
sensors

Review

An Overview of Machine Learning within Embedded and
Mobile Devices–Optimizations and Applications

Taiwo Samuel Ajani 1 , Agbotiname Lucky Imoize 1,2,* and Aderemi A. Atayero 3

����������
�������

Citation: Ajani, T.S.; Imoize, A.L.;

Atayero, A.A. An Overview of

Machine Learning within Embedded

and Mobile Devices–Optimizations

and Applications. Sensors 2021, 21,

4412. https://doi.org/10.3390/

s21134412

Academic Editor: Paolo Gastaldo

Received: 26 February 2021

Accepted: 16 April 2021

Published: 28 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical and Electronics Engineering, Faculty of Engineering, University of Lagos,
Akoka 100213, Lagos State, Nigeria; taiwo.ajani.94@gmail.com

2 Department of Electrical Engineering and Information Technology, Institute of Digital Communication,
Ruhr University, 44801 Bochum, Germany

3 Department of Electrical and Information Engineering, Covenant University, Ota 112233, Ogun State, Nigeria;
atayero@cu.edu.ng

* Correspondence: aimoize@unilag.edu.ng

Abstract: Embedded systems technology is undergoing a phase of transformation owing to the novel
advancements in computer architecture and the breakthroughs in machine learning applications.
The areas of applications of embedded machine learning (EML) include accurate computer vision
schemes, reliable speech recognition, innovative healthcare, robotics, and more. However, there
exists a critical drawback in the efficient implementation of ML algorithms targeting embedded
applications. Machine learning algorithms are generally computationally and memory intensive,
making them unsuitable for resource-constrained environments such as embedded and mobile
devices. In order to efficiently implement these compute and memory-intensive algorithms within
the embedded and mobile computing space, innovative optimization techniques are required at
the algorithm and hardware levels. To this end, this survey aims at exploring current research
trends within this circumference. First, we present a brief overview of compute intensive machine
learning algorithms such as hidden Markov models (HMM), k-nearest neighbors (k-NNs), support
vector machines (SVMs), Gaussian mixture models (GMMs), and deep neural networks (DNNs).
Furthermore, we consider different optimization techniques currently adopted to squeeze these
computational and memory-intensive algorithms within resource-limited embedded and mobile
environments. Additionally, we discuss the implementation of these algorithms in microcontroller
units, mobile devices, and hardware accelerators. Conclusively, we give a comprehensive overview
of key application areas of EML technology, point out key research directions and highlight key
take-away lessons for future research exploration in the embedded machine learning domain.

Keywords: embedded computing systems; computer architecture; mobile computing; machine
learning; TinyML; deep learning; mobile devices; optimization techniques

1. Introduction

Embedded computing systems are fast proliferating every aspect of human endeavor
today, finding useful application in areas such as wearable systems for health monitoring,
wireless systems for military surveillance, networked systems as found in the internet
of things (IoT), smart appliances for home automation, antilock braking systems in au-
tomobiles, amongst others [1]. Recent research trends in computing technology have
seen a merger of machine learning methods and embedded computing for diverse appli-
cations. For example, to target the hostility and dynamism of mobile ad hoc networks
(MANETs), Haigh et al. [2] explored enhancing the self-configuration of a MANET using
machine learning techniques. Besides, the recent breakthroughs of deep learning models
in application areas such as computer vision [3–7], speech recognition [8,9], language
translation, and processing [10,11], robotics, and healthcare [12] make this overlap a key
research direction for the development of next-generation embedded devices. Thus, this

Sensors 2021, 21, 4412. https://doi.org/10.3390/s21134412 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5492-4642
https://orcid.org/0000-0001-8921-8353
https://orcid.org/0000-0002-4427-2679
https://doi.org/10.3390/s21134412
https://doi.org/10.3390/s21134412
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21134412
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21134412?type=check_update&version=1

Sensors 2021, 21, 4412 2 of 44

has opened a research thrust between embedded devices and machine learning models
termed “Embedded Machine Learning” where machine learning models are executed
within resource-constrained environments [13]. This research surveys key issues within
this convergence of embedded systems and machine learning.

Machine learning methods such as SVMs for feature classification [14], CNNs for
intrusion detection [15], and other deep learning techniques, require high computational
and memory resources for effective training and inferencing [16–19]. General-purpose
CPUs, even with their architectural modification over the years, including pipelining,
deep cache memory hierarchies, multicore enhancements, etc., cannot meet the high
computational demand of deep learning models. However, graphic processing units
(GPUs), due to their high floating-point performance and thread-level parallelism, are
more suitable for training deep learning models [13]. Extensive research is actively being
carried out to develop suitable hardware acceleration units using FPGAs [20–26], GPUs,
ASICs, and TPUs to create heterogeneous and sometimes distributed systems to meet
up the high computational demand of deep learning models. At both the algorithm
and hardware levels, optimization techniques for classical machine learning and deep
learning algorithms are being investigated such as pruning, quantization, reduced precision,
hardware acceleration, etc. to enable the efficient execution of machine learning models in
mobile devices and other embedded systems [27–29].

