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Abstract: In order to meet the needs of intelligent perception of the driving environment, a point cloud
registering method based on 3D NDT-ICP algorithm is proposed to improve the modeling accuracy
of tunneling roadway environments. Firstly, Voxel Grid filtering method is used to preprocess the
point cloud of tunneling roadways to maintain the overall structure of the point cloud and reduce
the number of point clouds. After that, the 3D NDT algorithm is used to solve the coordinate
transformation of the point cloud in the tunneling roadway and the cell resolution of the algorithm is
optimized according to the environmental features of the tunneling roadway. Finally, a kd-tree is
introduced into the ICP algorithm for point pair search, and the Gauss–Newton method is used to
optimize the solution of nonlinear objective function of the algorithm to complete accurate registering
of tunneling roadway point clouds. The experimental results show that the 3D NDT algorithm
can meet the resolution requirement when the cell resolution is set to 0.5 m under the condition of
processing the point cloud with the environmental features of tunneling roadways. At this time, the
registering time is the shortest. Compared with the NDT algorithm, ICP algorithm and traditional
3D NDT-ICP algorithm, the registering speed of the 3D NDT-ICP algorithm proposed in this paper is
obviously improved and the registering error is smaller.

Keywords: tunneling roadway; environmental modeling; point cloud registering; registering error

1. Introduction

The environment of the tunneling face in coal mines is complex and the intelligence
degree is low, making it difficult for tunneling equipment to perceive the work environment
intelligently [1]. Environmental modeling for underground roadways is an effective way
to solve the above problems. Sensors can be used to acquire the environmental point cloud
data of tunneling roadways and establish the environmental point cloud map, which is
convenient for guiding and carrying out the excavation and mining work [2,3]. However,
due to the limitations of the special underground environment, the point cloud map
generated directly has low accuracy and large errors in general. At present, improving the
accuracy of the underground environment map of coal mines is the primary difficulty in
the intelligent construction of the tunneling face [4].

Technologies such as 3D scanning and DT (Digital Twins) have received extensive
attention in the industrial field. In terms of building inspection, the German Spacetec
company developed the TS3 vehicle-mounted tunnel scanning system. The system adopts
the principle of three-dimensional laser scanning measurement, which can perform crack
detection, tunnel boundary detection and temperature collection [5]. The British Balfour
Beatty Raily company (London, UK), developed the LaserFleXTM system, which accu-
rately detects the boundary of the tunnel based on the laser three-dimensional scanning
method [6]. Columbia University in the United States used a three-dimensional laser scan-
ner to collect data on the collapsed area and calculate changes in the amount of earthwork
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and changes in contour boundaries [7]. Shi Xinxiao et al. verified the feasibility of 3D
laser technology in roadway modeling, which provides a more accurate digital model for
digital mine construction [8]. Zhu Haibin et al. used 3D laser scanning technology to obtain
3D information of the roadway and establish a 3D digital model of the roadway, which
improved the efficiency of surveying and mapping work in the roadway engineering [9].
In the protection of cultural relics, W. Neubauer Et al. used the Rigel 3D laser scanner to
collect data on the Sphinx of Giza, provide data support for the protection and maintenance
of the Sphinx and store a complete 3D digital model of the Sphinx [10,11]. In terms of
digital cities, Vosselman et al. combined 3D laser scanning technology with 2D cadastral
vector data, and extracted the height of houses through airborne laser scanning to build a
3D city model [12]. The above research methods all provide solutions for environmental
modeling of tunneling roadways. However, in the process of generating the point cloud
map of tunneling roadways, such solutions would be affected by the internal constraints of
the roadway and cause large errors. Therefore, in order to further improve the accuracy of
environmental modeling of tunneling roadways, it is also necessary to register the initial
point cloud of tunneling roadways.

