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Abstract: It is important to obtain accurate information about kiwifruit vines to monitoring their
physiological states and undertake precise orchard operations. However, because vines are small and
cling to trellises, and have branches laying on the ground, numerous challenges exist in the acquisition
of accurate data for kiwifruit vines. In this paper, a kiwifruit canopy distribution prediction model
is proposed on the basis of low-altitude unmanned aerial vehicle (UAV) images and deep learning
techniques. First, the location of the kiwifruit plants and vine distribution are extracted from
high-precision images collected by UAV. The canopy gradient distribution maps with different
noise reduction and distribution effects are generated by modifying the threshold and sampling
size using the resampling normalization method. The results showed that the accuracies of the
vine segmentation using PSPnet, support vector machine, and random forest classification were
71.2%, 85.8%, and 75.26%, respectively. However, the segmentation image obtained using depth
semantic segmentation had a higher signal-to-noise ratio and was closer to the real situation. The
average intersection over union of the deep semantic segmentation was more than or equal to 80% in
distribution maps, whereas, in traditional machine learning, the average intersection was between
20% and 60%. This indicates the proposed model can quickly extract the vine distribution and plant
position, and is thus able to perform dynamic monitoring of orchards to provide real-time operation
guidance.

Keywords: deep learning; unmanned aerial vehicle; kiwifruit; image segmentation

1. Introduction

In kiwifruit orchards, the acquisition of the plant growth status is particularly im-
portant for managers, and can help reduce the cost of orchard management and improve
the efficiency of resource utilization. With the support of 3S (RS, GPS, GIS) technology,
accurate remote sensing information of the orchard vegetation can be obtained, such as
plant location and coverage [1]. Diversified information obtained via online methods
enables managers to more accurately understand the growth of plants and control the
spraying of pesticides [2], and make correct judgments regarding fertilization, pruning,
and harvesting. Therefore, there is an urgent need to develop a fast, nondestructive, and
stable technology to obtain plant information in kiwifruit orchards.

The unmanned aerial vehicle (UAV) is a new low-altitude remote sensing platform that
can provide ultra-high-resolution images, flexibility for planning according to the weather
and other factors, and dynamic remote sensing information [3]. Due to their high resolution
and real-time characteristics, UAVs are a popular technology for obtaining large-scale plant
information from UAV images. Different sensors that are carried by UAVs have been
used to identify and count trees [4], and to determine the tree height and crown size [5,6].
This form of information collection, which is characterized by low data accuracy, is often
used in the field of forestry management, which does not require accurate management
of each tree. However, for the fine management of orchards, knowledge regarding the
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distribution of the plants is required, and the position and growth of each plant must be
monitored, Thus, it is necessary to use more accurate sensors and more accurate plant
phenotype processing algorithms. In recent years, the combination of low-altitude UAV
remote sensing data, and deep learning data collection and processing, has significantly
promoted the detailed management of orchards. For example, to count the number of
citrus trees in an orchard [7], a simple CNN was designed and implemented. Based on the
high-resolution images collected by the UAV, the CNN, which was a target recognition
method, was able to separate citrus trees from other tree species. In orchard remote sensing,
only simple parameters of trees, such as the crown size, can be obtained. To obtain more
abundant information about the fruit trees from remote sensing images, Ampatzidis et al.
extracted the number, crown size, and health index of fruit trees [8]. At present, the plant
growth status obtained by UAV is often limited to the flourishing period of the plant. Thus,
a valuable research area is the identification of changes in plants’ annual growth using UAV
remote sensing, and the linking of these changes. In the plant growth model established
in this study, UAV real-time images were employed to judge the growth status of plants
at any time of the year. Subsequently, the labor intensity was significantly reduced, and
errors arising from manual judgment could be avoided.

To date, few reports have been published regarding the extraction of branches.
Wu et al. [9] proposed an extraction method for the crowns of bare trees. The method
used the target recognition and segmentation of the CNN to realize the extraction and
calculation size of a bare apple tree crown. Although this method was mainly focused on
trees, the branches of apple trees are shorter and stronger, and artificial trellises are not
used to fix them. Actinidia is a kind of liana that has a slender stem and needs to grow
on scaffolds. Trellis planting is a common planting method. It is difficult to determine
the plant position and canopy distribution in closed orchards when the fruit are maturing.
Obtaining the distribution of the vines in advance is helpful for predicting the growth
and guidance of the pruning. However, analyzing the vines of lianas is usually more
challenging than analyzing the branches of trees. This is because: (1) the stems of the lianas
are slender and irregular; (2) steel wires and slender stems are mixed among the scaffolds,
which makes it difficult for human experts to accurately distinguish them; (3) and the
ground is covered by grass, the background is not clear, and the texture is complex. The
above reasons result in a diverse and misleading pattern for kiwifruit vine segmentation.

This study proposes an effective plant location distribution model (PLD-M) to in-
terpret kiwifruit remote sensing images obtained using a low-altitude UAV. The three
algorithms constitute the basis of the kiwifruit vine data acquisition and analysis model.
First, according to the YOLOv3 deep learning target recognition network [10,11], the ki-
wifruit trunk in the UAV image is recognized and located. The improved version of this
algorithm is also often used in the recognition of small targets in the agricultural field, such
as pinecones [12], cherries [13], and apples [14]. The second key method, PSPnet [15], is
a residual CNN used to extract the kiwifruit vines from the background using semantic
segmentation. The third key approach, used to resample the region with vine pixels from
the semantic segmentation results, provides the possible coverage and coverage gradient
of the kiwifruit canopy. Next, the distribution of the kiwifruit vines and plants in the field
is obtained by combining the location and gradient information. The specific objectives of
this study include the following: (1) Compare and explore the advantages and potential
of the kiwifruit field location and distribution models that are based on the low-altitude
remote sensing images and deep learning modeling, in comparison to the support vector
machine (SVM) and random forest (RF) classifiers. (2) To compare the effects of the different
thresholds and sampling sizes on the PLD-M intersection over union (IoU). (3) To provide
a fast and accurate method to obtain kiwifruit plant information in orchards. To verify the
effectiveness of the PLD-M, a training set and a plant test set with 600 calibration images
and 40 high-definition images, respectively, were constructed. We have published the
dataset on GitHub: https://github.com/eletricsheep/PLD-M/tree/main. Last accessed at
23 June 2021.

https://github.com/eletricsheep/PLD-M/tree/main
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To establish PLD-M model, the collected data were processed as follows:

(1) The images were spliced by Pix4D to generate an orthophoto;
(2) The orthophoto image was clipped to the size suitable for network training, and 300

images were selected to make the data set;
(3) Three kinds of classifiers were trained by data set, and the trained classifiers were

used to process the image to obtain the segmented image;
(4) Different sampling size S and threshold level T were set to process the segmented

image and count the IoU;
(5) According to the change of IoU, the best parameters of S and T were selected to test

40 test images to verify the performance of the model;
(6) Finally, the PLD-M model was formed.