The convergence of machine learning methods and embedded systems in which com-
putationally intensive machine learning models target the resource-constrained embedded
environment has opened a plethora of opportunities for research in computing technol-
ogy. Although EML is just in its cradle, quite some work has been done to: (1) optimize
different machine learning models to fit into resource-limited environments, (2) develop
efficient hardware architectures (acceleration units) using custom chipsets to accelerate
the implementation of these algorithms, and (3) create novel and innovative specialized
hardware architectures to meet the high-performance requirements of these models. Thus,
there is a need to bring these perspectives together to provide the interested researcher
with the fundamental concepts of EML and further provide the computer architect with
insights and possibilities within this space.

Interestingly, several surveys have been carried out to achieve this. For example
references [30,31] survey deep learning concepts, models, and optimizations. In these
surveys, little consideration is given to the hardware architectural design, which is a key
concern in developing efficient machine learning systems. Pooja [32] surveys recent trends
in the hardware architectural design for machine learning applications, using the tensor
processing unit as a case study. However, the research did not explore the different DNN
architectures and just skimmed through some deep learning optimization techniques. Jiasi
and Xukan [33], in their review, explored deep learning concepts, narrowing down on
inference at end devices but do not compare different embedded chipset architectures to
inform which architecture or optimization is appropriate for the different DNN models.
They also present applications of deep learning in end devices. They, however, only
explored a type of deep learning model (DNNs) and did not discuss other deep learning
models (CNN, RNN), which have gained attention in recent times. Sergio et al. [24] have
carried out a comprehensive survey on ML in embedded and mobile devices, presenting
ML concepts and techniques for optimization and also investigated different application
areas. They, however, also do not explore other models of DNNs or make appropriate trade-
offs. To address these drawbacks, this survey presents key compute and memory intensive
machine learning algorithms, which are the HMM, k-NN, SVM, GMM, and the different
shades of DNNs (CNN and RNN), and present hardware-based and algorithm-based
optimization techniques required to compress these algorithms within resource-constrained
environments. To sum up, the authors decided to consider diverse application areas where
machine learning has been utilized in proffering solutions to stringent problems in this big
data era. A comprehensive layout of this survey is presented in Figure 1.

Sensors 2021, 21, 4412 3 of 44

Sensors 2021, 21, x FOR PEER REVIEW 3 of 43

problems in this big data era. A comprehensive layout of this survey is presented in Figure
1.

The key contributions of this survey are as follows:
i. We present a survey of machine learning models commonly used in embedded sys-

tems applications.
ii. We describe an overview of compute-intensive machine learning models such as

HMMs, k-NNs, SVMs, GMMs, and DNNs.
iii. We provide an overview of different optimization schemes adopted for these algo-

rithms.
iv. We present an overview of the implementation of these algorithms within resource-

limited environments such as MCUs, mobile devices, hardware accelerators, and Ti-
nyML.

v. We survey the challenges faced in embedded machine learning and review different
optimization techniques to enhance the execution of deep learning models within
resource-constrained environments.

vi. We present diverse application areas of embedded machine learning, identify open
issues and highlight key lessons learned for future research exploration.
The remainder of this paper is organized as follows. Section 2 presents embedded

machine learning algorithms and specific optimization techniques, while Section 3 de-
scribes machine learning in resource-constrained environments (MCUs, mobile devices,
acceleration units, and TinyML). Section 4 presents challenges and possible optimization
opportunities in embedded machine learning. Section 5 provides diverse areas of appli-
cations of embedded machine learning technology, while Section 6 presents plausible re-
search directions, open issues, and lessons learned. In Section 7, a concise conclusion is
presented.

Machine Learning
Techniques

Support Vector
Machines

Gaussian Mixture
Models

Deep Learning Models

• DNNs
• CNNs
• RNNs

Optimization
Techniques

Areas of Applications
• Intelligent Sensor Systems and

IoTs
• Deep Learning in Mobile

Devices
• Deep Learning Training using

General Purpose GPUs
• Deep Learning using

Heterogeneous Computing
Systems

• Embedded FPGAs
• Energy Efficient Hardware

Design and Architectures

Research Directions
and Open Issues

• Computer Architectures
• Deep Learning Optimization
• Hardware Security
• Energy Efficiency and Power

