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Abstract: Remote sensing technologies have been widely used in the contexts of land cover and
land use. The image classification algorithms used in remote sensing are of paramount importance
since the reliability of the result from remote sensing depends heavily on the classification accuracy.
Parametric classifiers based on traditional statistics have successfully been used in remote sensing
classification, but the accuracy is greatly impacted and rather constrained by the statistical distribution
of the sensing data. To eliminate those constraints, new variants of support vector machine (SVM)
are introduced. In this paper, we propose and implement land use classification based on improved
SVM-enabled radial basis function (RBF) and SVM-Linear for image sensing. The proposed variants
are applied for the cross-validation to determine how the optimization of parameters can affect the
accuracy. The accuracy assessment includes both training and test sets, addressing the problems of
overfitting and underfitting. Furthermore, it is not trivial to determine the generalization problem
merely based on a training dataset. Thus, the improved SVM-RBF and SVM-Linear also demonstrate
the outstanding generalization performance. The proposed SVM-RBF and SVM-Linear variants
have been compared with the traditional algorithms (Maximum Likelihood Classifier (MLC) and
Minimum Distance Classifier (MDC)), which are highly compatible with remote sensing images.
Furthermore, the MLC and MDC are mathematically modeled and characterized with new features.
Also, we compared the proposed improved SVM-RBF and SVM-Linear with the current state-of-
the-art algorithms. Based on the results, it is confirmed that proposed variants have higher overall
accuracy, reliability, and fault-tolerance than traditional as well as latest state-of-the-art algorithms.

Keywords: remote sensing; support vector machine; improved SVM-RBF variant; improved SVM-
Linear variant; image classification

1. Introduction

As a vital tool for information retrieval regarding land cover and land use, remote
sensing (RS) technologies have widely been used in various areas (e.g., land management,
and urban and rural planning) [1–3]. RS is the method that provides information about
events by assessing the data. The data is collected using special instruments, which do not
interact physically with the environment under study [4]. Thus, the Knowledge of land-cover/
land-use is vital in a number of arenas based on the observations done for the metropolitan
and regional future planning [5]. In the area of sustainable development, image classification
in RS can be used to assess changes in different ecosystems—namely, to monitor global
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climate change, to assess natural disasters, to track forest fires, to determine air pollution and
to observe air quality [6]. Compared with field investigation, RS technology is much more
efficient and cheaper in terms of time and cost [7]. RS image classification is a significant
part of the overall field of RS, which can be thought of as a joint venture between both
image processing and classification techniques [8]. The classification can be implemented by
algorithms that are either supervised or unsupervised: the former uses pre-labeled data and
the latter uses data without labeling. In RS classification, supervised classification algorithms
are usually preferred due to their accuracy and practicability [9–11]. The statistical distribution
of data can severely decrease the accuracy when the data do not follow those assumptions.

MDC and MLC can produce different accuracies and efficiencies based on their
mathematical principles. An analysis of MLC is elaborated by [12]. However, as parametric
classifiers, the algorithms are severely affected by several assumptions. MDC requires the
distribution of the mean vectors of each class to be much wider than the distribution of
the training data within each class, while MLC assumes that the statistics for each training
class obey a multivariate normal distribution. Several algorithms have been introduced to
provide the great accessibility for high-quality image procurement [13]. The SVM was first
developed to deal with binary classification, and the explanation above assumes that there
are simply two classes to be classified. For most of the cases in RS imagery, there are more
than two classes of land use [14,15]. Thus, some techniques need to be adopted to transfer
the binary classifier to a multiple classifier. The SVM has a capability to train and test
the feature vectors and works efficiently with unstructured and semi structured data [16].
As a result, it works fast with linearly separable. vectors and low-dimensional features.
The SVM classifier has a disadvantage because it does not support several overlapping
classes. It is also delicate with the noisy feature vectors. To improve the classification
accuracy by removing the constraints in parametric classifiers, our proposed variants
adopt the structural risk minimization principle, which does not assume the distribution
of data, although parametric classification algorithms have a higher time complexity due
to their complex mathematical principles, these algorithms usually have higher accuracy
and are more stable when dealing with small samples. In this paper, we further assess the
performance of current state-of-the-art algorithms and compared them to our proposed
SVM-RBF, and SVM-Linear. The main contribution of the paper is summarized as follow:

• Novel framework based on SVM-RBF and SVM-Linear for the classification of remote
sensing images have been introduced to improve the accuracy and efficiency and
overcome many existing challenges.

• The proposed SVM-RBF and SVM-Linear are capable to address mask generation,
cross-validation, ranking, change classification/ No-change classification, underfitting,
and overfitting.

• SVM-Linear and non-linear SVM-RBF can minimize the computational load by sepa-
rating the samples from different classes.

• The SVM-RBF and SVM-Linear are also compared with the state-of-the-art algorithms
(NDCI, SCMask R-CNN, CIAs, KCA, and AOPC from the change detection accuracy,
and reliability perspective. The proposed SVM-RBF and SVM-Linear have shown
higher overall accuracy and better reliability compared to existing approaches.

The remainder of the paper is organized as follows. Section 2 presents salient features
of the existing approaches. Section 3 presents materials and methods. Section 4 discusses
and gives an overview of the mathematical principles. Section 5 presents experimental
results, and finally the entire paper is concluded in Section 6.

2. Literature Review

In this section, the salient features of the existing approaches are summarized. The
analysis of supervised classification algorithms in image classification has been a trending
topic among information technology specialists, as improving classification accuracy is
vital for RS to have a practical use. Some researchers have focused for the most part on
the evaluation of parametric classifiers. Improved Mask of Recurrent Neural Network
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is introduced remote sensing images [17]. The proposed approach is called as SCMask
R-CNN, and the goal of this proposed approach is to enhance the detection effect by pro-
viding a higher resolution of remote image sensing.The proposed approach also provided
segmentation and object recognition concurrently. In [8], the authors have focused on
the discoloration and modification in the optical processes. Thus, new non-destructive
and content independent (NDCI) methods are proposed for ranking classification. The
proposed approach is tested on multispectral images for determining the spectral responses.
However, the proposed approach is not highly compatible with remote image sensing. The
computational intelligence applications (CIAs) are evaluated in the remote image sensing
process [18]. The authors in [18] address many challenges that face the applications of
remote sensing images, such as high-dimensional data, complex data structures, and the
nonlinear optimization issues.