2. Materials and Methods
2.1. Experimental Sites

The experimental site is located at the kiwifruit experimental station of Northwest
Agricultural and Forestry University, Meixian County, Baoji City, Shaanxi Province, China
(107◦59′31.4443′′ N, 34◦7′27.8819′′ E, elevation 643.22 m). The plant varieties in this experi-
ment site were Heywood, with tree ages of 5–6 y, a plant spacing of 3 m, and a row spacing
of 4 m. The area of the collection experiment site was 8814 m2 (Figure 1). To obtain a clear
image of bare vines, the UAV images were collected at 14:32 on 14 January 2021, local time;
the leaves of the plant had shed completely, and residual branches were left around the
plant.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 18 
 

 

the dataset on GitHub: https://github.com/eletricsheep/PLD-M/tree/main. Last accessed 
at 23 June 2021. 

To establish PLD-M model, the collected data were processed as follows: 
(1) The images were spliced by Pix4D to generate an orthophoto; 
(2) The orthophoto image was clipped to the size suitable for network training, and 300 

images were selected to make the data set; 
(3) Three kinds of classifiers were trained by data set, and the trained classifiers were 

used to process the image to obtain the segmented image; 
(4) Different sampling size S and threshold level T were set to process the segmented 

image and count the IoU; 
(5) According to the change of IoU, the best parameters of S and T were selected to test 

40 test images to verify the performance of the model; 
(6) Finally, the PLD-M model was formed. 

2. Materials and Methods 
2.1. Experimental Sites 

The experimental site is located at the kiwifruit experimental station of Northwest 
Agricultural and Forestry University, Meixian County, Baoji City, Shaanxi Province, 
China (107°59′31.4443″ N, 34°7′27.8819″ E, elevation 643.22 m). The plant varieties in this 
experiment site were Heywood, with tree ages of 5–6 y, a plant spacing of 3 m, and a row 
spacing of 4 m. The area of the collection experiment site was 8814 m2 (Figure 1). To obtain 
a clear image of bare vines, the UAV images were collected at 14:32 on 14 January 2021, 
local time; the leaves of the plant had shed completely, and residual branches were left 
around the plant. 

 
Figure 1. Remote sensing image of the experimental land and field enlarged picture. 

In this study, four rotor UAV (DJI phantom 4pro V2.0) was employed to aerial pho-
tography. Due to its short endurance and instability [16], both the course and side overlap 
were set at 80%. Table 1 shows the aerial photography and image parameters. 

Table 1. Aerial photography and image parameter. 

Route Parameters Detailed Data 
flight altitude 20 m 

Heading/sideward overlap 80% 
Image size 5472 × 3648 

Image channel RGB 
Imaging band R (700 mm) G (546.1 mm) B (435.8 mm) 

The UAV took 434 remote sensing images in total. The original orthophoto images 
were obtained by Pix4dmapper and mosaic with the CS_WGS_1984 coordinate system. 

Figure 1. Remote sensing image of the experimental land and field enlarged picture.

In this study, four rotor UAV (DJI phantom 4pro V2.0) was employed to aerial pho-
tography. Due to its short endurance and instability [16], both the course and side overlap
were set at 80%. Table 1 shows the aerial photography and image parameters.

Table 1. Aerial photography and image parameter.

Route Parameters Detailed Data

flight altitude 20 m
Heading/sideward overlap 80%

Image size 5472 × 3648
Image channel RGB
Imaging band R (700 mm) G (546.1 mm) B (435.8 mm)

The UAV took 434 remote sensing images in total. The original orthophoto images
were obtained by Pix4dmapper and mosaic with the CS_WGS_1984 coordinate system.
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2.2. Brief Introduction of the PLD-M

The PLD-M can be divided into three phases, as shown in Figure 2. In the first stage,
the position of the kiwifruit in the orchard was determined. During this stage, the most
important task was to identify and calibrate the main position of the kiwifruit plants
using target recognition. Therefore, we constructed a kiwifruit plant target detector using
YOLOv3 (the network has an excellent small-scale target recognition performance). Then,
we obtained the number of kiwifruit plants, the location of each tree, and the spatial
distribution of each tree in the UAV image. The range of the vine pixels in the image was
extracted. This study compared the performance of PSPnet, SVM, and RF to obtain the
optimal algorithm as the segmentation model of the vines, and separate the vines from the
background. Finally, the entire image was resampled and normalized based on the vine
pixel data. The ratio of the vine pixels was returned to each sampling size, and spliced into
the distribution map with gradient information and the location image that was obtained
in the first stage. Finally, the location distribution of the output plants was determined.
The PLD-M integrates the detection, segmentation, and distribution range prediction of
the plants. Therefore, it is possible to extract more information from the UAV images, such
as the number, location, and position of vines, and the possible canopy distribution range.
The PLD-M is relatively independent in each stage, but each stage is necessary to complete
the canopy prediction. Details of the three stages are given in Sections 2.3 and 2.4.
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Figure 2. Flowchart of the kiwifruit location and distribution prediction. The orchard image is used to recognize a single
tree. The vine is separated from the background through image segmentation to prepare for the next step of predicting the
distribution. A two-dimensional map with plant location and canopy distribution information is formed.

