction sequence reaches 150, the MSE is 3.535 and 3.902 on Dataset 1 and Dataset 2,
respectively. Those values are larger than when the length of the prediction sequence is 75.
However, the prediction output does not change suddenly. This phenomenon indicates
that a longer fault sequence can be predicted relatively accurately by the proposed method.
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5. Conclusions

To increase the operational reliability and stability in power systems, a data-driven
method for long sequence time-series line trip fault prediction using an improved stacked-
Informer network with GC optimization is proposed in this paper. First, two real datasets
of three-phase current and voltage values were recorded by electrical sensors during
normal operation and a brief occurrence of a line trip fault. The long sequence time-series
data is fed into the proposed methodology for the output fault sequence prediction. The
stacked structure of the Informer model can improve the generalization ability of the fault
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prediction, and GC technology increases the training efficiency of the presented method.
The experiments were conducted on real data collected from the wind-solar hybrid power
substation in Zhangjiakou City, China. Specifically, the corresponding experimental results
prove the increasing generalization performance ability. All in all, the improvement of the
proposed methodology is noteworthy when compared to the current novel Informer model.
In prospective work, we will further explore the performance of different stacked structures
of the network and do more comparisons with other outstanding fault prediction methods.
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