The evaluation process focused on the feature demonstration and selection. The
clustering, classification, and change-detection processes are performed. Consequently, the
fundamental capacities of computational intelligence are described from the remote image
sensing perspective. However, the evaluation failed to provide mask generation, ranking,
underfitting, and Overfitting. Multi-temporal hyperspectral remote sensing (HSRS) is
compatible with image change detection. Thus, the authors in [19] proposed an HSRS
based on deep learning and tensor. The organization mode has been optimized to preserve
the integrity between dissimilar underlying features. The large quantity of unlabeled and
untagged samples are trained using multilayer Tensor3- Restricted Boltzmann Machine.
Finally, the traditional Boltzmann Machine based on neural networks is replaced with
a support tensor machine to obtain the land-use changes. The results demonstrate that
the proposed has higher change detection accuracy as compared to other methods and
also provides a better automation level. Although the accuracy assessments of supervised
classification algorithms in RS have already been studied by many researchers, most of
the assessments are only focused on the accuracy of specific datasets but neglect the poor
manner with which the problem is posed [20]. High accuracy in one specific dataset can
sometimes be deceptive because of overfitting. In that case, the algorithm cannot be applied
to practical use well due to its low accuracy with new data. Consequently, the accuracy
in the test set is also of great significance in accuracy assessment to address the problem
of overfitting. Thus, ref. [21] studied the performance of the four algorithms (K-nearest
neighbor (KNN), SVM, Random Forest (RF), and Artificial Neural Network (ANN)) to
determine the desert-oasis medley landscapes merging Key Component analysis (KCA).
Based on the results, the authors declared the RF algorithm as the first choice. However,
they failed to justify the impact of RF on the overall accuracy.

The overfitting and poor generalization problems are discussed in [22]. The proposed
Addressing Overfitting on Pointcloud Classification (AOPC) aims to address the inducing
controlled noise generated by conditional random field parallel penalties using adjacent
features of [22]. The authors proposed new algorithm named Atrous XCRF to overcome
the overfitting problem and enhance the classification of pointcloud data. The proposed
method is used for training and utilizing the unlabeled part of a dataset to improve
model accuracy. The proposed method gets better accuracy, but it still suffers due to
generalization problems. The SVM experiences the problem due to different sorts of
vulnerabilities, such as authentication bypass, context escape, trust failure, and code
execution [23]. The localization vulnerability is a big issue that leads to possible attacks
on the memory, network traffic, and file system. As a result, these localization problems
cause service interruption. The SVM is particularly designed to handle binary classification.
Thus, multiclass classification can be the big issue for applying the SVM. Another problem
encountered by the SVM is the extended training and testing time because it behaves
poorly during the extended training and testing time. The SVM is not fully capable of
attack detection because it takes more time to be trained and tested. The main goal of this
research is to introduce robust SVM variants to yield lower false-positive rates and produce
higher classification accuracy [24].
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The objective of our research is to create a land-use classification method using new
SVM-RBF, SVM-Linear, MLC and MDC, and other current state-of-the-art algorithms. The
SVM-RBF, SVM-Linear, MLC, and MDC have been compared both from a mathematical
perspective and with the experiment results to show their different levels of accuracy and
efficiency. Moreover, SVM-RBF, SVM-Linear have also been compared with current state-
of-the-art algorithms: NDCI [8], SCMask R-CNN [17], CIAs [18], KCA [21], and AOPC [22]
from the change detection accuracy, and reliability viewpoint.

We believe that our proposed SVM-RBF and SVM-Linear are capable to address the
mask generation, cross-validation, ranking. change classification/ No-change classification,
underfitting, and overfitting. We further argue that the thorough analysis and comparison
will help others to design a better classification algorithm for the land cover and parameter
settings. Table 1, demonstrates the features of algorithms for the land cover and land use
properties.

Table 1. Showing characteristics/ Features of contending algorithms for the land cover and land use.

Characteristics/Features NDCI [8] R-CNN [17] CIAs [18] HSRS [19] KCA [21] AOPC [22] Proposed Method

Segmentation/Preprocessing No Yes Yes No Yes No Yes
Separability No No Yes No No Yes Yes

Ranking Classification Yes Yes No Yes No No Yes
Change Classification Yes No Yes Yes Yes Yes Yes

No-Change Classification No No No Yes No No Yes
Image Classification Yes No Yes Yes Yes Yes Yes

Visual interpretation and Field Verification No Yes No Yes No No Yes
Feature Mapping No Yes No Yes Yes No Yes

Dealing with unlabeled samples No No No Yes No Yes No
Deal with underfitting and Overfitting No No No No Yes Yes Yes

Addressing Generalization Problem No No Yes No No No Yes
Forest Detection No No Yes Yes Yes Yes Yes

Bare Soil Ground Detection Yes No No Yes Yes No Yes
Water Detection No No Yes No Yes No Yes

Urbanization Region Detection Yes Yes No Yes Yes Yes Yes
Cross validation Process No Yes No No No Yes Yes
Mask Generation Process No Yes No Yes No - Yes

Change Detection Accuracy 95.6% 95.1% 97.4% 95.2% 95.8% 94.2% SVM-RBF = 99.65%,
SVM-Linear = 99.43%

The vulnerabilities and the security issues are not handled in this article. The adver-
sarial examples can also add little noise to the original image that leads to misclassification.
We will try to propose a similar type of restricted adversarial example solution for our
proposed variants in the future as introduced in [4] for deep neural network (DNN).

The general procedure of the proposed framework is as follow: reading the remote
sensing image, pre-processing step for input image, and the classification step which
is apply to each pixel in the image. Figure 1 shows the proposed framework for the
classification of the remote sensing image.

Figure 1. The proposed framework of the remote sensing image classification.
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3. Materials and Methods
3.1. Datasets

The study area considered in this paper includes the regions of Xuzhou Jiangsu, China,
and Tanintharyi, located in southern Myammar. In the Xuzhou Jiangsu, China, region,
the coordinates of the area are 30◦40” to 31◦40” northern latitude and 117◦40” to 118◦0”
eastern longitude, covering about 5000 km2. The radar satellite and optical data were
combined and used for the land cover change evaluation. The Landsat-8 Operational Land
Imager and Landsat-5 Thematic Mapper were used for optical data collection. Global
L-band Synthetic Aperture Radar was used for radar data. Several images were taken
using two types of RS methods (optical and thermal). Figures 2a-b show the schematic
process of RS using optical and thermal. In both types of RS methods, a passive sensing
system is applied that gets the energy from the sun to obtain electromagnetic energy. The
electromagnetic interaction with the targeted atmosphere. In reply, the targeted atmosphere
reflects, then satellite sensor-A records the emitted energy from the targeted atmosphere.
The recorded energy is transmitted to satellite Sensor-B by the satellite Sensor-A. When a
satellite sensor-A receives recorded energy, then it is transmitted to the processing station.
Finally, the data is processed, evaluated, and construed to obtain the required image.

(a) (b)

Figure 2. Passive remote sensing processes. (a) A passive remote sensing process using optical remote sensing; (b) A passive
remote sensing process using thermal remote sensing.