At present, the commonly used 3D point cloud registering algorithm is the Iterative
Closest Points (ICP) [13]. The ICP algorithm basically meets the registering requirements
of most 3D point clouds, but its running speed and accuracy mainly depend on the
given initial transformation estimation, the size of the point cloud and the initial position
accuracy [14]. Chen H et al. proposed a Two Step ICP (TICP) algorithm [15]. The method
firstly uses the ICP algorithm for coarse registering on initial point cloud data, and then
applies the obtained transformation matrix as initial transformation to the ICP algorithm
again, which improves the registering efficiency. SI Choi et al. accelerated the ICP algorithm
based on CUDA [16], but it is still difficult to meet the requirements of fast registering
of actual point clouds. In order to overcome the above ICP algorithm problems, He et al.
proposed a principal component analysis method for point cloud registration. This method
mainly provides a good initial value for the ICP calculation by transforming the dimensions
of the data. However, when there are many noise points in the point cloud, it is difficult
for this algorithm to obtain a good initial value [17]. Yang et al. proposed a Scale-ICP
algorithm based on seven-dimensional space iteration. Compared with the traditional
ICP algorithm, this method has a certain degree of improvement in iterative speed and
registration accuracy, but it still relies on the iterative process, which leads to the problem
of slow convergence of the algorithm [18]. Sharp et al. proposed the ICPIF (Iterative
Closest Points using Invariant Features) algorithm to improve the accuracy of finding
point pairs [19]. In recent years, another registering algorithm proposed by Biber P and
Strasser W, Normal Distribution Transform (NDT), has gradually attracted the attention
of scholars [20]. The NDT algorithm uses standard optimization technology to determine
the best registering of two point clouds [21]. In the registering process, the features of
corresponding points are not used to calculate the registering of point clouds. For a large
number of point cloud data, the registering speed is faster than ICP, but its registering
accuracy is not as high as ICP. After that, relevant scholars started the fusion research
of NDT and ICP algorithms, aiming at realizing fast and accurate registering of point
clouds. Sobreira H compared the NDT and ICP algorithms, and added a new algorithm to
PCL, which can improve the matching efficiency of the ICP algorithm [22]. Pang S fully
tested the NDT and ICP algorithms through experiments, and the experimental results
show that the NDT algorithm has better ability to deal with real adversity and higher
computational efficiency [23]. Attia M uses a combination of NDT and ICP algorithms.
The experimental results show that using the ICP algorithm to coarsely register the point
cloud and then using the NDT algorithm for refinement is better than directly using
the ICP algorithm for refinement [24]. Wang Qingshan et al. verified the reliability and
accuracy of the combination of NDT and ICP algorithms in the campus environment [25].
Zhang Guiyang et al. used NDT and ICP algorithms [26], and their experiments verified
that an NDT-ICP algorithm can improve the speed and accuracy of point cloud registering.
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Wang Yanming et al. applied an NDT-ICP point cloud registering algorithm on the basis
of traditional robot 3D topography flexibility measurement data [27], which improves the
speed and accuracy of robot topography flexibility measurement. Based on the above
research, this paper optimizes and improves 3D NDT and ICP algorithms, and proposes
a 3D NDT-ICP method suitable for rapid registering of 3D point clouds in tunneling
roadways, which provides a technical scheme for environmental modeling of tunneling
roadways.

2. Mathematical Analysis of Tunneling Roadway Environment

A tunneling roadway is an independent confined space under the coal mine. Environ-
mental modeling and twin model construction are convenient to realize environmentally
intelligent perceptions of a tunneling face and create a safe “man–machine–environment”
interaction foundation, as shown in Figure 1.

Figure 1. Digital twin conceptual model of tunneling face.

2.1. Selection of Point Cloud Acquisition Method for Tunneling Roadways

At present, the research on twin models of tunneling roadway environments is con-
tinuously developing [28]. According to sensor selection, the commonly used methods for
obtaining point clouds of tunneling roadways are mainly divided based on vision camera,
based on millimeter wave radar, based on laser radar or laser scanner, etc. Figure 2 shows the
use features of the existing point cloud acquisition methods in the tunneling environment.

As can be seen from Figure 2, Lidar has shown unique advantages in tunneling: high
data accuracy and strong reliability. At the same time, Lidar obtains less point cloud data
in an open and open environment, and obtains more point clouds in a confined space
such as roadways, which provides good data support for subsequent tunneling roadway
environment modeling.
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Figure 2. Comparison of point cloud acquisition methods.