2.3. Extraction of the Kiwifruit Vine
2.3.1. Random Forest Image Segmentation

The RF classifier, an ensemble-learning algorithm, was first proposed by Leo Breiman
and Adele Cutler in 1995. The RF classifier contains multiple decision trees, and its output
category is determined by the mode of the output category of the individual trees. As a
result, it can generate a classifier with high accuracy for many kinds of input data. Because
there is no complex parameter adjustment, it is widely used in remote sensing image
classification, such as crop nitrogen content estimation [17] and land use classification [18].

2.3.2. Support Vector Machine Image Segmentation

SVM [19], a class of generalized linear classifiers, is a supervised learning method for
the binary classification of data memory. The related theories and problems of SVM were
first proposed in 1964, and a series of improved algorithms were rapidly developed in
the 1990s. SVM is based on the principle of structural risk minimization, which has many
advantages: it can avoid overlearning problems, has excellent generalization ability, is
superior to other algorithms in terms of small samples and unbalanced data sets results [20],
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has a fast classification speed, and the results are easy to explain. This algorithm is also
often used in the detection of agricultural diseases [21], pests [22], and other fields [23].

2.3.3. Deep Semantic Segmentation

The pyramid scene parching network (PSPnet) is an effective optimization strategy
for deep Resnet [24] development, which monitors the change in the loss value. Because
of the low position information of the high-level features in a deep network, it improves
the content of the high-level features using a special fusion of the multi-scale features, and
then uses a conditional random field (CRF) to process the segmentation results. PSPnet
divides the full revolutionary network (FCN) images into four scales (1 × 1, 2 × 2, 3 × 3,
6 × 6) and then adds them to the input image to improve the prediction accuracy. The
training and testing processes of the model are illustrated in Figure 3.
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Figure 3. The original UAV image is clipped and labeled, and then input into the PSPnet network for training, and the
training model is obtained. The image of the test set is clipped and input into the model to obtain the segmented image.
Finally, the segmented image is stitched to obtain the segmented image of the remote sensing image.

The calibration image of the dataset was labeled with the image after cutting 417 ×
417 pixels. The spatial resolution of the image was 0.02 m, and the label file was made with
Labelme. A total of 300 calibration images were amplified and input into the network for
training. The experiment was performed on a Windows 10 professional operating system
(Microsoft). This was achieved by using the pytorch1.7.1 framework that was built by
Anaconda 3.0, and we built the network under Python 3.6.10 and Cuda11.1 to accelerate
training. The details of the equipment are listed in Table 2.

Table 2. Training environment and equipment.

Device Version

Programming framework pytorch1.7.1
Programing language Python3.6.10

GPU NVIDIA-GeForce RTX3080s-OC-10GB
CPU Inter-Xeon E5-2600-8-core processor
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To optimize and train the PSPnet deep semantic segmentation network, a training cycle
of 100 generations was established and split into two stages, with a different Batch_size
and Learning_rate. The specific training parameters are presented in Table 3.

Table 3. PSPnet training hyper parameters and the formula.

Hyper Parameter Value

Epoch 100
Batch_size 8, 4

Learning_rate 10−4, 10−5

Loss_function cross entropy loss

We established two stages for the training of the model. The first stage aimed to
improve the training speed, accelerate the convergence of the model; the learning rate was
set as 10−4 and batch_size was eight. In the second stage, to identify the optimal solution,
the learning rate was set to 10−5 and batch_size was four. For this study, training was
conducted on VOC2007, which has two categories: background and kiwifruit vine. To
reduce the gap between the predicted pixel class and the expected pixel class, we used the
cross-entropy Function (1) to train the model:

L(p, q) = −∑i ∑n pin log qin (1)

where p and q represent the expected pixel category and the predicted pixel category,
respectively; i is the pixel; n is the category; pin and qin represent whether pixel i is
classified in n (1 if classified into n, 0 if not). The classification accuracy index of the image
was measured by the mean average precision (mAP). This represents the average value
of all of the categories, as a percentage, i.e., the ratio of the number of correctly classified
pixels of each type to all of the categories, as in Equation (2):

mAP =
1
nc

∑i
pi

∑j pj
(2)

where nc represents the number of all the categories and pj represents the number of class i
pixels that are predicted as class j.

2.4. Plant Location and Distribution
2.4.1. Resampling Processing

After the segmentation algorithm, the pixels containing the vines in images were
demarcated; however, because the distribution of the vines is divergent from the center to
the edge, only the discrete pixels of the vines can be obtained from the images. This results
in a large amount of “pepper and salt noise” after classification.

To address the problems discussed above, firstly, the remote sensing image was bina-
rized using three classification methods. Secondly, the binary clipping image was clipped
according to the sampling size; the sampling size was represented by the letter S, and the
proportion of vine pixels was counted. Finally, the resampled image was reconstructed by
gradient filling. In this method, the interference pixels with large sparse distribution were
screened out, and the influence on the distribution prediction was reduced. The resampling
normalization process is shown in Figure 4.

The sampling size S is shown as:

S = (35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90) (3)
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Figure 4. Flowchart of resampling the normalization algorithm shows that the green and blue pixels
in the segmented image are the kiwifruit vine and ground, respectively. After binarization, the image
is clipped with multiple sampling sizes, and the proportion of the kiwifruit pixels in each image is
calculated. Then, the color is filled according to the gradient order. Finally, the vine distribution map
is generated.

During resampling normalization, we can take the number of pixels in a single channel
image as the denominator of the normalization, and the ratio of the normalized pixels is
expressed by the letter R, as shown in Equation (4):

R =
pi

pi + pj
(4)

where pi and pj represent the ratio of pixels that are divided into kiwifruit vines and the
ground class, respectively, which reflects the proportion of the vine to the cut image.

2.4.2. Coordinate and Resampling

Using the trained YOLOv3 network, the main stem of the kiwifruit was identified and
selected from the image. YOLOv3 is a target recognition network based on Darknet_53; it
is a full convolutional network (FCN) with 53 convolution layers. Compared with other
target recognition networks, the YOLOv3 network has three scale outputs (13 × 13, 26 ×
26, 52 × 52) in the down-sampling process, which makes it more effective for different
sizes of targets, and particularly small targets. To distinguish the bare land area and the
vine area more clearly, the gradient map palette uses the Seaborn Python data visualization
library. After overlapping and comparing the images, the vine density was divided into
four levels, as shown in Table 4.