Images were also taken from human and non-human zones. One of the RS images
covering different densities is depicted in Figure 3. The image shown in Figure 3 is taken
from Landsat-8 TM [25].

As Figure 4 shows, 10 classes of the land are used in the reference map. To simplify
our research, we chose change classification and no-change classification. Moreover, we
implemented the image classification depicted in Figure 4 for the Tanintharyi region
located in southern Myanmar, with coordinates of 9◦ to 16◦ northern latitude and 97◦ to
100◦ eastern longitude, covering about 43,345 km2. The coastal areas of the Andaman
sea were focused to the west and the Tenasserim Hills to the east, with 2072 m being the
highest elevation above sea level.
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Figure 3. Remote sensing image of Xuzhou Jiangsu, China.

The land cover classes have been defined through a combination of the visual interpre-
tation and field verification of the high-resolution images. The experiment was done with
a reference map. The ground truth data were gathered from field verification from two dif-
ferent regions—Xuzhou Jiangsu, China and Tanintharyi, Myammar—in 2020. The sources
used for collecting data were the Smithsonian Institution, Virginia, USA, EcoDev/ALARM,
Myanmar and Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences,
China. The visual analysis of reference images was based on the features that help in the
recognition of land cover geographies such as location, shape, size, color, shadow, tone,
smoothness and shape. We used 7.6.4 (R.G.B) false-color synthesis, which is considered
suitable for monitoring human and non-human zones.

3.2. Parameters in SVM-RBF and SVM-Linear Variants

The accuracy of the SVM is largely based on the choice of variants and parameters.
For our study, we use the linear SVM-enabled-RBF and SVM-enabled-linear in order to
show both linear and non-linear classification. The parameters in the RBF variant are the
parameter g and penalty factor C. The penalty factor C is used for regularization, which
deals with the problem of underfitting and overfitting in the cost function itself, while γ is
unique to the RBF kernel.

The kernel parameter Υ determines how many nearby samples the support vector
will consider, which also addresses the problem of underfitting and overfitting indirectly.
Figure 5 demonstrates the outcome of the underfitted, overfitted and regularized models.
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Figure 4. Image classification for the Tanintharyi region location in southern Myanmar.

Figure 5. Kernel parameter γ for underfitting, regularized, and overfitting models respectively.

In order to optimize those two parameters, we adopt a cross validation method that
divides the training samples into two parts: the first part is used to train the model while
the other is used as a test set to evaluate the accuracy using the current parameter. The
cross validation is implemented using grid search of exponential growth parameters, with
the default value being the median. The default values of the penalty factor C and kernel
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parameter γ are 100 and the reciprocal of the number of features, which is 0.33 in our case.
In our case, C and γ are selected from set{2−4×100 . . .2−1 × 100, 100, 21×100 . . .24×100}
and {2−4×0.33 . . .2−1× 0.33, 0.33, 21×100 . . .24×100} respectively, constituting 9× 9 = 81
permutations to test.

3.3. Image Processing

Before classification, some pre-processing techniques can be applied to calibrate the
original image, such as radiometric, atmospheric and geometric corrections, removing the
undesired impact of irrelevant data. This is not our focus, but image processing has an
effect on the comparison of algorithms. The Landsat image composite is of paramount
importance and requires five indexes, which can be calculated as follows:

Nvi =
(Np − Rp)

(Np + Rp)
(1)

Evi = 2.5 ∗
(Np − Rp)

Np + (6.0 ∗ Rp − 7.5 ∗ Bp) + 1.0
(2)

Svi =
(Sir1 − Rp)

(Sir1 + Rp + 0.1)
∗ (1.1− Sir2

2.0
) (3)

Nti =
(Sir1 − Sir2)

(Sir1 + Sir2)
(4)

Lsw =
(Np − Sir1)

(Np + Sir1)
(5)

where Nvi is the normalized difference vegetation index; Np is the near infrared band; Rp is
a red band; Bp is a blue band; Evi is the enhanced vegetation index; Svi is the soil-adjusted
entire vegetation index; Sir1 is the shortwave infrared index-1; Sir2 is the shortwave infrared
index-2; Nti is the normalized difference tillage index; and Lsw is the land surface water
index. We applied optical indexes due to nature of land cover and forest. Nvi and Lsw are
used to gain better separation between the land cover types of forest and croplands. Nti,
Svi and Lsw are leading predicators for distinguishing between forests and plantations. Evi,
Nvi and Lsw are useful for forest-mapping and broad-leaved plantations [26].

3.4. Selection of Training Test and Testing Set

In RS, regions of interest (ROIs) are chosen manually, which work in a similar manner
to training data. During the training procedure, the ROIs specify the region in which the
objects are chosen that the computer should learn [27]. The image statistics are extracted to
generate the masks. The box-whisker plots are constructed from the image statistics to visu-
alize reflectance-distribution values for each covered land type against each radar/optical
channel to determine the predicator variables. The predicator variables are capable of
discriminating the land cover classes, which are picked based on a visual evaluation of the
plots. The classes are separable based on dissemination.

Training areas were established by choosing one or more polygons for each class [28].
After choosing ROIs, we implemented a random shuffle algorithm for ROIs by modifying
the interactive data language (IDL) in an environment for visualizing images (ENVI) and
chose the first 90% as the training data set and the remaining 10% as the test data set.

In addition, we also chose different training and testing options for study. Based
on training and testing ratios of 80:20, the accuracy was observed 92.6% and 84.34%, for
training and testing respectively. The 70:30 ratios produce the accuracy of 69.3% and 81.30%
respectively. Therefore, it shows the possible overfitting. We employed 90:10 ratios that
demonstrate 99.65% and 94.6% for training and testing respectively. Furthermore, 10-fold
cross-validation is used because it helps to divide the samples into training data sets to
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train the model and use a test data set to verify it. Figure 6 shows the efficient perdition
model for the support of proposed variants.

Figure 6. Optimal perdition model for conducting the experiment.

3.5. Separability

The spectral separability between selected ROI pairs is computed for a given input
file [27]. The value of the separability between each pair is from 0 to 2, and values
greater than 1.9 indicate good separability [29]. Good separability means a good ability for
computers to perform machine learning, which usually leads to high accuracy.

The separability formula can be established in the form of S
⊗

k S, where S is the finite
separability for the ground field k. Let p be a primitive element for the S over k; thus,
p = p1, p2, ..., pn are the conjugate of the splitting field w for the lowest polynomial of p.
Let M(p) be the matrix, written as

M(p) =


1p1 p2

1 p3
1...pn−1

1
(1p2 p2

2 p3
2...pn−1

2
∗ ∗ ∗

1pn p2
n p3

n...pn−1
n

 (6)

This describes the linear operator in wn, which is indexable by the presumed separa-
bility.