2.2. Feature Analysis of Several Point Cloud Data in Tunneling Roadways

In tunneling roadways, most of the point cloud information can be scanned directly by
Lidar, but some special point cloud information belongs to “discrete point cloud”, which is
easily confused with wrong point cloud, such as “anchor protection point cloud” (point
cloud composed of anchor end points), as shown in the red circle in Figure 3. There are
differences between the distribution of this kind of point cloud and the overall point cloud
in the roadway, which is easy to be regarded as wrong point cloud and screened out by
filtering algorithm in the preprocessing process.

Figure 3. “Anchor protection point cloud” roadway.

Firstly, the point cloud of a tunneling roadway is defined as R (Roadway Point Cloud).
As the tunneling roadway needs to be supported by an anchor rod, the end points of the
anchor rod form a group of relatively discrete point clouds Rar (i.e., anchor protection
point clouds) inside the roadway. In the point cloud R, a neighborhood U is selected for
any point in the anchor protection point cloud Rar. In the neighborhood U, the mean and
variance of the mean distance between the point and all point clouds are calculated.

The points in the anchor protection point cloud Rar mainly have the following mathe-
matical features:

|Rar(x, y, z)− µ| ≥ σF (1)

In Formula (1), F depends on the number of points in the neighborhood.

2.3. Environmental Constraints for Accurate Modeling of Tunneling Roadways

The non-contact measurement accuracy of Lidar in a confined space is mainly affected
by the size of the light spot. In the process of scanning and measuring tunneling roadways,
the laser beam irradiates the surface of the measuring object to form a light spot, and the
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radar laser point is theoretically the central position of the light spot. However, the laser
point may in fact be located at any position of the spot, so there is an influence of the spot
size on the measurement accuracy of the laser point. There are many factors that affect the
spot size. Among the many factors, scanning features (incident angle and distance) have
the greatest effect [29]. When the incident angle and measurement distance change, the
spot area would be affected, which affects the laser point measurement accuracy of Lidar,
as shown in Figure 4. M. Bitenc showed Equation (2) for the change in the long axis X of
the elliptical spot [30].

X =
SH

cos γ
(0
◦ ≤ γ ≺ 90

◦
) (2)

Figure 4. Influence of incident angle on long axis of light spot.

In Equation (2), S is the measurement distance, H is the laser beam linewidth, γ is the
incident angle and R is the spot diameter.

As shown in Figure 5, combined with the tunneling roadway environment, it can be
seen that Lidar has good applicability underground, but it is affected by the inevitable
constraints of the roadway environment. For example, 1©meteorological conditions such
as temperature, air pressure and humidity inside the roadway would affect the atmospheric
refractive index, and thus affect the distance measurement accuracy of Lidar. 2© The temper-
ature gradient and atmospheric vibration in the direction of the light path in the roadway
would affect the direction of the light, and then increase the angle measurement error of
Lidar. 3© The roadway equipment body shields part of the laser radar measurement field
of vision. As a result, the tunnel point cloud information generated by a single scanning of
Lidar is not perfect, and random errors and some outliers are easily superimposed—i.e.,
the wrong point cloud Re is generated.

Therefore, it is necessary to use a point cloud registering method to splice laser
point clouds from different viewing angles to improve the modeling results of roadway
environment. However, the wrong point cloud Re generated in the generation process of
laser point cloud would have certain influence on the registering accuracy and efficiency
of tunneling roadway point clouds. When the number of points in the wrong point cloud
Re is large, it would interfere with the search of corresponding points of point clouds
and generate wrong registering point pairs, which can easily cause large deviation in
coarse registering of point clouds and local convergence in fine registering of point clouds.
Therefore, it is necessary to preprocess the initial point cloud of a tunneling roadway and
design an appropriate registering method.
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Figure 5. External features of a tunneling roadway.

3. Research on Environmental Modeling Method of Tunneling Roadways
3.1. Pretreatment of Point Cloud Data in Tunneling Roadways

At present, the filtering methods for laser scattered point clouds can be generally
divided into two types. The first type is to convert the point cloud model into a grid
model for filtering processing; the second type is to filter directly by a filtering method.
Considering that anchor protection point cloud Rar is easily confused with wrong point
cloud Re in tunneling roadways, it would screen out some point clouds of a tunneling
roadway and destroy the overall structure of the point cloud of the tunneling roadway
by preprocessing the initial point cloud of the tunneling roadway by the second type of
direct filtering method, so the first type of filtering method is selected to preprocess the
initial point cloud of the tunneling roadway. After the point cloud model of the tunneling
roadway is converted into a grid model, the point cloud data in each grid is filtered and
screened to ensure the integrity of the point cloud structure and remove a large number of
unnecessary point clouds. In this paper, a Voxel Grid filtering method is used to preprocess
point cloud data. The specific mathematical derivation is as follows:

(1) According to the coordinate set of point cloud data, the maximum values xmax,
ymax and zmax the minimum values xmin, ymin and zmin on the three coordinate axes of X, Y
and Z are obtained.