Management
• Silicon Photonics

Embedded
Machine
Learning

• Tiling and data
reuse

• Data access
optimizations
and on-chip
buffering

• Layer
Acceleration

• Network
Pruning

• Number
representation

• Quantization

Machine Learning in
Resource-Constrained

Environments

• ML in MCUs
• ML in Mobile

Devices
• ML using Hardware

Acceleration
• TinyML

K-NN

HMM

Figure 1. The layout of Embedded Machine Learning Computing Architectures and Machine Learning and Optimization Techniques. Figure 1. The layout of Embedded Machine Learning Computing Architectures and Machine Learning and Optimiza-

tion Techniques.
The key contributions of this survey are as follows:

i. We present a survey of machine learning models commonly used in embedded
systems applications.

ii. We describe an overview of compute-intensive machine learning models such as
HMMs, k-NNs, SVMs, GMMs, and DNNs.

iii. We provide an overview of different optimization schemes adopted for
these algorithms.

iv. We present an overview of the implementation of these algorithms within resource-
limited environments such as MCUs, mobile devices, hardware accelerators,
and TinyML.

v. We survey the challenges faced in embedded machine learning and review different
optimization techniques to enhance the execution of deep learning models within
resource-constrained environments.

vi. We present diverse application areas of embedded machine learning, identify open
issues and highlight key lessons learned for future research exploration.

The remainder of this paper is organized as follows. Section 2 presents embedded
machine learning algorithms and specific optimization techniques, while Section 3 de-
scribes machine learning in resource-constrained environments (MCUs, mobile devices,
acceleration units, and TinyML). Section 4 presents challenges and possible optimization
opportunities in embedded machine learning. Section 5 provides diverse areas of applica-

Sensors 2021, 21, 4412 4 of 44

tions of embedded machine learning technology, while Section 6 presents plausible research
directions, open issues, and lessons learned. In Section 7, a concise conclusion is presented.

2. Embedded Machine Learning Techniques

Machine learning is a branch of artificial intelligence that describes techniques through
which systems learn and make intelligent decisions from available data. Machine learning
techniques can be classified under three major groups, which are supervised learning,
unsupervised learning, and reinforcement learning as described in Table 1. In supervised
learning, labeled data can be learned while in unsupervised learning, hidden patterns can
be discovered from unlabeled data, and in reinforcement learning, a system may learn
from its immediate environment through the trial and error method [34–36]. The process
of learning is referred to as the training phase of the model and is often carried out using
computer architectures with high computational resources such as multiple GPUs. After
learning, the trained model is then used to make intelligent decisions on new data. This
process is referred to as the inference phase of the implementation. The inference is often
intended to be carried out within user devices with low computational resources such as
IoT and mobile devices.

Table 1. Machine learning techniques.

Machine Learning Techniques

Supervised Learning Unsupervised
Learning

Reinforcement
Learning

Classification Regression Clustering Genetic Algorithms

SVM SVR HMM Estimated Value
Functions

Naïve Bayes Linear Regression GMM Simulated Annealing
k-NN Decision Trees k-means

Logistic Regression ANN DNN
Discriminant

Analysis Ensemble Methods

DNN DNN

2.1. Scope of ML Techniques Overview

In recent times, machine learning techniques have been finding useful applications in
various research areas and particularly in embedded computing systems. In this research,
we surveyed recent works of literature concerning machine learning techniques imple-
mented within resource-scarce environments such as mobile devices and other IoT devices
between 2014 and 2020. We present the results of this survey in a tabular form given in
Table 2. Our survey revealed that of all available machine learning techniques, SVMs,
GMMs, DNNs, k-NNs, HMMs, decision trees, logistic regression, k-means, and naïve Bayes
are common techniques adopted for embedded and mobile applications. Naïve Bayes
and decision trees have low complexity in terms of computation and memory costs and
thus do not require innovative optimizations as pointed out by Sayali and Channe [37].
Logistic regression algorithms are computationally cheaper than naïve Bayes and decision
trees, meaning they have even lower complexity [38]. HMMs, k-NNs, SVMs, GMMs,
and DNNs are however computationally and memory intensive and hence, require novel
optimization techniques to be carried out to be efficiently squeezed within resource-limited
environments. We have thus limited our focus to these compute intensive ML models and
discuss state-of-the-art optimization techniques through which these algorithms may be
efficiently implemented within resource-constrained environments.

Sensors 2021, 21, 4412 5 of 44

Table 2. Machine Learning Techniques in Resource-Constrained Environments.