3.6. Supervised Calculation

After choosing ROIs and computing their separability, the image can be classified
using supervised classification with the existing algorithms. The next section introduces
the mathematical principles of those three classification algorithms.

4. Mathematical Modeling and Characterization of MDC and MLC
4.1. Minimum Distance Classification

The minimum distance classification algorithm first calculates the mean vectors and
draws the decision boundary for each class as shown in Figure 7. The pixels are then
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classified to the nearest class according to the decision boundary [30]. In the rectangular
coordinate system, the coordinate of the mean vector of each class is calculated as the
average of the coordinates of the entire pixel in that class:

mi =
1
Ni

∑
x∈ci

x f or i = 1, 2, ..., M (7)

where M is the number of classes and Ni is the number of training data from the class ci.

Figure 7. Principle of minimum distance classifier.

For any pixel x to be classified, the algorithm first calculates its Euclidean distance
between every given classes, given by

di(x) =
∣∣∣∣∣x−mi

∣∣∣∣∣ f or i = 1, 2, ..., M (8)

If x = (p1, q1) mi = (p2, q2). It is then equal to

Di(x) =
√
(p1 − p2)

2 + (q1 − q2)
2 (9)

However, for computers, it is usually convenient and efficient to perform matrix
calculation. In that sense, for column vectors x and mi, the distance between x and m(i) is

Di(x)2 = (x−mi)
T(x−mi) = xTx− xTmi −mT

i x + mT
i mi (10)

Because for a given pixel x, xT and x are the same as the distance to the mean vectors
of every class; also xT mi = mT

i x, which is equivalent to computing and defined by

di(x)2 = xTmi −
1
2

mT
i mi f or i = 1, 2, ..., M (11)

Finally, the decision boundary that separates class ci and cj is given by
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di(x)2 − di(x)2 = 0 f or every i 6= j (12)

The pixel x is classified as class ci if it falls into the area of the intersection of all the
decision boundaries from that class.

4.2. Maximum Likelihood Classification

As depicted in Figure 8, the MLC calculates the probability that a given pixel belongs
to a specific training class n based on the assumption that the statistics for each training
class in each band are typically distributed. We then classify the pixel into the class with
the maximum probability [30]. The accuracy of MLC and the contending method is shown
in Table 2.

Table 2. Accuracy assessment of the classifiers on the test set.

Classifier/Criteria Test Accuracy Test Kappa Coefficient

MDC 72.82 0.64
MLC 80.03 0.74

SVM-Linear 81.33 0.75
Default SVM-RBF (C = 100, r = 0.33) 85.40 0.80

Improved SVM-RBF 89.32 0.84

Likelihood of x belongs to class B

X Class A Class B

Likelihood of x belongs to class A

10 2 30

1

2

3

4

Probability Density

Figure 8. Principle of maximum likelihood classifier.

The basic principle of MLC is based upon the Bayes theorem, which states that an a
posteriori distribution P(ci|x) can be calculated by the prior probability P(x|ci).

L(x) = P(ci
∣∣x) = P(x

∣∣ci)× P(ci)/P(x) (13)

The pixel x will be classified into class ci if P(ci
∣∣x) is the largest among all the train-

ing classes:

x ∈ ci i f P(ci
∣∣x) > P(ci

∣∣x) f or all i 6= j (14)
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In the right hand of the function, P(x
∣∣ci) shows, in a given training class ci, the

probability that a pixel appears in the position of x. P(ci) is the probability that class ci
occurs in the study area, which is a priori information, and P(x) is the probability that
pixel x is observed, which can be written as

P(x) =
M

∑
i=1

P(x
∣∣ci)× P(ci) (15)

It is obvious that P(x) is constant within every training class, and that P(ci) is a priori
information that is usually not considered in the classification. This assumption, however,
will have detrimental effect on the accuracy in some cases, as discussed later. Thus, the
above rule is equivalent to

x ∈ ci i f P(x
∣∣ci) > P(x

∣∣ci) f or all i 6= j (16)

As stated before, MLC assumes that the distribution of the data within a given class
ci obeys a multivariate normal distribution [30]. The probability density function with a
normal distribution in an n-dimensional space is given by

f (x) =
√
(2π)n

∣∣Sk
∣∣−1

exp
[
− 1

2
(
x− µk

)TS−1
k
(
x− µk

)]
(17)

where Sk is the covariance matrix of the M bands in the kth class. However, for computers,
exponential computation always has a large time complexity, which may take a large
amount of time. So, some simplification is needed for future computation. First, the
exponent can be removed by a logarithm, since the log is monotonically increasing in its
domain.

Gi(x) = Ln P(x
∣∣ci) (18)

= Ln
√
(2π)n

∣∣Sci

∣∣−1
− 1

2
(
x− µci

)TS−1
ci

(
x− µci

)
(19)

= Ln
√
(2π)n

∣∣Sci

∣∣−1
− 1

2
(
x− µci

)TS−1
ci

(
x− µci

)
(20)

Then, if the features we choose are identical, and the features in each dimension are
mutually independent, the covariance matrix of the M bands in every class will be the
same, as given by

Gi(x) = −n
2

Ln(2π)− 1
2

Ln(
∣∣S|)− 1

2
xTS−1x + xTS−1µci −

1
2

µT
ci

S−1µci (21)

Finally, since the first three terms— n
2 Ln(2π)− 1

2 Ln(
∣∣S|)− 1

2 xTS−1x—are the same in
each class, the function can be simplified as follows:

gi(x) = xTS−1µci −
1
2

µT
ci

S−1µci (22)

x ∈ ci if gi(x) > gj(x)for all i 6= j.

4.3. Novel Working Principles of SVM-RBF and SVM-Linear

We define the new SVM-RBF and SVM-Linear as the aggregation variants that can be
used for both classification and regression. Unlike traditional statistic-based parametric
classification algorithms, the SVM-RBF and SVM-Linear variants are non-parametric, and
since the SVM is one of the most popular non-parametric machine learning algorithms, but
it degrades the performance with many samples, Thus, novel SVM-RBF and SVM-Linear
variants improve the change detection accuracy and efficiency. Also, they do not require
to make any assumptions regarding the distribution of data. When the data cannot be
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separable as SVM-Linear, then a nonlinear improved SVM-RBF uses functions to minimize
the computational load. This process is known as the kernel-trick. The polynomial kernel
and Gaussian kernel approaches are popular. Let us assume that n-dimensional data points
ai ∈ Zm (i = 1, ..., M) correspond to either class 1 or class 2; then, the associated class labels
take xi = 1 and xi = −1 for classes 1 and 2, respectively. If data are linearly separable, then
the SVM-Linear is identified as the problem for finding the discriminant function.