(2) According to the maximum and minimum values on the three coordinate axes of
X, Y and Z, the side length lx, ly and lz of the minimum bounding box of the point cloud
are obtained. 

lx = xmax − xmin
ly = ymax − ymin
lz = zmax − zmin

(3)

(3) Set the side length of the voxel small grid cell and divide the X, Y and Z coordinate
axes into M, N and L parts equally, then the minimum bounding box is divided into
M ∗ N ∗ L voxel small grid, sum = M ∗ N ∗ L.

M =
⌊

lx
cell

⌋
N =

⌊
ly

cell

⌋
L =

⌊
lz

cell

⌋
(4)

In Equation (4), b•cmeans rounding down and sum is the total number of voxel small
grids.

(4) Number the small grid of each voxel—the numbers are (i, j, k)—and determine the
voxel cell to which each data point belongs.

i =
⌊

xi−xmin
cell

⌋
j =

⌊
yi−ymin

cell

⌋
k =

⌊
zi−zmin

cell

⌋
(5)

(5) Carry out point cloud reduction filtering. Calculate the center of gravity of each
voxel small grid, and replace all points in the voxel small grid with the center of gravity.
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If the center of gravity does not exist, all points in the small grid are replaced by the data
point closest to the center of gravity.

cijk =
1
k

k

∑
i=1

pi (6)

where cijk, pi and k are the center of gravity, data points and points of voxel small grids,
respectively.

3.2. Accurate Registering Method of Point Cloud in Tunneling Roadways

After preprocessing the point cloud data, four groups of experimental point clouds are
obtained, one of which is recorded as the reference point cloud M(x, y, z) and the other as
the point cloud to be registered N(x, y, z). The two have overlapping areas, O(x, y, z) and
O = M ∩ N. In order to reduce the influence of roadway internal environment constraints,
reduce the registering error of tunneling roadway point clouds and improve the registering
speed, this paper integrates the advantages of NDT and ICP algorithms, and proposes a
registering method of tunneling roadway point clouds based on a 3D NDT-ICP algorithm.

Most of the traditional 3D NDT-ICP algorithms use two-step combination registering.
First, the 3D NDT algorithm is used to correct the initial input point cloud pose, and then
the ICP algorithm is used to register the point cloud after pose correction. The specific
process is shown in Figure 6.

Figure 6. Flow of a traditional 3D NDT-ICP algorithm.

In the traditional 3D NDT-ICP algorithm, the 3D NDT algorithm first performs coarse
registration on the point cloud that needs to be registered, corrects the initial position of
the point cloud to be registered and makes it approach the reference point cloud. Then, the
ICP algorithm is used for fine registration, and the point cloud to be registered after the
3D NDT algorithm is registered. In the traditional two-step 3D NDT-ICP algorithm, the
project files need to be compiled separately, a total of two times, the efficiency is low and
the registration process is not coherent.

As shown in Figure 7, the flow of the 3D NDT-ICP algorithm proposed in this paper
is firstly optimized according to the environmental features of tunneling roadways, and
then the point cloud coordinate transformation matrix solved by the 3D NDT algorithm
is taken as the initial matrix of the ICP algorithm to ensure the consistency of registering.
Then, a kd-tree is used for point pair search in the registering process of ICP algorithm to
improve the registering speed of point cloud. Finally, the Gauss–Newton method is used to
iteratively optimize the objective function of ICP algorithm to solve the optimal coordinate
transformation parameters between point clouds and complete the accurate registering of
point clouds.
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Figure 7. The 3D NDT-ICP algorithm flow.