Table 4. Block color and category correspondence.

Resample Area Color Classes

Dark green Core area
Green Coverage area
White Transition area
Brown Naked land

The YOLOv3 network outputs the image with the kiwifruit plant position (the plant po-
sition is the red box calibration; to enhance the display, this study conducted the secondary
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annotation through the red dot), and then fuses the image after semantic segmentation
and resampling. The fusion process for the location and distribution images is shown in
Figure 5.
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3. Results
3.1. Analysis of the Image Processing Results
3.1.1. Accuracy Evaluation of the RF, SVM, and PSPnet

After image segmentation, we obtained the segmentation images of the RF, SVM, and
deep semantic segmentation. According to the calculation, we obtained the mAP and
signal-to-noise ratio (SNR) of each classification method, as shown in Table 5.

Table 5. Segmented image evaluation.

Method mAP SNR

RF 75.26% 7.2498
SVM 85.8% 10.5154

PSPnet 71.2% 12.9523

By comparing the mAP of the three segmentation methods, it can be observed that
the pixel accuracy of SVM was approximately 85%. The accuracy of PSPnet was 71%, i.e.,
14 percentage points lower than that of SVM. From the perspective of this data, the mAP of
the two traditional machine learning segmentation methods is higher than that of deep
semantic segmentation. An image of the classification result is shown in Figure 6.

The comparison of the segmentation results in Figure 6 shows that the noise for
traditional machine learning is greater. The RF and SVM are more sensitive to the fine
features than the depth semantic segmentation, and the distribution range of the vine pixels
in the correct region is more accurate. However, in general, the quality of the segmentation
image in traditional machine learning is not as high as that obtained by deep semantic
segmentation. There are three reasons for this finding. First, the pixels obtained from
machine learning are separated from each other, which results in a mixture of pixels in
the background, the object, and a rough outline of the object edge. In addition, there is
more noise at the edges. Second, because of the pruning that takes place in winter, there



Sensors 2021, 21, 4442 9 of 18

are more residual branches on the ground and more complex ground objects. The texture
of the UAV image obtained in practice is more complex. The RF and SVM incorporate
pixels that are similar to the label into the target object, which further increases the noise of
the segmentation results. Finally, various objects (e.g., well covers, wires, and scaffolding
wires) and the objects on the edge of the orchard are similar to the target objects. As
demonstrated in Figure 7a, in comparison to machine learning, due to the integrity of the
dataset annotation, deep semantic segmentation does not segment the ground stumps as
objects. Furthermore, the segmented objects have a continuous pixel distribution, smooth
contour, and no noise. They also do not include the objects at the edge of the orchard, such
as well covers and scaffolding, in the objects, as shown in Figure 7c.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 18 
 

 

   
(a) (b) (c) 

Figure 6. Classification effect picture under the different classification methods. As demonstrated, (a) is the result of the 
PSPnet classification, (b) is the result of the SVM classification, and (c) is the result of the RF classification. 

The comparison of the segmentation results in Figure 6 shows that the noise for tra-
ditional machine learning is greater. The RF and SVM are more sensitive to the fine fea-
tures than the depth semantic segmentation, and the distribution range of the vine pixels 
in the correct region is more accurate. However, in general, the quality of the segmentation 
image in traditional machine learning is not as high as that obtained by deep semantic 
segmentation. There are three reasons for this finding. First, the pixels obtained from ma-
chine learning are separated from each other, which results in a mixture of pixels in the 
background, the object, and a rough outline of the object edge. In addition, there is more 
noise at the edges. Second, because of the pruning that takes place in winter, there are 
more residual branches on the ground and more complex ground objects. The texture of 
the UAV image obtained in practice is more complex. The RF and SVM incorporate pixels 
that are similar to the label into the target object, which further increases the noise of the 
segmentation results. Finally, various objects (e.g., well covers, wires, and scaffolding 
wires) and the objects on the edge of the orchard are similar to the target objects. As 
demonstrated in Figure 7a, in comparison to machine learning, due to the integrity of the 
dataset annotation, deep semantic segmentation does not segment the ground stumps as 
objects. Furthermore, the segmented objects have a continuous pixel distribution, smooth 
contour, and no noise. They also do not include the objects at the edge of the orchard, such 
as well covers and scaffolding, in the objects, as shown in Figure 7c. 

   
(a) (b) (c) 

Figure 7. Comparison of the deep semantic segmentation and traditional machine learning segmen-
tation. (a) The red part is the classification result of PSPnet, and the white pixels represent the clas-
sification effect of the SVM. It can be observed that the red pixels are more continuous and concen-
trated, and there are many surrounding white pixels. (b) The well covers and scaffolds in the UAV 
image. (c) The SVM mistakenly identifies irrelevant objects. 

3.1.2. Advantages of Deep Semantic Segmentation 
The average pixel accuracy of PSPnet is lower than that of the former two traditional 

machine learning segmentation methods. However, in the actual classification results, the 
results that are obtained by deep semantic segmentation have a better continuity than in 

Figure 6. Classification effect picture under the different classification methods. As demonstrated, (a) is the result of the
PSPnet classification, (b) is the result of the SVM classification, and (c) is the result of the RF classification.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 18 
 

 

   
(a) (b) (c) 

Figure 6. Classification effect picture under the different classification methods. As demonstrated, (a) is the result of the 
PSPnet classification, (b) is the result of the SVM classification, and (c) is the result of the RF classification. 

The comparison of the segmentation results in Figure 6 shows that the noise for tra-
ditional machine learning is greater. The RF and SVM are more sensitive to the fine fea-
tures than the depth semantic segmentation, and the distribution range of the vine pixels 
in the correct region is more accurate. However, in general, the quality of the segmentation 
image in traditional machine learning is not as high as that obtained by deep semantic 
segmentation. There are three reasons for this finding. First, the pixels obtained from ma-
chine learning are separated from each other, which results in a mixture of pixels in the 
background, the object, and a rough outline of the object edge. In addition, there is more 
noise at the edges. Second, because of the pruning that takes place in winter, there are 
more residual branches on the ground and more complex ground objects. The texture of 
the UAV image obtained in practice is more complex. The RF and SVM incorporate pixels 
that are similar to the label into the target object, which further increases the noise of the 
segmentation results. Finally, various objects (e.g., well covers, wires, and scaffolding 
wires) and the objects on the edge of the orchard are similar to the target objects. As 
demonstrated in Figure 7a, in comparison to machine learning, due to the integrity of the 
dataset annotation, deep semantic segmentation does not segment the ground stumps as 
objects. Furthermore, the segmented objects have a continuous pixel distribution, smooth 
contour, and no noise. They also do not include the objects at the edge of the orchard, such 
as well covers and scaffolding, in the objects, as shown in Figure 7c. 