D( f ) = ΥT + bi (23)

where Υ is the normal vector for hyperplane separation; bi is the bias. The SVM-Linear
reduces the distance to the adjacent data point depicted in Figure 9. The margin distance,
“r”, is given by

r =
1
‖ r ‖ (24)

The hyperplane has the nearest data points, which are called support vectors, Thus, the
support vectors generate the discriminant function. The reduction problem of the distance
margin can be formulated as the reduction problem of ‖ Υ ‖2, which is calculated as

R(Q(Υ, bi)) =
1
2
‖ Υ ‖2 (25)

subject to xi(ΥTai + bi) ≥ 1(i = 1, ..., M).
The Lagrange function ′L′ is used to obtain the dual problem

L(Υ, bi, p) =
1
2
‖ Υ ‖2 −

M

∑
i=1

pi{xi(ΥTai + bi)− 1} (26)

where p = (p1, ..., pM) is the Lagrange multiplier. Therefore, the dual problem d can be
calculated as

d(Q(p)) =
M

∑
i=1

pi −
1
2

M

∑
i,j=1

pi pjxjixjyT
i yj (27)

The above equation is a hard-margin SVM subject to

M

∑
i,j=1

pixi = 0, pi ≥ 0(i = 1, ..., M) (28)

In a linear separable case, the goal of learning in the SVM-Linear is to find a linear hy-
perplane, as depicted in Figure 9, that not only separates samples from different classes but
also has the maximum margin. The margin indicates the distance between the hyperplane
and the nearest training samples (support vectors). For binary classification, if the training
data with m number of samples are represented as {Xi, yi}, where X ∈ Rn, i = 1, 2, ... k, and
y ∈ 0, 1, while y = 0 indicates class 1 and y = 1 indicates class 2, the hyperplane is formed
to find the optimal θ depicted in Figure 9 that minimizes the cost function. Additionally,
feature mapping and the hyperplane are further depicted in Figure 10.

J(θ) = C
m

∑
i=1

[
y(i)cost1

(
θTX(i))+ (1− y(i)

)
cost2

(
θTX(i))+ 1

2

] n

∑
i=0

θ2
j (29)

where
cost1 = loghθ(x) = log 1

1+e−θT x

cost1 = log(1− hθ(x)) = log1− 1
1+e−θT x

So, θ is calculated according to the following rule.
θTX(i) ≤ −1 to minimize J(θ) when y = 0
θTX(i) ≥ 1 to minimize J(θ) when y = 1
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Figure 9. Hyperplane formation for the novel SVM technique.

Figure 10. Feature mapping and hyperplane.

The new data x are classified into either class y = 0 or y = 1 according to the
hyperplane. In the non-linear separable case, the SVM-RBF uses a pre-selected nonlinear
mapping function to map input variables to a high-dimensional feature space, constructing
the optimal classification hyperplane in the space. The SVM-RBF and SVM-Linear Variants
will then find the hyperplane that has the same features as the straight line in the previous
case. There are four kernel functions that are commonly used, but we improved and used
the two: the linear and radial basis function variants, also known as the Gaussian variants
in our research.

Let Ψ and ǵ be the both parameters for the improved SVM-Linear SVMl . Thus, the
improved SVM-Linear variant can be stated as:

SVMl = f (x) =
N

∑
i=1

Ψ · ∀ω(a, ai) + ǵ (30)
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Therefore, the improved SVM-RBF SVMRBF consists of σ and λ parameters. As
parameter σ is applied for the function-execution. Whereas, the parameter λ is a highly
important that creates the trade-off between estimated function and the minimum fitting
error. Thus, the improved SVM-RBF can be determined as:

SVMRBF = ∀ω(a, ai) = exp

(
− 1

σ2

∣∣∣∣∣a, ai
∣∣∣∣∣2)× λ (31)

where ∀ω(a, ai: attributes of improved SVM-Linear; and ∀ω: variant function.
SVM-RBF possesses the Non-linearity features that achieve two conditions. First, the

SVM-RBF should be symmetric, and the second must have a capability to guarantee the
space determination with the real-world problem (the pairwise integration capability).
Thus, the first and second conditions are given in Equations (32) and (33).

∀ω

((
a, p
)
=

(
ϕ(a) · ϕ(p)

))
(32)

∀ω
(
a, p
)
−
{

ϕ(a) · ϕ(p)
}
=
{
(a) · ϕ(p)− ∀ω(a, p)

}
(33)

The SVM-RBF has a capability by combining binary classifiers using the technique of
one versus all (OVA). In a k classification problem, the one versus all method produces one
binary classifier for every class, with the samples of that class being y = 1 and all samples of
the other (k− 1) classes being y = 0. Thus, taken together, there will be k binary classifiers.
To classify new data x, all the k binary classifiers will run and x will be classified into class
i that returns the highest confidence and maximum classification value [31].

4.4. Fault-Tolerance Process of SVM-RBF and SVM-Linear

Let us consider the probability ‘Pr’ that is estimated when a sensor/actor are not
faulty, as given by

Pr(Bi = 0||Sre = 0, Tg = 0)

where Bi is a binary variable with decoder value, Sre is a sensor-reading and Tg is the
ground truth.

Pr(Bi = 0||Sre = 0, Tg = 0) =
N

∑
k=0

Pr(Bi = 0||Sre = 0, Tg = 0), γ(0, k) =
N

∑
k=0

Pcσ (34)

where γ(0, k) is the K value of the sensor/actor nodes that have same reading, Pc is the
conditional probability and σ represents not faulty neighbors.

Similarly, we can determine the expressions for conditional probabilities.

Pr(Bi = β||Sre = β, Tg = β) = 1− Pr(Bi = −β||Sre = β, Tg = β) =
N

∑
k=0

Pcσ (35)

Pr(Bi = −β||Sre = −β, Tg = β) = 1− Pr(Bi = β||Sre = −β, Tg = β) =
N

∑
k=0

Pcσ− k (36)

Thus, the expected number of decoded errors β can be obtained by disregarding
values for Sre:
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β = Pr(Bi = 1||Tg = 0)δ + Pr(Bi = 0||Tg = 0)ψ =

(
1−

N

∑
k=0

Pc(σ− τ − k)

)
tk (37)

where β is the average number of errors after decoding, δ is the number of other nodes, ψ is
the nodes in the affected region, τ is the expected faulty nodes and tk is the total deployed
nodes in the network.