3.2.1. Solution of Point Cloud Coordinate Transformation Parameters in
Tunneling Roadways

Firstly, the reference point cloud M(x, y, z) data sample is evenly divided into several
regular 3D voxel units with the same size by a 3D NDT algorithm, and then the probability
distribution of each 3D point cloud position in the 3D voxel unit is expressed by normal distri-
bution; the expression is shown in Equation (7). The points of the corresponding point pair in
the reference point cloud M are denoted as Mi, Mi = (xM, yM, zM), Mi ∈ M, i = 1, 2, 3, . . .,
and the points in the point cloud N to be registered are denoted as Ni, Ni = (xN , yN , zN), Ni ∈
N, i = 1, 2, 3, . . ..

p(Mi) =
1
c

exp

[
− (Mi − q)TC−1(Mi − q)

2

]
(7)

The parameter C is the covariance matrix of the 3D point clouds in each voxel unit
and q is the mean value of the 3D point clouds in each voxel cell. The parameter c is a
constant. Specific definitions of q and C are shown in Equations (8) and (9).

q =
1
n

n

∑
i=1

Mi (8)

C =
1

n− 1

n

∑
i=1

(Mi − q)(Mi − q)T (9)

c = (2π)
D
2

√
|C| (10)

In Equation (10), D represents the number of dimensions. Mi(i = 1, . . . . . ., n) repre-
sents all 3D point cloud data in voxel cells.

Equation (11) initializes the transformation parameters for the point cloud M and N:

T =

[
R t
0 1

]
(11)

According to coordinate transformation parameters, each point cloud sample of the
point cloud to be registered N(x, y, z) is mapped into a reference point cloud M(x, y, z)
data sample coordinate system. The mapped point cloud is recorded as N′, the probability
distribution of each 3D point mapping in N′ is summed and the coordinate transformation
parameters are evaluated:

s(p) = ∑
i

exp

[
− (Ni

′ − qi)
TC−1(Ni

′ − qi)

2

]
(12)
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Through a Hessian matrix method, s(p) is optimized to maximize the value of s(p).
The problem of solving the optimal transformation of the matrix is regarded as the process
of minimizing s(p). The realization of this process is solved by the Newton method and the
Hessian matrix. Let f = s(p); in order to minimize the function f , the following equations
must be processed for each operation:

H∆p = −g (13)

In Equation (13), g is the transposed gradient of f , and the specific elements can be
expressed as:

gi =
∂ f
∂pi

(14)

H is the Hessian matrix of f , and its elements can be expressed as:

Hij =
∂2 f

∂pi∂pj
(15)

After obtaining ∆p, we can update ∆p with the following formula:

p← p + ∆p (16)

3.2.2. Transfer of Point Cloud Coordinate Transformation Parameters in
Tunneling Roadways

Any point P(xp, yp, zp) in the reference point cloud is M, and any point Q(xq, yq, zq)
in the point cloud is to be registered N. Meanwhile, P and Q satisfy P ∈ (M ∩O) and
Q ∈ (N ∩O), and the external conversion relationship of the two independent 3D co-
ordinate systems is further described by using the seven-parameter spatial similarity
transformation model through the ICP algorithm [31], as shown in Formula (17). xp

yp
zp

 =

 tx
ty
tz

+ w•R(α, β, γ)•

 xq
yq
zq

 (17)

where tx, ty and tz are the three components along the coordinate axis direction, α, β and
γ, and are the three angle parameters rotating around the coordinate axis; w is the scale
transformation factor between coordinate systems, which generally defaults to 1. Then, the
final result of Equation (11) is passed to the ICP algorithm to initialize the rotation matrix
and translation matrix in Equation (17).{

R(α, β, γ) = R[
tx ty tz

]T
= t

(18)

In order to speed up ICP registering, this paper uses a kd-tree to retrieve roadway
point cloud in the ICP algorithm part. This data search method is widely used in the field
of point cloud research, so it is not listed as the focus of introduction. Assuming that
the two groups of point clouds in the tunneling roadway jointly generate m groups of
corresponding point pairs, when Equation (19) obtains the optimal solution, the two groups
of point clouds complete the solution of the spatial position conversion relationship.