Reference ML Method Embedded/Mobile Platform Application Year

[2] SVM ARMv7, IBM PPC440 Network Configuration 2015

[20] DNN FPGA Zedboard with 2 ARM Cortex Cores Character Recognition 2015

[22] DNN Xilinx FPGA board Image classification 2016

[23] LSTM RNN Zynq 7020 FPGA Character Prediction 2016

[25] CNN VC707 Board with Xilinx FPGA chip Image Classification 2015

[39] GMM Raspberry Pi Integer processing 2014

[40] k-NN, SVM Mobile Device Fingerprinting 2014

[41] k-NN Mobile Device Fingerprinting 2014

[42] k-NN, GMM Mobile Device Mobile Device
Identification 2015

[43] SVM Xilinx Virtex 7 XC7VX980 FPGA Histopathological
image classification 2015

[44] HMM Nvidia Kepler Speech Recognition 2015

[45] Logistic Regression Smart band Stress Detection 2015

[46] k-means Smartphone Indoor Localization 2015

[47] Naïve Bayes AVR ATmega-32 Home Automation 2015

[48] k-NN Smartphone Image Recognition 2015

[49] Decision Tree Mobile Device Health Monitoring 2015

[50] GMM FRDM-K64F equipped with ARM Cortex-M4F
core

IoT sensor
data analysis 2016

[51] CNN FPGA Xilinx Zynq ZC706 Board Image Classification 2016

[52] CNN Mobile Device Mobile Sensing 2016

[53] SVM Mobile Device Fingerprinting 2016

[54] k-NN, SVM Mobile Device Fingerprinting 2016

[55] k-NN Xilinx Virtex-6 FPGA Image Classification 2016

[56] HMM Arduino UNO Disease detection 2016

[57] Logistic Regression Wearable Sensor Stress Detection 2016

[58] Naïve Bayes Smartphone Health Monitoring 2016

[59] Naïve Bayes Mobile Devices Emotion Recognition 2016

[60] k-NN Smartphone Data Mining 2016

[61] HMM Smartphone Sensors Activity Recognition 2017

[62] DNN Smartphone Face detection,
activity recognition 2017

[63] CNN Mobile Device Image classification 2017

[64] SVM Mobile Device Mobile Device
Identification 2017

[65] SVM Jetson-TK1 Healthcare 2017

[66] SVM, Logistic
Regression Arduino UNO Stress Detection 2017

[67] Naïve Bayes Smartphone Emotion Recognition 2017

[68] k-means Smartphones Safe Driving 2017

[69] HMM Mobile Device Health Monitoring 2017

Sensors 2021, 21, 4412 6 of 44

Table 2. Cont.

Reference ML Method Embedded/Mobile Platform Application Year

[70] k-NN Arduino UNO Image Classification 2017

[71] SVM Wearable Device (nRF51822 SoC+BLE) Battery Life
Management 2018

[72] SVM Zybo Board with Z-7010 FPSoC Face Detection 2018

[73] CNN Raspberry Pi + Movidus Neural Compute Stick Vehicular Edge
Computing 2018

[74] CNN Jetson TX2 Image Classification 2018

[75] HMM Smartphone Healthcare 2018

[76] k-NN Smartphone Health Monitoring 2019

[77] Decision Trees Arduino UNO Wound Monitoring 2019

[78] RNN ATmega640 Smart Sensors 2019

[79]
SVM, Logistic

Regression, k-means,
CNN

Raspberry Pi Federated Learning 2019

[80] DNN Raspberry Pi Transient Reduction 2020

[81] MLP Embedded SoC (ESP4ML) Classification 2020

[82] HMM Smartphone Indoor Localization 2020

[83] k-NN Smartphone Energy Management 2020

[84] ANN, Decision Trees Raspberry Pi Classification and
Regression 2021

2.2. Hidden Markov Models

Hidden Markov Model is an unsupervised machine learning technique based on
augmenting the Markov chain [85]. The Markov chain is a technique that describes the
probability of a sequence of events from a set of random variables. HMMs have been
successfully adopted for speech recognition, activity recognition, and gesture tracking
applications [86]. In [56], Patil and Thorat adopt HMM within an embedded device for
detecting diseases in grapes. Charissa and Song-bae in [61] implemented HMM using a
smartphone for recognizing human activities. HMMs are however compute and memory
intensive and thus require some optimization techniques for effective execution in resource-
limited environments [87].

2.2.1. The HMM Algorithm

The HMM is an algorithm that extracts meaningful information from available data
through observing a sequence of “hidden states” or “hidden classes” in the data and can
subsequently make accurate predictions of future states based on the current state [85]. Five
important components that make up the hidden Markov model are the number of states,
number of distinct observations, the state transition model, observation model, and initial
state distribution [85]. To determine the probability of observations, a forward algorithm is
adopted, while to predict the sequence of hidden states in the available data, the Viterbi
algorithm is used. The learning phase of the HMM is carried out using the Baum-Welch
Algorithm or the forward-backward algorithm [86]. An overview of these problems and
algorithms is given by Equations (1)–(3), as defined in Table 3.

P(Z|X) =
T

∏
i=1

P(zi|xi) (1)

vt(j) = max
i=1

vt−1(i)aijbj(xt) (2)

Sensors 2021, 21, 4412 7 of 44

argmax
λ

P(X; λ) = argmax
λ

∑
z

P(X, Z; λ) (3)

Table 3. Problems and Algorithms of HMM.