Therefore, the reduced errors can be obtained as

(tk · Pr − β)

tk · Pr

Thus, we can show explicitly β that the average number of corrected faults µ in sen-
sor/actors can be obtained by combining the conditional probabilities of
Equations (38) and (39):

µ =

(
1−

N

∑
k=0

Pc(σ− k)

)
tk · Pr (38)

The number of uncorrected faults can be given by

µ− =

(
1−

N

∑
k=0

Pc(σ− k)

)
tk · Pr (39)

where µ−: uncorrected faults
The fault diagnosis/tolerance is depicted in Figure 11. If the satellite sensor fails to

function, then there is a need to diagnose immediately. Thus, the framework used in [32]
has been used to support the proposed variants to avoid the possible delay due to the
failure of the sensor.

Figure 11. Fault Diagnosis/Tolerance process for Satellite Sensor for the RS.

5. Experimental Results

This section presents the experimental results in terms of the experimental setup and
performance results for the SVM-RBF and SVM-Linear, NDCI [8], HSRS [19], SCMask
R-CNN [17], CIAs [18], KCA [21], AOPC [22], MLC [33] and MDC [34].

5.1. Experimental Setup

Most of the experiments were implemented on the system with Quad-Core Processor
3.3 GHz 4 Core, and 24-GB memory using ENVI5.3. We also made some minor redevel-
opments using IDL programming in order to separate the training and test set. We also
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implemented the SVM-RBF and SVM-Linear on MATLAB with the help of libsvm in order
to do cross-validation to optimize the parameters. The remaining parameters are given in
Table 3. Optical remote sensing and thermal remote sensing have been applied to obtain
the result. The former type is used for obtaining the reliability, time complexity, accuracy,
and fault-tolerance, but later is used only with fault-tolerance.

Table 3. Parameters used to conduct the experiments.

Parameters Values

MDC 72.82
Sensing time 2.5 milliseconds

Sensing samples 250
Kernel functions Linear and RBF kernels

Training observation 1000
Testing observation 6000

Source of sensing Images Landsat 8
Cross-validation 5

5.2. Performance Metrics

Performance metrics are delineated as figures and data representative of the capabili-
ties of parametric and non-parametric algorithms and their overall performance. Based on
the obtained data, the results are revealed in the form of graphs to view the measurements
of the following metrics as a source of comparison:

• Accuracy;
• Time complexity;
• Fault tolerance;
• Reliability.

5.2.1. Accuracy

In our assessment, we use two of the most common criteria used for accuracy estima-
tion. The simplest criteria for the accuracy of classification result is the overall accuracy
‘AO’, which represents how well the image area is correctly classified, given by

AO = ∑
Xii
T

f or i = 0, 1, ..., N (40)

However, the overall accuracy cannot provide specific information about the accuracy
of each individual class and neglects severe partial errors [35]. In order to take the accuracy
of each individual class into consideration, the Kappa coefficient which takes both the
overall AO and partial accuracy P0 into consideration is introduced to evaluate the accuracy
of the classification result of the two algorithms.

K =

(
PO − Pe

)
1− Pe

(41)

PO = ∑
xi+x+i

T2 f or i = 0, 1, ..., N (42)

Kappa coefficients are used to test the consistency of ground data and classified data,
where K = 1 means that all pixels are correctly identified [36].

In the training set, we can see that, for parametric classifiers, the MLC, depicted in
Figure 12b, performs much better than the MDC, depicted in Figure 12a, having a signifi-
cantly higher overall accuracy and Kappa coefficient of 94.00% and 0.92 than the values of
80.58% and 0.75 for the MDC, respectively. The MDC is severely affected by the classes
with similar spectral behaviors due to its simple mathematical principle. The maximum
likelihood classification algorithm, however, is relatively less affected due to its complex
mathematical principle of taking both mean vectors and covariance into consideration.
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The introduced non-parametric SVM, however, does neither increases the overall
accuracy nor the Kappa coefficient considerably compared with the MLC in the training set.
The different kernels and parameters in the SVM do not seem to change the performance
either. The overall accuracy and Kappa coefficient all remain around 94.5% and 0.93,
respectively. Thus, some researchers stop here, reaching the conclusion that the MLC is
suitable for RS classification.

However, in the test set, the accuracy and Kappa coefficient of ML declines dramati-
cally to 80% and 0.74, respectively. The accuracy is observed to steadlily increase when we
introduce the SVM linear variant to 81.33%, as depicted in Figure 12c. Since the data are
more likely to be non-linear separable, the accuracy and Kappa coefficient keep increasing
considerably to 85.40% and 0.80 when we implement the SVM-RBF using the default
parameter (C = 100, r = 0.33), as depicted in Figure 12d. Finally, the accuracy and Kappa
coefficient reach 89.32% and 0.84, respectively, when we use the optimal parameter found
in cross validation.

From the accuracy estimation, it is clear that the MLC is much more accurate than
the MDC both for known and unknown data. The introduction of the SVM-RBF and
SVM-Linear and parameter optimization does improve the accuracy but not considerably
compared with the MLC on known data. However, the increase is remarkable with
unknown data. Moreover, from the classification result image, when can see that the
distribution of data with both parametric classifiers—especially the MDC—tend to be
fragmented, which may result in “pepper and salt” noise [37]. The distribution in the result
of the SVM is quite compact, which corresponds well to the real case [12]. It is validated that
the SVM-RBF and SVM-Linear obtains better generalization performance on unknown data
while the traditional parametric classifier is severely affected by the problem of overfitting
due to disturbing information. However, the difference in accuracy is within 1% for the
training set. However, our results for the test set indicate that SVM with the RBF kernel
produces a higher level of accuracy compared to SVM with a linear kernel, the MLC and
the MDC, as depicted in Figure 13. We can conclude that the SVM-RBF and SVM-Linear
obtains good generalization performance on anonymous data and is more suitable for
practical use than traditional parametric classifiers. However, there is a need for further
research with respect to the implementation of the SVM-RBF and SVM-Linear on RS image
classification [7,18]. Firstly, the probabilities of SVM-RBF and SVM-Linear are much higher
than MLC and MDC, especially in the cross validation for the parameter optimization of
Υ and C. As a future study, the parameter optimization may be accomplished in other
more efficient ways. However, during the inference phase, all of the three classifiers do not
take large amounts of time. Furthermore, the training of the classifier is only performed
once. Secondly, though the accuracy of SVM on unknown data was significantly improved
compared to traditional parametric classifiers, it was still less than 90%. Random sampling
was adopted to accomplish the accuracy analysis objectives, consisting of computing the
uncertainty estimates and unbiased accuracy. Thus, the sample size Ss can be calculated as

Ss =
µAo(1− Ao)

Ci
(43)

where µ is a standard normal distribution percentile; Ao is the overall accuracy; and Ci is
the margin of error. The variance accuracy V(A) depends on the map proportion MP of
each class that requires an individual cell probability Ip , which depends on the portion of
the entire classified map.