E(R, T) =
1
m

m

∑
i=1
‖Mi − (RNi + T)‖2 (19)
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In order to facilitate the derivation of the subsequent iterative optimization equation, in
Equation (19) ‖Mi − (RNi + T)‖2 = d2 = D, d represents the Euclidean distance between
Mi and Ni, as shown in Equation (20):

d(Mi, Ni) = |Mi − Ni| =
√
(xM − xN)

2 + (yM − yN)
2 + (zM − zN)

2 (20)

3.2.3. Iterative Optimization of Point Cloud Coordinate Transformation Parameters in
Tunneling Roadways

The objective function E(R, T) in Equation (19) needs to be optimized. That is,
Equation (23) is minimized. Due to the nonlinearity of the objective function, the esti-
mated values of parameters cannot be obtained by solving the extreme values of linear
least squares and other multivariable functions, so complex optimization algorithms are
needed to solve this problem. In this paper, the Gauss–Newton method is used to optimize
the objective function in ICP algorithm, so as to avoid local convergence of tunneling
roadway point clouds in the process of precise registering.

The general form of the nonlinear system model is:

minS(x) = f T(x) f (x) = ‖ f (x)‖2 (21)

Among them, f (x) = ( f1(x), f2(x), . . . , fm(x))T ,x = (x1, x2, . . . , xn)
T .

The sum of squares of Euclidean distances at a certain point between two groups of
point clouds in the roadway before and after registering is:

D = d2(Mi, Ni) = |Mi − Ni|2 = (xM − xN)
2 + (yM − yN)

2 + (zM − zN)
2 (22)

We can substitute Equation (21) into Equation (22) for iterative operation processing:

minS(x) = f T(x) f (x) = ‖ f (x)‖2 = ∑ D (23)

Among them, f (x) = ( f1(x), f2(x), . . . , fm(x))T , x = (tx, ty, tz, w, α, β, γ)T .
If the point of the k iteration is xk, it can be seen from the Taylor expansion equation that:

fi(x) ≈ fi(xk) +∇ fi(xk)
T
(x− xk), (i = 1, 2, . . . , m) (24)

f (x) =
m

∑
i=1

fi(x) ≈ f (xk) + A(xk)(x− xk) (25)

A(xk) is a multidimensional first-order partial derivative matrix, namely a Jacobian matrix:

A(xk) =


∂ f1
∂tx

· · · ∂ f1
∂γ

...
...

...
∂ fm
∂tx

· · · ∂ fm
∂γ


x=xk

= (
∂ fi(xk)

∂xj
)

m×n
, n = 7 (26)

In the above equation, xj = (tx, ty, tz, w, α, β, γ)T .
With Ak = A(xk), the Equation (25) is combined and brought into the Equation (23),

the following results can be obtained:

S(x) ≈
∥∥∥ f (xk) + Ak(x− xk)

∥∥∥2
=
[

Akdk + f (xk)
]T[

Akdk + f (xk)
]

(27)



Sensors 2021, 21, 4448 11 of 18

Among them, dk = x− xk. For the minimum problem of minS(x), the least square
method can obtain:

Ak
T Akdk = −Ak

T f (xk) (28)

when Ak
T Ak is reversible, there are:

dk = −(Ak
T Ak)

−1
Ak

T f (xk) (29)

Because dk = x− xk, when xk+1 = x = xk + dk, in combination with Equation (29),
there is an iterative equation:

xk+1 = x = xk + dk = xk − (Ak
T Ak)

−1
Ak

T f (xk) (30)

Because ∇S(x) = 2
m
∑

i=1
fi(x)∇ fi(x) = 2AT(x) f (x), when Hk = 2Ak

T Ak, then Hk is

the Hessian matrix of minS(x) at point xk.

Hkdk = 2Ak
T Akdk = −2Ak

T f (xk) = −∇S(xk) (31)

In sum, it can be concluded that dk = −Hk
−1∇S(xk) = −Ak

T f (xk) is the Gauss–
Newton equation and xk+1 = x = xk + dk = xk − Hk

−1∇S(xk) can be called the Gauss–
Newton direction.

4. Experimental Verification

In the experiment, the operating system of the upper computer is Windows 10, the
running memory is 8 G, and the software is Visual Studio 2017.