   
(a) (b) (c) 

Figure 7. Comparison of the deep semantic segmentation and traditional machine learning segmen-
tation. (a) The red part is the classification result of PSPnet, and the white pixels represent the clas-
sification effect of the SVM. It can be observed that the red pixels are more continuous and concen-
trated, and there are many surrounding white pixels. (b) The well covers and scaffolds in the UAV 
image. (c) The SVM mistakenly identifies irrelevant objects. 

3.1.2. Advantages of Deep Semantic Segmentation 
The average pixel accuracy of PSPnet is lower than that of the former two traditional 

machine learning segmentation methods. However, in the actual classification results, the 
results that are obtained by deep semantic segmentation have a better continuity than in 

Figure 7. Comparison of the deep semantic segmentation and traditional machine learning seg-
mentation. (a) The red part is the classification result of PSPnet, and the white pixels represent
the classification effect of the SVM. It can be observed that the red pixels are more continuous and
concentrated, and there are many surrounding white pixels. (b) The well covers and scaffolds in the
UAV image. (c) The SVM mistakenly identifies irrelevant objects.

3.1.2. Advantages of Deep Semantic Segmentation

The average pixel accuracy of PSPnet is lower than that of the former two traditional
machine learning segmentation methods. However, in the actual classification results, the
results that are obtained by deep semantic segmentation have a better continuity than
in traditional machine learning, and the recognition of objects is also better than that of
traditional machine learning. In contrast to previous methods of remote sensing deep
learning (such as field [25], citrus tree [26,27], and orchard remote sensing), kiwifruit vine
recognition presents unique characteristics. First, because of the high density and uniform
crops that are planted in the field, the target objects need to be recognized in the field crop
images, which generally have continuous and uniform features and an obvious texture. In
the process of kiwifruit vine recognition, the background pixels generally have an obvious
texture, but the target objects are extremely small and difficult to distinguish. Second,
compared with the larger and obvious branches of large fruit trees, kiwifruit trees are
smaller and irregular.
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The training of deep learning is robust. Due to the particularity of the features of
kiwifruit orchards, PSPnet mainly avoids the misclassification of pixels. In the process of
compiling the dataset, the range of vine pixels is relatively small, which makes it difficult
to label, resulting in different error pixels in the labeled image. This small number of error
pixels results in significant changes in the segmentation accuracy of traditional machine
learning. However, when training in the PSPnet network, although it is difficult to label
the vine pixels, these wrong pixels do not significantly affect the segmentation accuracy.
The training time of the deep semantic segmentation network continues to increase with
the increase in the sample size, and is relatively stable.

3.2. Influence of Threshold Parameters on the Accuracy of the Distributed Images

To evaluate the image distribution accuracy, due to the existence of the resampling
size we can use the Otsu iterative thresholding method and other methods to select the
segmentation threshold for a single time. In this study, the binary segmentation of each
sample size S was performed for eight scales. A total of 288 binary images were obtained.
The threshold value ranged from 0 to 1, and the eight gradients were equally divided,
as indicated by the letter T. The corresponding relationship between the threshold and
threshold levels is shown in Table 6.

Table 6. Threshold level and the threshold correspondence.

Threshold Level: T 1 2 3 4 5 6 7 8

Threshold 0.88 0.77 0.66 0.55 0.44 0.33 0.22 0.11

The distribution range of the real vines was compared to the continuous vines. The
actual distribution range of the vines and the distribution range of the vines that were
obtained after resampling were combined to calculate the IoU. The formula for the IoU is
as follows:

IOU =
P ∩Q
P ∪Q

(5)

where P is the pixel range of the true vine distribution, and Q is the pixel range of the true
vine distribution. The distribution map of the vines was binarized in the process of the
IoU calculation, as shown in Figure 8. This is the binary image of the various classification
methods under the S = 70 sampling size, and the T = 3 and T = 7 threshold levels.
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Figure 8. Binary images obtained by the different thresholds under three classification methods.

Figure 8 shows the binary images of the three segmentation methods under the
threshold levels of S = 70, and T = 3 and 7. The changes caused by the three different
classification methods under the same parameter show that the pixel range of PSPnet
segmentation is more concentrated, followed by that of SVM segmentation. As shown in
Figure 8a,b,e, the pixels obtained by these two methods are more concentrated and show
an island shape; the worst effect is that of RF segmentation. At a lower threshold level,
the pixels are more discrete, such as in Figure 8c, but with the increase in threshold level,
the useful information has been obscured by noise; Figure 8d. At the threshold level of
T = 7, PSPnet can still maintain a relatively independent island distribution, whereas the



Sensors 2021, 21, 4442 11 of 18

SVM segmentation method results in increased noise. The reason for the above results is
that, with the increase in the threshold level (that is, with the decrease in the threshold
value), more pixels are allowed to be collected, which not only increases the number of
useful pixels, but also increases the noise. Because the image SNR produced by the PSPnet
segmentation method is better than that of the other two machine learning methods, due to
the improvement in the threshold level, RF and SVM add a large amount of noise, whereas
the pixel change of PSPnet is relatively stable.

In conclusion, the distribution of the pixels in the binary image shows that, with an
increase in the threshold level (and thus a decrease in the threshold value), the binary
image contains more information. The area of the yellow region (vine distribution region
and noise region) changes with the threshold value. A higher threshold value can obtain
continuous and low-noise binary segmentation results, but may also cause the original
correctly predicted segmentation. From this, the layout area is removed, and the IoU of
each binary image is calculated under eight threshold levels. The trend of the IoU variation
with the accuracy is the same for the different sizes. Only the variation curves of the IoU
with the threshold level T under the sampling sizes S = 35 and S = 70 are listed in the text,
as shown in Figure 9. (Detailed data are shown in Tables A1–A12. Only the data in A1 and
A9 are shown here).
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Figure 9. (a) The IOU curve of S = 35 obtained by the three classification methods changes with the threshold. (b) The IOU
curve of S = 70 obtained by the three classification methods changes with the threshold.