V(A) =
q

∑
i=1

= Ip
MP − Ip

MP × SC
(44)

where SC is the sample counts.
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Figure 12. Four images representing the classification results with four classifiers. (a) Classification result with the MDC; (b)
Classification result with the MLC; (c) Classification result with the SVM using a linear kernel; (d) Classification result with
the SVM using a default RBF.

Furthermore, the change-detection accuracy of proposed SVM-RBF and SVM-Linear is
identified and also compared with the state-of-the-art algorithms: NDCI, SCMask R-CNN,
CIAs, KCA HSRS, and AOPC. The results confirm that 99.65% and 99.43% change-detection
accuracy has been obtained with SVM-RBF and SVM-Linear respectively; whereas the
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NDCI, CIAs, SCMask R-CNN, KCA, HSRS and AOPC have obtained the change-detection
accuracy 95.6%, 97.4%, 95.0%, 95.8%, 95.2% and 94.2% respectively. The AOPC and CIAs
produced the lower accuracy due to higher sensitivity of the algorithms and extreme
learning machine to noise. Deep learning methods such as R-CNN require large amount of
data. CNN model has many parameters which need to be optimized during the training
process. The data of remote sensing image is relatively small. Thus, deep learning methods
face difficulty in learning very from such data.

(a) (b)

Figure 13. Accuracy. (a) Accuracy of the SVM-RBF, SVM-Linear, MLC and MDC approaches with different training set
fractions. (b) The relationship between constraints parameters and change-detection accuracy of proposed SVM-RBF,
SVM-Linear and competing algorithms.

5.2.2. Time Complexity

The performance of an algorithm depends on the time complexity. The time complexity
refers to the amount of time required to run as a task, signifying the input. In addition, the
time complexity is measured by calculating the number of basic operations accomplished
by the algorithm, and a basic operation takes a constant amount of time to execute. In
Figure 14, we show the trend of the time complexity for parametric and non-parametric
classification algorithms: the results show that the non-parametric classification algorithm
SVM-RBF exhibits O(n) time complexity, whereas the MLC and MDC exhibit complexities
of (log n + n) and O(n log n), respectively.

(a) (b) (c)

Figure 14. Time complexity, fault tolerance and reliability. (a) Time complexity of SVM-RBF, MDC and MLC; (b) Fault
tolerance of SVM-RBF, MDC and MLC; (c) Reliability of SVM-RBF, SVM-Linear, NDCI, SCMask R-CNN, CIAs, KCA, HSRS,
and AOPC and MDC and MLC classifiers.
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SVM-RBF shows the lowest time complexity compared to other parametric algorithms
(MLC and MDC). The reason for the low latency is the use of new machine learning
methods. On the other hand, parametric classifiers are based on traditional statistics. The
time complexity of the three algorithms is measured using the recursive approach obtained
by using Equation (45).

T(N) =

O(1) if n = 1

at
(

n
b

)
+ 0(n) if n > 1

(45)

Table A1 (Appendix A) shows the time complexity of competing algorithms.

5.2.3. Fault Tolerance

A system must have the ability to continue functioning without disruption when its
components fail. Some of the algorithms implemented on those systems will experience a
problem due to the fault tolerance process. As RS requires robust algorithms to cope with
such a critical situation, the algorithms used in RS are of paramount importance, since the
reliability of the result from RS depends heavily on the classification accuracy. Parametric
classifiers based on traditional statistics have successfully been used in RS classification,
but the accuracy is greatly impacted and rather constrained by the statistical distribution
of the sensing data.

We determine the fault tolerance capability of three classifiers: the MDC, SVM-RBF,
SVM-Linear and MLC. Thus, an experiment has been conducted that involved 1000 nodes
deployed in the area of 400 × 400 square meters. Based on the testing results, it is observed
that the SVM-RBF and SVM-Linear have a better fault tolerance capability compared to
MDC and MLC, as depicted in Figure 14c. Two different types of experiments have been
conducted. In First experiment, the result is obtained based on optical remote sensing. The
result demonstrate that the SVM-RBF has 99.99% fault tolerance capability with 1000 nodes,
whereas the MDC and MLC have 88.12% and 92.32% ,respectively.

In the second experiment, the result is shown by using thermal sensing. In this
experiment, three different scenarios are generated and different numbers of the nodes
are randomly distributed. If fewer nodes are deployed in the allocated region, then the
fault-tolerance capacity is reduced. The proposed SVM-RBF and SVM-Linear are compared
with SVM, NDCI, SCMask R-CNN, CIAs, KCA, HSRS, AOPC, MDC, and MLC classifiers.
Additionally, the new public datasets have been used. When the maximum 100 nodes are
deployed as depicted in Figure 15a, then the SVM-RBF and SVM-Linear produce better
fault-tolerance capacity that is 39.92% and 39.73% respectively; whereas the contending
algorithms produce reduced fault-tolerance capacity that is 35.53%–37.78%. When the
maximum 500 nodes are deployed as shown in Figure 15b, then SVM-RBF and SVM-Linear
yield the same fault-tolerance capacity that is 79.88%; whereas the contending algorithms
give 76.71%–78.94% fault-tolerance. Finally, we increased the number of nodes up to 1000
to cover the entire region shown in figure 15c. The results confirm that our proposed SVM-
RBF, and SVM-Linear 99.92% and 99.29% respectively. On the other hand, the contending
algorithms showed 97.48–98.51% fault tolerance. In these scenarios, one thing that is
interesting to note that the proposed variants yield approximately 2% higher fault tolerance
as compared to the contending algorithms.
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(a) (b) (c)

Figure 15. (a) Fault-tolerance of the proposed SVM-RBF and SVM-Linear variants and contending algorithm (NDCI,
SCMask R-CNN, CIAs, KCA, HSRS, and AOPC) with maximum 100 nodes using thermal remote image sensing; (b)
Fault-tolerance of the proposed SVM-RBF and SVM-Linear variants and contending algorithm (NDCI, SCMask R-CNN,
CIAs, KCA, HSRS, and AOPC) with maximum 500 nodes using thermal remote image sensing; (c) Fault-tolerance of the
proposed SVM-RBF and SVM-Linear variants and contending algorithm (NDCI, SCMask R-CNN, CIAs, KCA, HSRS, and
AOPC) with maximum 1000 nodes using thermal remote image sensing.

5.2.4. Reliability

If the classifiers work efficiently and all of the components of the devices operate and
support properly, then the reliability Ral is obtained as

Ral = Pr
{

ε(k(τ) = 1)
} n

∏
k=0

Pr
{

k(ε) = 1
}
=

n

∏
k=0

Rk ×ω(t) (46)

where k(ε) is the functioning probability of either actor/sensor node and Rk ×ω(t) is the
reliability of the total components used in the network.