4.1. Point Cloud Data Preprocessing Experiment

First, make four sets of PCD files that simulate the point cloud of mine tunnels:
1© (test1-a.pcd, test1-b.pcd), 2© (test2-a.pcd, test2-b.pcd), 3© (test3-a.pcd, test3-b.pcd)

and 4© (test4-a.pcd, test4-b.pcd). 1© test1-a.pcd is the reference point cloud, test1-b.pcd is
the point cloud to be registered; 2© test2-a.pcd is the reference point cloud, and test2-b.pcd
is the point cloud to be registered; 3© test3-a.pcd is the reference point cloud, test3-b.pcd is
the point cloud to be registered; 4© test4-a.pcd is the reference point cloud, and test4-b.pcd
is the point cloud to be registered. Then, the Voxel Grid filtering algorithm and pass-
through filtering algorithm are used to preprocess the four groups of laser point clouds
1©, 2©, 3© and 4© respectively. Since the reference point cloud and the point cloud to be

registered are essentially the same, this paper preprocesses the reference point cloud in
the four groups of point clouds. The experimental results are shown in Figure 8, and the
experimental data are shown in Table 1.

As can be seen from Table 1, the pass-through filtering reduces the number of
laser point clouds more than the Voxel Grid filtering method. However, combined with
Figure 8a,b, it can be seen that the pass-through filtering can easily destroy the point cloud
structure of tunneling roadways, which results in a loss of integrity, while the Voxel Grid fil-
tering method reduces the number of point clouds while ensuring the structural integrity of
point clouds. It is more suitable for preprocessing point cloud data of tunneling roadways.
The four groups of laser point clouds filtered by the Voxel Grid algorithm are recorded as
experimental point clouds for subsequent experimental research.
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Table 1. Experimental data of laser point cloud pretreatment.

Point Cloud Group First Second Third Fourth

Number of initial point clouds 28,146 29,113 29,030 26,619
Number of point clouds after Voxel Grid filtering (unit: piece) 16,197 11,788 14,136 19,664

Number of point clouds after pass-through filtering (unit: piece) 10,486 7909 11,482 10,740
Point cloud data reduction/% (Voxel Grid filtering) 42.45 59.51 51.31 26.13

Point cloud data reduction/% (pass-through filtering) 62.74 72.83 60.45 59.65

4.2. Parameter Optimization Experiment of NDT Algorithm

Influenced by Equation (7), the size of cells in 3D NDT algorithm affects the registering
accuracy. Previously, the scholar Magnusson made a systematic comment on the cell size
setting in 3D NDT method. When the cell setting is too large, it cannot well represent
the features of point cloud. However, when the cell setting is too small, it is vulnerable
to the noise of radar scanning equipment and may not be able to calculate the Gaussian
distribution due to insufficient data in the cell. At the same time, Magnusson concluded
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through system experiments that the cell resolution of a 3D NDT algorithm is usually
between 0.5 m and 2 m [32], which is ideal for laser scanning equipment. Combined with
the above conclusions, in order to ensure that the cell resolution interval is sufficient, this
paper chooses to set the cell resolution of the 3D NDT algorithm to 0.25 m, 0.5 m, 1 m, 1.5 m
and 2 m. Based on four groups of experimental point clouds, experiments are carried out to
provide the basis for selecting algorithm parameters for tunneling roadway environment
modeling. The experimental results are shown in Figure 9, and the algorithm registration
time is shown in Figure 10.

Figure 9. NDT registering results.

Figure 10. NDT registration time.

In Figure 9, the green display part is the reference point cloud, and the red display
part is the point cloud to be registered. When designing the 3D NDT-ICP algorithm, this
article aims to quickly obtain high-precision registration point clouds. Since the accuracy
of the NDT algorithm has little effect on the overall 3D NDT-ICP algorithm in this paper,
this paper focuses on the time spent by the NDT algorithm. It can be seen from Figure 10
that when using the 3D NDT algorithm to register the point cloud of the tunnel and
roadway, setting the pixel resolution to 0.5 m can reduce the time spent by the algorithm to
the shortest.
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4.3. Comparative Experiment of Point Cloud Registering Algorithms

In order to verify the rapidity and accuracy of the algorithm in this paper, this section
carries out a point cloud registering comparative experiment. The initial iteration number
of each algorithm is set to 100, and the initial grid resolution of the NDT algorithm is 1.0 m.
The NDT algorithm, ICP algorithm, traditional 3D NDT-ICP algorithm and the 3D NDT-
ICP algorithm proposed in this paper are respectively used to register the experimental
point cloud. The registering results are shown in Figure 11.