Problem Algorithm Definitions Equation

Likelihood Forward Algorithm
P(Z|X) is the likelihood, Z is

hidden state sequence and X is
observation sequence

(1)

Decoding Viterbi Algorithm

vt(j) is the Viterbi probability,
vt−1(i) is the previous Viterbi path

probability, aij is transition
probability and bj(xt) is the state

observation likelihood

(2)

Learning
Baum-Welch Algorithm or

Forward-Backward
Algorithm.

X is a sequence of observations, Z is
a hidden state sequence, and λ is the

HMM model
(3)

2.2.2. Some HMM Optimization Schemes

Although HMMs are suitable for different applications, they require a large amount of
computational and memory resources for efficient implementation. Embedded and mobile
devices are however resource-scarce environments and thus require novel optimization
schemes to be carried out for the efficient execution of HMMs. In [87], Toth and Nemeth
presented an optimized HMM to target smartphone environments for speech synthesis.
They optimize the HMM by selecting optimal parameters and implemented the model
using fixed-point arithmetic instead of computation-intensive floating-point arithmetic.
Fu et al. [88] proposed a series of optimization techniques including parameter reduction
using decision tree-based clustering, model compression, feature size reduction, and fixed-
point arithmetic implementation. Their optimized HMM target resource-scarce embedded
platforms for speech synthesis. A list of optimizations is presented in Table 4.

Table 4. Optimization Schemes for HMM.

Reference Optimization Scheme Application Comments

[87]
Optimal HMM

parameter selection
reduced precision.

Speech Synthesis

This technique reduces general
computation time and memory
footprint however, fixed-point

representation introduces accuracy
errors to synthesizing.

[88]

HMM parameter
reduction, model

compression, feature
vector size reduction,

reduced precision

Speech Synthesis

This research successfully
compressed the HMM from

293 MB to 3.61 MB. However, the
accuracy of the speech synthesis is

just fair owing to huge
parameter reduction.

2.3. k-Nearest Neighbours

k-NN is a non-parametric and lazy supervised machine technique often adopted for
classification problems e.g., text categorization [89]. k-NN algorithms have been adopted
in several embedded applications. For example, Hristo et al. [41] develop a mobile device
fingerprinting system based on the k-NN algorithm. Additionally, Sudip et al. [76] develop
a smartphone-based health monitoring system using the k-NN model. A smartphone-based
data mining system is presented in [60], for fall detection using a k-NN algorithm. k-NN
algorithms are also memory and compute intensive and require appropriate optimizations
for resource-scarce environments.

Sensors 2021, 21, 4412 8 of 44

2.3.1. The k-NN Algorithm

The k-NN algorithm unlike other ML approaches is a lazy learner because it does
not use specialized training data to generalize, rather it uses all available data to classify.
It is also non-parametric because it does not make assumptions from available data [40].
The Algorithm is such that computes the distance between the input data and other data
points and using a predefined “k value”, classification is done by estimating proximity. The
important Equations (4) and (5) that describe the k-NN model are defined in Table 5.

ŷ = ρ
n

∑
i=1

σ(yi)K(x, xi) (4)

D(p, q) =
√
(p1 − q1)

2 + (p2 − q2)
2 + . . . + (pn − qn)

2 (5)

Table 5. Important equations involved in k-NNs.

Function Definitions Equation

k-NN Prediction Function ŷ is the predicted output, x is input and ρ is Top1
and σ is the identity function. (4)

Euclidean distance D(p, q) is the Euclidean distance, p and q are
subjects to be compared with n characteristics. (5)

2.3.2. Some k-NN Optimization Schemes

k-NN models require the entire input data to be stored in memory for prediction to
be done hence they are memory and compute intensive [70]. To improve the efficiency of
the k-NN model, Li et al. [89] proposed an improved k-NN that uses different k values for
different categories instead of a predefined fixed k value. Norouzi et al. [90] investigated
the optimization of k-NN algorithms by mapping input features to binary codes which
are very memory efficient. There have also been some hardware-oriented optimization
schemes to accelerate k-NN models. Saikia et al. [91]. Mohsin and Perera [55] developed
an acceleration unit to increase the execution speed of k-NN models in resource-scarce
environments. Also, Gupta et al. [70] proposed a modified k-NN model termed ProtoNN
which is a highly compressed k-NN model suitable for resource-limited IoT devices. Table 6
describes some k-NN optimization schemes.

Table 6. Some kNN optimization Schemes.

Reference Optimization Scheme Application Comments

[90] Binary code learning Image
classification

Although the k-NN model is highly
compressed, accuracy is traded off

for memory efficiency

[55,91] FPGA Acceleration Classification
Although computation time is
reduced, FPGAs are difficult

to program.