The experimental data show that regardless of the resampling parameters, the order
of the IoU that is obtained by the three classification methods from large to small is PSPnet,
SVM, and RF classification. When the threshold level T = 5, the maximum IoU is obtained
using PSPnet. At a small threshold level, the difference in the IoU that is obtained by the
three segmentation methods is not obvious. However, with an increase in the threshold
level, the IoU curves that are obtained by the three segmentation methods exhibit two
trends. The IoU curve of the deep semantic segmentation shows a growing trend and
remains stable after reaching the maximum IoU, and changes little with the threshold.
The change curves of the two traditional machine learning methods show a monotonic
decreasing trend, and the accuracy of the RF classification declines more rapidly.

There are two reasons for the above results. First, because the result of the depth
network segmentation has continuous pixels and less noise distribution, the gradient of
the pixels in the different regions of the resampled image is different. Even at a higher
threshold level, it is still easy to extract different pixels in the resampled image. Second,
traditional machine learning has some disadvantages in distinguishing complex textures
and similar objects. Even through median filtering, it still cannot obtain good results (vine
pixels and noise are similar in size, smaller filter cores cannot remove obvious noise, and
larger filter cores will lead to the loss of vine pixel information). Therefore, when the
threshold level increases, the mixed background noise is also included, which leads to an
enlargement of the union area and a decrease in the IoU.



Sensors 2021, 21, 4442 12 of 18

3.3. Model Evaluation

Due to the comparison of the first sections, the PSPnet deep semantic segmentation
network has obvious advantages over traditional machine learning in image quality and
the IoU results of resampling. With sampling size S and threshold level T as independent
variables, and IoU as the dependent variable, the IoU change surfaces of three segmen-
tation methods are shown in Figure 10. (Detailed data are shown in Tables A13–A15 of
Appendix A).
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Figure 10 shows the IoU changes of the three segmentation methods under different
parameters. From Figure 10a, regardless of the sampling size S, the threshold level T = 5
can achieve better IoU. By selecting the threshold level T = 5, the performance of the IoU of
PSPnet on 40 test sets after processing with different sampling sizes is shown in Figure 11
(each color curve represents a different test chart).
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Figure 11. IoU curves of 40 test images with different sampling sizes when the threshold level T = 5.

Figure 11 shows that, when the threshold level T = 5, the sampling parameters used
to obtain a high IoU are mainly concentrated around the sampling size S = 70. Figure 12
shows the change curve of the true value and the predicted value of the 40 pictures in the
test set when the sampling size is S = 70 and T = 5.
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4. Discussion
4.1. Advantages and Limitations of the Model

In this study, an effective model (PLD-M) for kiwifruit orchard data acquisition from
low-altitude UAV remote sensing images is proposed. This includes the detection and
segmentation of kiwifruit vines, and the prediction of the possible canopy distribution.
The use of a deep learning method increased the quality of the segmentation image, and
intersection and union ratio, compared to those of traditional machine learning. The
existing methods of dense tree canopy recognition and extraction can only obtain the
number of fruit trees, canopy parameters, and other information. In contrast, the PLD-M
model can not only count and locate kiwifruit plants, but also extract the vine distribution
and possible canopy distribution of each plant. Compared with the apple branch extraction
model proposed by J Wu et al. (2020), PLD-M can not only obtain the specific distribution
of vines and the position of plants, but also extract the distribution density gradient of
liana plants. The distribution range of the canopy is more refined, and the hollow area of
the canopy caused by the external polygon of branches is avoided.

Due to the small size of the ground stump, camera lens distortion, and pan tilt stability,
small distortions appear in the stitching process, which may cause tiny inconsistencies in
the texture of different regions. In subsequent research, these problems could be addressed
by improving the resolution of the remote sensing camera, using a lens with less distortion,
and enhancing the pan tilt stability.

In this paper, we do not discuss the gap between the proposed PSPnet and other deep
learning networks, such as that of Lucas Prado Osco et al. [28]. This is because, compared
with the recognition of large areas, the mAP of deep learning network is not superior to
traditional machine learning in the classification of kiwifruit vines. However, this study can
optimize the data set and network input through feature fusion [29] and image fusion [30],
and thus allow comparison of the differences in different neural networks in multi-feature
and multi-channel images.

4.2. Research Significance and Prospect

After artificial pruning of kiwifruit plants, the originally dense vines show an uneven
and sparse distribution. Although the sparse degree of vine distribution of a single plant
is within the reasonable range of artificial control, the vine distribution among kiwifruit
plants is uneven. This may lead to the overlap of the canopy between kiwifruit plants, thus
affecting plant photosynthesis and, ultimately, yield. The orchard information is collected
using a low-altitude UAV and input into PLD-M to obtain the distribution of vines of each
plant and the distribution of vines among plants, thus allowing evaluation of the rationality
of winter pruning and assisting in decision making. This can not only be used for the
evaluation of pruning, but also for variable rate spraying and variable rate fertilization.

Possible future directions exist for this research. First, the model could be applied
to the embedded system of UAVs for real-time orchard condition analysis, and thus to
precision agriculture. Second, because the training of deep learning networks depends
on Big Data, datasets should be further expanded and enriched in further study of the
model. Third, for variable applications, models should be designed that can provide a
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greater amount of information, such as the elevation and overlap. Fourth, at present, the
model is only suitable for kiwifruit plants, and future research can extend the model to
other plants. Finally, the image information that is obtained by a visible light sensor is
limited. To expand the amount of information that is collected, multispectral data will be
introduced in future investigations.