Figure 11. Final result of experimental point cloud registration.

It can be seen from Figure 11 that there is a certain error in the registration result
of the NDT algorithm, and the precision of the point cloud registration is not high. The
ICP algorithm has better registration results, and the point cloud precision is improved
compared to the NDT algorithm. The traditional 3D NDT-ICP algorithm and the 3D
NDT-ICP algorithm proposed in this paper have a good registration effect, and the point
cloud outline is clear. Compared with the NDT algorithm, ICP algorithm and traditional
3D NDT-INDT algorithm, the 3D NDT-ICP algorithm proposed in this paper has better
registration effect and higher precision.

As can be seen from Figure 12, when registering the experimental point cloud, the
NDT algorithm takes the shortest time, followed by the 3D NDT-ICP algorithm proposed
in this paper, which takes shorter time than the traditional 3D NDT-ICP algorithm, and the
ICP algorithm takes the longest time.

Because it is difficult to accurately judge the registration effect of the four algorithms
through pictures, this paper introduces the root mean square error to judge the point cloud
registration error. The registration effect of the algorithm is comprehensively evaluated by
comparing the point cloud X, Y and Z three-axis root mean square error. The root mean
square error calculation is shown in Formula (32).

RMSE =

√√√√√ n
∑

i=1
(Xi − X̂i)

2

n
(32)

In Formula (32), n is the number of corresponding point pairs in the point cloud, Xi
is the Euclidean distance between the corresponding points after point cloud registration,
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and X̂i is the true value of the Euclidean distance between the corresponding points. Under
absolutely ideal conditions, the corresponding points are fully registered and the distance
is zero. Therefore, the value of X̂i here is 0. Figure 13 shows X, Y and Z three-axis root
mean square error after the four sets of experimental point clouds are registered.

Figure 12. Point cloud registration time.

As can be seen from Figure 13, when registering the experimental point cloud, the 3D
NDT-ICP algorithm proposed in this paper has the smallest registering error compared
with the NDT algorithm, ICP algorithm and traditional 3D NDT-ICP algorithm.

Combined with Figures 12 and 13, it can be seen that the 3D NDT-ICP algorithm
proposed in this paper reduces the registering error of tunneling roadway point clouds and
saves the registering time of point clouds when the experimental point clouds are matched.

As shown in Figure 14, the requirements for point cloud registering accuracy in
different stages of the tunneling face are shown. Combined with Figure 13, it can be seen
that the algorithm proposed in this paper meets the requirements of the quality control of
tunneling roadways forming in the first stage and the constraint accuracy of roadheader
motion space in the second stage. It is beneficial for the high-efficiency registration of large-
scale point cloud data of tunneling roadways, and enhances the real-time and accuracy of
the construction of twin models of tunneling face environment. Subsequent research is still
needed to further improve the accuracy of point cloud models of tunneling roadways.
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Figure 13. Point cloud registration error.

Figure 14. Accuracy requirements of an underground tunneling face.
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5. Conclusions

In this paper, a point cloud registering method for tunneling roadways based on 3D
NDT-ICP algorithm is proposed, which is used to improve the modeling accuracy of the
tunneling roadway environment and meet the requirements for an intelligent perception
of tunneling environments. The main conclusions are as follows:

(1) In this paper, a Voxel Grid filtering method is used to preprocess the point cloud
data of tunneling roadways, which can ensure the integrity of the point cloud structure of
a tunneling roadway and reduce the number of point clouds, thus laying a foundation for
the subsequent point cloud registering.

(2) Based on the environmental features of tunneling roadways, this paper optimizes
the parameters of an NDT algorithm. The coordinate transformation parameters obtained
by the NDT algorithm are used to initialize the seven-parameter coordinate transformation
matrix of ICP algorithm, a kd-tree is introduced into ICP algorithm to search point pairs
and the Gauss–Newton method is used to optimize and solve the objective function, thus
realizing fast and accurate registering of tunneling roadway point clouds.

(3) Experiments show that the algorithm in this paper has a good effect on point cloud
registering with tunneling tunnel environment features. However, the research object in
this paper has certain limitations, and more cutting-edge and high-precision point cloud
registration should be studied in follow-up algorithms.
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