[70]
Model compression

using Stochastic
Gradient Descent

Binary and
Multi-class

classification

The k-NN model is highly
compressed with good accuracy

2.4. Support Vector Machines

Support vector machine is a supervised machine learning technique based on Vapnik’s
statistical learning theory often adopted for object classification problems. SVMs have been
successfully applied to regression, ranking, and clustering problems [92]. Also, SVMs have
been useful in the prediction of the power and performance, auto-tuning, and runtime
scheduling of high-performance applications [93]. In [2] for example, SVM is adopted in

Sensors 2021, 21, 4412 9 of 44

maintaining a near-optimal configuration of a MANET. Also, SVMs are used in the design
and development of a low-cost and energy-efficient intelligent sensor [94]. SVMs are,
however, computationally and memory intensive and thus require hardware acceleration
units to be effectively executed in resource-limited situations. In [95], the FPGA hardware
implementation of an SVM is surveyed with optimization techniques.

2.4.1. The SVM Algorithm

An SVM is a linear or non-linear classifier that can identify two distinct objects by
separating them into two unique classes with high accuracy. The SVM is then trained,
during which a hyperplane is developed to separate the data belonging to each unique
class. These hyperplane samples are referred to as “support vectors,” which are then used
to classify new data. The problem equation for training an SVM is given in Equation (6):

maxW(∝) =
l

∑
i=1

∝i −
1
2

l

∑
i=1
·

l

∑
j=1

yiyjk
(
xi, xj

)
∝i∝j (6)

where ∝i∝j are Lagrange Multipliers, k
(
xi, xj

)
are the kernel functions, x and y are positions,

W is the quadratic function.
The algorithm flow is given in the pseudo-code, as shown in Algorithm 1.

Algorithm 1. Pseudocode for training a support vector machine

Require: X and y loaded with training labeled data, α← 0 or α← partially trained SVM
1: C← some value (10 for example)
2: repeat
3: for all {xiyi}, {xiyi} do
4: Optimize ∝i and ∝j
5: end for
6: until no changes in α or other resource constraint criteria met
Ensure: Retain only the support vectors (∝i> 0)

The implementation of training, testing, and predicting phases of an SVM involves
kernel functions that are the dot products and the Gaussian kernel functions. These
computations make SVM computationally intensive. Additionally, having to train much
data to inform accurate prediction makes SVM models memory intensive. Thus, efficient
optimizations are required both at the hardware architecture and algorithm levels. To
efficiently compute kernel functions, hardware acceleration units have been developed
using FPGAs so that these computationally intensive operations can be moved to the
hardware [92]. Also, at the algorithm level, a sequential minimal optimization method may
be used to reduce the memory usage [96].

2.4.2. Some SVM Optimizations Schemes

SVM techniques are computing and memory intensive and thus require appropriate
optimization methods to be successfully executed in resource-constrained environments.
Some works of literature have investigated the optimization of SVM models. The training
of the SVM involves solving a quadratic programming (QP) problem, and thus to solve
this problem optimally, optimization techniques involving chunking, decomposition or
sequential minimal optimizations, etc. may be carried out to reduce the memory foot-
print required for training the model. For inference, bit precision techniques, Logarithm
number representations, quantization, etc., are some optimization techniques that may be
applied to fit SVM models within resource-constrained environments. In [94], Boni et al.
develop a model selection technique targeted at reducing SVMs for resource-constrained
environments. Table 7 presents a comprehensive list of SVM optimization schemes for both
the training and classification phases. Interestingly, the Kernel selection also informs the
computational requirement of SVM models. Some kernel types are the Laplacian kernel,
the Gaussian kernel, the sigmoid kernel, the linear kernel, etc. Of these kernel types, the

Sensors 2021, 21, 4412 10 of 44

most suitable for resource-constrained environments is the Laplacian kernel because it can
be implemented using shifters [97].

Table 7. SVM Optimization Schemes.

TRAINING PHASE OPTIMIZATIONS

REFERENCE Optimization
Method Overview Comments

[98] Chunking

This method solves the quadratic
programming problem (QP) through the

removal of rows and columns of zero Lagrange
multipliers, thus reducing the entire memory

footprint of the SVM model.

Although chunking reduces the size of the
model, for large data sets, even the reduced

non-zero multipliers are larger than the
available memory of the system.

[99] Decomposition

This method targets replacing the original QP
problem with a sequence of smaller problems

and, for every sub-problem, invokes an
iterative numerical routine, which is expected
to converge optimally, thus reducing memory

footprint and computation requirement.

At every step, a numerical QP solver which
may require numerical precision issues to

be addressed is adopted. This process
requires invoking an entire iterative QP
library routine, thus introducing more

computation time.

[96]
Sequential
Minimal

Optimization

This is the most widely used optimization
technique. It involves breaking down the QP
problem into sub-problems and subsequently

solve the smallest possible optimization
problem at every step.