5. Conclusions

In this study, an effective model (PLD-M) for kiwifruit orchard data acquisition from
low-altitude UAV remote sensing images is proposed. This includes the detection and
segmentation of kiwifruit vines, and prediction of the possible canopy distribution. The
model is based on the YOLOv3 target recognition network and the PSPnet deep semantic
segmentation network. The former extracts the trunk position of the kiwifruit plants and
provides the location information of each plant, whereas the latter extracts the kiwifruit
vines from the background. Then, the segmented image is input into a model to predict
the canopy range using a resampling operation. Finally, the kiwifruit plant information,
such as the vine position and canopy distribution, can be obtained from the low-altitude
UAV images. To train and optimize the proposed model, this study constructed a training
set that contained 300 labeled images to optimize and train the YOLOv3 network. We
also constructed a training set that contained 300 labeled images to train and optimize
the PSPnet deep semantic segmentation network that was used to extract the kiwifruit
vines. To verify and optimize the accuracy of the canopy prediction that was obtained by
PSPnet and resampling, another 40 high-definition images were selected from the UAV
remote sensing images for manual truth labeling. The results showed that the canopy data
that were predicted by the model were close to the artificial data (the IoU of the canopy
distribution was between 70% and 95%). Therefore, the proposed model can accurately
extract the vine distribution and plant position of each plant in a kiwifruit orchard, based
on UAV data, allowing rapid, non-destructive, and stable monitoring of kiwifruit plants.
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Appendix A

Table A1. The IoU of sample size S = 35 varies with the threshold level T.

Methods T = 1 T = 2 T = 3 T = 4 T = 5 T = 6 T = 7 T = 8

PSPnet 0.4969 0.6192 0.6380 0.6394 0.6292 0.6271 0.6197 0.6126
RF 0.4742 0.4642 0.3559 0.2531 0.2084 0.1877 0.1764 0.1704

SVM 0.4743 0.4604 0.4408 0.4119 0.3800 0.3494 0.3243 0.3056

https://github.com/eletricsheep/PLD-M/tree/main
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Table A2. The IoU of sample size S = 40 varies with the threshold level T.

Methods T = 1 T = 2 T = 3 T = 4 T = 5 T = 6 T = 7 T = 8

PSPnet 0.4824 0.6152 0.6440 0.6447 0.6311 0.6279 0.6200 0.6172
RF 0.4658 0.4630 0.3560 0.2463 0.2011 0.1828 0.1720 0.1660

SVM 0.4658 0.4561 0.4344 0.4132 0.3752 0.3471 0.3203 0.3006

Table A3. The IoU of sample size S = 45 varies with the threshold level T.

Methods T = 1 T = 2 T = 3 T = 4 T = 5 T = 6 T = 7 T = 8

PSPnet 0.5283 0.6341 0.6657 0.6705 0.6640 0.6517 0.6443 0.6370
RF 0.5136 0.5121 0.3809 0.2562 0.2093 0.1896 0.1792 0.1732

SVM 0.5132 0.4992 0.4780 0.4421 0.3988 0.3611 0.3362 0.3155

Table A4. The IoU of sample size S = 50 varies with the threshold level T.

Methods T = 1 T = 2 T = 3 T = 4 T = 5 T = 6 T = 7 T = 8

PSPnet 0.5225 0.6287 0.6750 0.6808 0.6751 0.6629 0.6545 0.6435
RF 0.5135 0.5052 0.3882 0.2570 0.2069 0.1883 0.1775 0.1717

SVM 0.5129 0.5011 0.4810 0.4537 0.4096 0.3692 0.3317 0.3135

Table A5. The IoU of sample size S = 55 varies with the threshold level T.

Methods T = 1 T = 2 T = 3 T = 4 T = 5 T = 6 T = 7 T = 8

PSPnet 0.5230 0.6402 0.6914 0.7158 0.7061 0.6846 0.6761 0.6658
RF 0.5130 0.5150 0.3831 0.2528 0.2064 0.1882 0.1788 0.1755

SVM 0.5125 0.5014 0.4856 0.4565 0.4150 0.3789 0.3483 0.3310

Table A6. The IoU of sample size S = 60 varies with the threshold level T.

Methods T = 1 T = 2 T = 3 T = 4 T = 5 T = 6 T = 7 T = 8

PSPnet 0.5119 0.6318 0.6801 0.7128 0.6946 0.6756 0.6616 0.6550
RF 0.5051 0.5040 0.3944 0.2530 0.2000 0.1814 0.1722 0.1685

SVM 0.5044 0.4920 0.4773 0.4382 0.4012 0.3612 0.3356 0.3123

Table A7. The IoU of sample size S = 65 varies with the threshold level T.

Methods T = 1 T = 2 T = 3 T = 4 T = 5 T = 6 T = 7 T = 8

PSPnet 0.4660 0.5905 0.6434 0.6655 0.6713 0.6492 0.6306 0.6229
RF 0.4581 0.4595 0.3728 0.2396 0.1923 0.1760 0.1681 0.1630

SVM 0.4581 0.4541 0.4268 0.4237 0.3992 0.3597 0.3331 0.3074

Table A8. The IoU of sample size S = 70 varies with the threshold level T.

Methods T = 1 T = 2 T = 3 T = 4 T = 5 T = 6 T = 7 T = 8

PSPnet 0.4959 0.6269 0.7134 0.7313 0.7506 0.7305 0.7039 0.6844
RF 0.4891 0.4986 0.3868 0.2474 0.1943 0.1772 0.1697 0.1651

SVM 0.4891 0.4795 0.4656 0.4507 0.4171 0.3773 0.3389 0.3139
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Table A9. The IoU of sample size S = 75 varies with the threshold level T.

Methods T = 1 T = 2 T = 3 T = 4 T = 5 T = 6 T = 7 T = 8

PSPnet 0.5063 0.6228 0.6888 0.7293 0.7432 0.7221 0.6961 0.6732
RF 0.5042 0.5148 0.3968 0.2512 0.1954 0.1799 0.1719 0.1679

SVM 0.5042 0.4941 0.4756 0.4491 0.4073 0.3575 0.3256 0.3050

Table A10. The IoU of sample size S = 80 varies with the threshold level T.