The reliability of algorithms is highly important for RS. In this experiment, the re-
liability of SVM-RBF, SVM-Linear, NDCI, SCMask R-CNN, CIAs, KCA, HSRS, AOPC,
MDC, and MLC classifiers has been examined. Again, based on the results of testing sets,
the SVM-RBF and SVM-Linear outperform the other contending algorithms. The result
depicted in Figure 14c shows that the SVM-RBF and SVM-Linear show 99.92% reliability,
while the contending algorithms exhibit 93.8%–98.2% reliability. The MDC and MLC
produce the lower 93.8% and 95.4% reliability respectively.

6. Conclusions and Future Analysis

This section reiterates the objectives and summarizes the key findings for the reader.
Additionally, it provides the directions for the future analysis.

6.1. Conclusions

With the wide use of RS technologies, the accuracy of classifiers in RS classification
has become increasingly critical. In this paper, the improved SVM-RBF and SVM-Linear
variants have been introduced to improve the test set accuracy, detection accuracy, relia-
bility, time complexity, and fault-tolerance. Land-use classification is created for sensing
images taken by Landsat-8 satellite for the area of Nanjing, China, and the Tanintharyi
region located in southern Myanmar. Two types of images were used for obtaining the
results: Optical and thermal remote images for different types of data sets. The analysis
demonstrates that the proposed SVM-RBF and SVM-Linear variants are useful for RS. The
paper involves the following conclusion.
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• The proposed variants are capable to address mask generation, cross-validation,
ranking. change classification/ No-change classification, underfitting, and overfitting.

• The SVM-RBF and SVM-Linear are compared with the state-of-the-art algorithms
(NDCI, SCMask R-CNN, CIAs, KCA, HSRS, and AOPC from the change detection
accuracy, and reliability standpoint. The proposed SVM-RBF and SVM-Linear have
obtained 99.65% and 99.43% change-detection accuracy respectively; whereas the
NDCI, CIAs, SCMask R-CNN, KCA, HSRS, and AOPC have obtained the change-
detection accuracy 95.6%, 97.4%, 95.0%, 95.8%, 95.2%, and 94.2% respectively.

• The SVM-RBF and SVM-Linear variants performed well on the training data with
an overall accuracy of around 94% and Kappa coefficient around 0.92 which is much
higher than the MDC and MLC algorithms.

• The SVM-RBF has 99.99% fault tolerance capability with 1000 nodes, whereas the
MDC and MLC have 88.12% and 92.32% respectively.

• The SVM-RBF and SVM-Linear show 99.92% reliability, while the contending algo-
rithms exhibit 93.8%–98.2% reliability. The MDC and MLC produce the lower 93.8%
and 95.4% reliability respectively.

• The SVM-RBF produces O(n) time complexity that is reasonable with remote image
sensing.

• SVM-RBF obtains good generalization performance on unknown data and is more
suitable for practical use than traditional parametric classifiers.

• The time spent by the SVM-RBF is much lower than the MLC and MDC, especially in
the cross-validation for parameter optimization.

6.2. Future Work

As a future study, parameter optimization may be accomplished in other, more efficient
ways. Secondly, though the accuracy of the SVM-RBF on anonymous data significantly
improved. However, improved SVM-RBF and SVM-Linear variants should integrate and
leverage the features from the Recurrent Convolutional Neural Network to further increase.
Furthermore, we will try to focus on the security of the proposed variants (SVM-RBF,
SVM-Linear). The adversarial examples add little noise to the original image that leads to
misclassification. We will try to design a restricted adversarial example solution based on
RNN. The localization vulnerability is another big issue for the RS that leads to possible
attacks. As a result, these localization problems cause service interruption. We will try to
formulate the localization vulnerability detection and prevention processes.
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Abbreviations
The following abbreviations and nomenclatures are used in this manuscript:

RS Remote sensing
SVM Support vector machine
MCD Minimum distance classification
MLC Maximum likelihood classification
ASTER Advanced spaceborne thermal emission and reflection
TM Thematic mapper
DT Decision tree
RBF Radial basis function
ROI Region of interest
IDL Interactive data language
ENVI Environment for visualizing images
OVA One versus all
CNN Convolutional neural network
NA Not applicable
M Number of classes
γ Kernel parameter to determine how many nearby samples the support vector will

consider
C Penalty factor used for regularization
Ni Number of training data
ci Class
x Pixel
Di(x) Euclidean distance
P(ci|x) A posteriori distribution
P(x|ci) Prior probability
P(ci) The probability that class ci occurs in the study area
P(x) The probability that pixel x is observed
f (x) The probability density function of normal distribution in an n-dimensional space
Sk The covariance matrix of the M bands in kth class
AO Overall accuracy
P0 Partial accuracy
Pr Probability estimated when sensor/actor are not faulty
Bi Binary variable with decoder value
Sre Sensor-reading
Tg Ground truth
γ(0, k) K of the sensor/actor nodes that have same reading
Pc Conditional probability
σ Not faulty neighbors
β Average number of errors after decoding
δ Number of other nodes
ψ Nodes in the affected region
τ Expected faulty nodes
tk Total deployed nodes in the network
µ Average number of corrected faults
µ− Number of uncorrected faults
Ral Reliability
k(ε) Functioning probability of either actor/sensor node
Rk ×ω(t) Reliability of total components used in the network
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Appendix A

Table A1. Time complexity for contending algorithms.

Methods Time Complexity

SVM-RBF

T(n) = at
( n

b
)
+ O(n)

Problem consists of finite set of inputs, but its computation time linearly increases. Thus,
T(n) = t

( n
2
)
+ O(n)

T(n) = t
( n

n
)
+ O(n)

T(n) = t + O(n)
Where t is ignored; therefore
T(n) = O(n)

MDC

T(n) = at
( n

b
)
+ O(n)

Where problem is divided into two parts with same size. However, the algorithm is infinite. Thus.
T(n) = 2t

( n
2
)
+ O(n)

T(n) = 2t
( n

2
)
+ O(n)

(n) = 4t
( n

4
)
+ n + n

T(n) = 4t
( n

n
)
+ 2n

T(n) = 4t + 2n
T(n) = O(kn)
T(n) = O(lognn)
Where k = logn
T(n) = O(n logn +n)

MLC

T(n) = at
( n

b
)
+ O(n)

Problem consists of finite set of inputs, but computation complexity remains constant n
T(n) = t

( n
2
)
+ O(n)

T(n) = t
( n

2
)
+ n + n

:
:
(n) = t

( n
n ) + n + n

T(n) = t(1) + n + n
T(n) = t + n + n
Where t is ignored; therefore, we get
T(n) = n + n
let n = k & k = logn
T(n) = O(logn +n)
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