By solving the smallest possible
optimization problem at every step, SMO
avoids extra matrix memory storage and
invoking an entire library at every step.
This technique thus saves computation

time and memory footprint.

[93] Accelerated SMO

In this research work, the SMO algorithm is
accelerated by introducing an efficient

adaptive method for processing data input,
incorporating a two-level parallelization

scheme, avoiding caching, reducing shrinking,
and integrating data reuse.

This technique is not suitable for real-time
applications and requires high

computational resources to
implement successfully.

[100] Reduced SVM

In this work, a Smoothing Algorithm is
proposed to solve the QP problem. The QP

problem is first broken down by reducing the
variables and constraints of the model. These
samples can adequately represent the original
variables and constraints of the entire dataset,
and subsequently, the proposed algorithm is

used to solve the problem.

This technique reduces the computational
requirement of SVM but targets only

non-linear kernel types.

INFERENCE PHASE OPTIMIZATIONS

[101] Fixed Point
Optimization

In this research, the SVM algorithm is
implemented using fixed-point arithmetic.
Fixed-point number representation, when

compared with contemporary floating-point, is
less compute-intensive. Thus, this reduced

precision technique is adopted to execute the
SVM model within a smartphone for a

multiclass human activity
recognition application.

When reducing precision, accuracy
becomes a concern because the lower the
bit precision adopted, the more likely it is

to introduce classification errors.

[102] Quantization

In this work, a probabilistic technique is used
to observe the effect of introducing

quantization to the SVM model. The
parameters of the model are quantized and

using two datasets (Iris and Sonar) which are
embedded system-oriented models, the effect

of quantization is measured

Although quantization reduces
computation time and memory usage, the

process introduces noise which could
introduce errors except when fine-tuned.

Sensors 2021, 21, 4412 11 of 44

Table 7. Cont.

TRAINING PHASE OPTIMIZATIONS

REFERENCE Optimization
Method Overview Comments

[103] Logarithmic SVM

In this research, instead of the contemporary
floating-point or fixed-point arithmetic, the
SVM classification is carried out using the

Logarithmic Number System (LNS). The LNS
is suitable for low-power applications as it

avoids multiplication computations. This saves
computation time. The LNS is suitable for

machine learning kernel operations which are
the computationally intensive sections of the

ML algorithm.

Although LNS saves computation time, it
requires more hardware resources to

implement because it replaces
multiplication computations with addition

and subtraction.

[104] Multiplication free
SVM

In this research, To address the limitation of
hardware resources in resource-constrained

environments, The SVM parameters are
converted to fixed-point representation, and a
hardware-friendly kernel and CORDIC-like

iterative algorithm are proposed to avoid
multiplication computations using only adders

and shifters.

This technique reduces the computational
requirements of the system; however,

reduced bit precision (fixed-point
representation) introduces accuracy errors.

[94] Order Model
Selection

In this research, a model selection algorithm is
proposed to select the hyper-parameters with

the best Pareto-optimal state using the
classification error and the number of support

vectors.

This research adopted quantization
techniques that introduce classification

errors due to the influence of noise.

2.5. Gaussian Mixture Model

GMMs are density models capable of representing a large class of sample distributions.
They are used in finding the traffic density patterns in a large set of data. This characteristic
makes them suitable for analyzing large sensor data in IoT devices and biometric systems,
particularly for speaker recognition systems [105]. In [50], GMM is adopted within an
embedded board for analyzing the volume of sensor data at run time to monitor certain
conditions of a system. Although GMMs are efficient, deep learning models pose a more
effective method of analyzing raw sensor data.

2.5.1. The GMM Algorithm

A GMM is a weighted sum of M component Gaussian densities as shown in
Equations (7a) and (7b). The parameters of a GMM are retrieved during the training phase
using an expectation-maximization (EM) algorithm or maximum a posteriori (MAP) estima-
tion technique. The accuracy of a GMM hugely depends on the amount of computational
power and memory bandwidth required to implement the model:

p(x|λ) = ∑M
i=1 wi g(x|µi, Σi), (7a)

g(x|µ i, Σi) =
1

(2π)D/2|Σi|1/2 exp {−1
2
(x− µi)

′Σ−1
i (x− µi)}, (7b)

λ = {wi, µi, Σi} i = 1, . . . , M.

where x is a D-dimensional continuous-valued data vector (features), i = 1, . . . , M, are
the mixture weights, p(x|λ) is the probability density function, and g(x|µi, Σi) are the
component Gaussian densities, µi is the mean vector, Σi is the covariance matrix.