Methods T = 1 T = 2 T = 3 T = 4 T = 5 T = 6 T = 7 T = 8

PSPnet 0.5221 0.6311 0.6926 0.7230 0.7248 0.7167 0.6931 0.6863
RF 0.5173 0.5259 0.3982 0.2539 0.2032 0.1833 0.1774 0.1724

SVM 0.5162 0.5000 0.4844 0.4401 0.3870 0.3482 0.3187 0.2949

Table A11. The IoU of sample size S = 85 varies with the threshold level T.

Methods T = 1 T = 2 T = 3 T = 4 T = 5 T = 6 T = 7 T = 8

PSPnet 0.5177 0.6180 0.6722 0.6981 0.6938 0.6846 0.6674 0.6590
RF 0.5150 0.5134 0.4009 0.2536 0.2024 0.1843 0.1771 0.1730

SVM 0.5136 0.5093 0.4946 0.4511 0.4084 0.3764 0.3444 0.3192

Table A12. The IoU of sample size S = 90 varies with the threshold level T.

Methods T = 1 T = 2 T = 3 T = 4 T = 5 T = 6 T = 7 T = 8

PSPnet 0.5052 0.6204 0.6798 0.7153 0.7309 0.6998 0.6929 0.6794
RF 0.5022 0.5091 0.3409 0.2266 0.1857 0.1751 0.1681 0.1650

SVM 0.5022 0.4958 0.4735 0.4420 0.3875 0.3399 0.3112 0.2901

Table A13. The IoU of PSPnet varies with sampling size S and threshold level T.

S = 35 S = 40 S = 45 S = 50 S = 55 S = 60

T = 1 0.4969 0.4824 0.5283 0.5225 0.5230 0.5119
T = 2 0.6192 0.6152 0.6341 0.6287 0.6402 0.6318
T = 3 0.6380 0.6440 0.6657 0.6750 0.6914 0.6801
T = 4 0.6394 0.6447 0.6705 0.6808 0.7158 0.7128
T = 5 0.6292 0.6311 0.6640 0.6751 0.7061 0.6946
T = 6 0.6271 0.6279 0.6517 0.6629 0.6846 0.6756
T = 7 0.6197 0.6200 0.6443 0.6545 0.6761 0.6616
T = 8 0.6126 0.6172 0.6370 0.6435 0.6658 0.6550

S = 65 S = 70 S = 75 S = 80 S = 85 S = 90

T = 1 0.4660 0.4959 0.5063 0.5221 0.5177 0.5052
T = 2 0.5905 0.6269 0.6228 0.6311 0.6180 0.6204
T = 3 0.6434 0.7134 0.6888 0.6926 0.6722 0.6798
T = 4 0.6655 0.7313 0.7293 0.7230 0.6981 0.7153
T = 5 0.6713 0.7506 0.7432 0.7248 0.6938 0.7309
T = 6 0.6492 0.7305 0.7221 0.7167 0.6846 0.6998
T = 7 0.6306 0.7039 0.6961 0.6931 0.6674 0.6929
T = 8 0.6229 0.6844 0.6732 0.6863 0.6590 0.6794
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Table A14. The IoU of RF varies with sampling size S and threshold level T.

S = 35 S = 40 S = 45 S = 50 S = 55 S = 60

T = 1 0.4742 0.4658 0.5136 0.5135 0.5130 0.5051
T = 2 0.4642 0.4630 0.5121 0.5052 0.5150 0.5040
T = 3 0.3559 0.3560 0.3809 0.3882 0.3831 0.3944
T = 4 0.2531 0.2463 0.2562 0.2570 0.2528 0.2530
T = 5 0.2084 0.2011 0.2093 0.2069 0.2064 0.2000
T = 6 0.1877 0.1828 0.1896 0.1883 0.1882 0.1814
T = 7 0.1764 0.1720 0.1792 0.1775 0.1788 0.1722
T = 8 0.1704 0.1660 0.1732 0.1717 0.1755 0.1685

S = 65 S = 70 S = 75 S = 80 S = 85 S = 90

T = 1 0.4581 0.4891 0.4891 0.5173 0.5150 0.5022
T = 2 0.4595 0.4986 0.4986 0.5259 0.5134 0.5091
T = 3 0.3728 0.3868 0.3868 0.3982 0.4009 0.3409
T = 4 0.2396 0.2474 0.2474 0.2539 0.2536 0.2266
T = 5 0.1923 0.1943 0.1943 0.2032 0.2024 0.1857
T = 6 0.1760 0.1772 0.1772 0.1833 0.1843 0.1751
T = 7 0.1681 0.1697 0.1697 0.1774 0.1771 0.1681
T = 8 0.1630 0.1651 0.1651 0.1724 0.1730 0.1650

Table A15. The IoU of SVM varies with sampling size S and threshold level T.

S = 35 S = 40 S = 45 S = 50 S = 55 S = 60

T = 1 0.4743 0.4658 0.5132 0.5129 0.5125 0.5044
T = 2 0.4604 0.4561 0.4992 0.5011 0.5014 0.4920
T = 3 0.4408 0.4344 0.4780 0.4810 0.4856 0.4773
T = 4 0.4119 0.4132 0.4421 0.4537 0.4565 0.4382
T = 5 0.3800 0.3752 0.3988 0.4096 0.4150 0.4012
T = 6 0.3494 0.3471 0.3611 0.3692 0.3789 0.3612
T = 7 0.3243 0.3203 0.3362 0.3317 0.3483 0.3356
T = 8 0.3056 0.3006 0.3155 0.3135 0.3310 0.3123

S = 65 S = 70 S = 75 S = 80 S = 85 S = 90

T = 1 0.4581 0.4891 0.5042 0.5162 0.5136 0.5022
T = 2 0.4541 0.4795 0.4941 0.5000 0.5093 0.4958
T = 3 0.4268 0.4656 0.4756 0.4844 0.4946 0.4735
T = 4 0.4237 0.4507 0.4491 0.4401 0.4511 0.4420
T = 5 0.3992 0.4171 0.4073 0.3870 0.4084 0.3875
T = 6 0.3597 0.3773 0.3575 0.3482 0.3764 0.3399
T = 7 0.3331 0.3389 0.3256 0.3187 0.3444 0.3112
T = 8 0.3074 0.3139 0.3050 0.2949 0.3192 0.2901
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