Sensors 2021, 21, 4412 12 of 44

2.5.2. Some GMM Optimization Schemes

GMMs are used in representing and modeling large volumes of data as in sensor data
systems and in background modeling tasks [105]. This characteristic makes GMMs highly
computationally and memory intensive, and unsuitable for real-time oriented applications.
Some literature has explored optimization techniques for reducing the computational
requirement and memory footprint of GMMs. Pushkar and Bharadwaj [106], propose
an enhanced GMM algorithm by minimizing the floating-point computations, modify-
ing the switching schedule, and automatically selecting the number of modes to target
resource-constrained embedded environments. Additionally, Shen et al. in [107] propose
an optimized GMM model based on compressive sensing to reduce the dimensionality
of the data while still retaining the relevant information. This technique is computation-
ally and memory efficient. In another publication, Salvadori et al. [39] proposed a GMM
optimization technique based on integers to target processors with no floating point unit
(FPU). This work showed low computation and a highly reduced memory footprint. A list
of these optimization schemes is presented in Table 8.

Table 8. Some GMM Optimization Schemes.

Reference Optimization
Method Application Comments

[106]
Minimization of
Floating-Point
Computations

Background Subtraction

The results of this research were
impressive, showing no

degradation in accuracy except
for lower recall rates.

[107] Comprehensive
Sensing

Background Subtraction
for real-time tracking in

Embedded Vision

The results of this research reveal
good performance for

computational speed and reduce
the memory footprint by 50%

[39] Integer-based
technique

Background/foreground
Segmentation

This work shows good
performance for processors
without FPU, thus reducing

computation cost and reducing
the memory footprint to 1/12 of
the original GMM; however, it
cannot be adopted for models
with more than two Gaussians

2.6. Deep Learning Models

Deep learning models are machine-learning techniques that model the human
brain [30]. They use a hierarchical array of layers to learn from available data and make new
predictions based on the information they extract from the set of raw data [13,30,31]. The
primary layer types that make up a deep learning model are pooling layers, convolutional
layers, classifier layers, and local response normalization layers. The high accuracy of deep
learning algorithms in various areas of applications has made them very attractive for use
in recent times. However, hardware architectural computational power is pushing hard to
meet up the computational demand of these models to inform their optimal implementa-
tion. In this survey, we explore the three main classes of deep learning models, which are
DNNs, CNNs, and RNNs. Table 9 describes popular DNN models with their parameters.

Sensors 2021, 21, 4412 13 of 44

Table 9. Description of some DNN models and their parameters.

Name FC Conv Vector Pool Total Nonlinear
Function Weights

MLP0 5 5 ReLU 20 M
MLP1 4 4 ReLU 5 M

LSTM0 24 34 58 Sigmoid, tanh 52 M
LSTM1 37 19 56 Sigmoid, tanh 34 M
CNN0 16 16 ReLU 8 M
CNN1 72 13 89 ReLU 100 M

Furthermore, like other machine learning models, deep learning models go through
three phases; train, test, and predict. The training phase of deep learning models is carried
out using a feedforward technique that entails sequentially passing data through the entire
network for a prediction to be made and back-propagating the error through the network.
The technique for backpropagation is called stochastic gradient descent (SGD), which
adjusts the weights or synapses of each layer in the network using a non-linear activation
function (tanh, sigmoid, rectified linear unit (ReLU)) [108–110]. Lin and Juan [111] carry out
research where they explore the possibility of developing an efficient hardware architecture
to accelerate the activation function of the network. The training process is often carried
out many times for the model to efficiently learn, and then using the trained model,
the prediction is made on new data. The training is very computationally and memory
intensive and is often carried out offline using very high-performance computing resources
mostly found in large data centers, while the inference targets low cost and resource-
constrained environments.

2.6.1. Convolution Layers

The convolution layers are the input layers of most DNNs, and they are used to
extract characteristic features from a given input data using a set of filters. These filters
are vector products (kernels), and their coefficients form the synaptic layer weights [112].
Convolution layers thus perform the major number of multiply and accumulate operations
in the entire network, which means they are computationally intensive and are the major
drawback to the real-time performance of deep learning models. Hardware acceleration
units can be developed to accelerate these layers to reduce the latency of implementing
deep learning models. The output neuron of a convolution is described in Equation (8):

out(x, y) f0 =
Ni f

∑
fi=0

Kx

∑
kx=0

Ky

∑
ky=0

w fi , f0

(
kxky

)
∗ in

(
x + kx, y + ky

) fi (8)

where out(x, y) f0 represent the output neuron and in(x, y) f0 represents the input neuron,
in x and y directions, w fi , f0

(
kxky

)
represent the synaptic weight and

(
kxky

)
represent the

kernel position, Ni f are the input features. In addition, fi and f 0 represent the input and
output feature maps, respectively.

2.6.2. Pooling Layers

The pooling layers are used in subsampling the feature maps obtained for convolutions
and computing the maximum/average of neighboring neurons in the same feature map. In
summary, this layer helps reduce the input layer dimensionality, thereby reducing the total
number of inputs into subsequent layers and we traverse down the neural network [112].
The pooling layer has no synaptic weight attached. Some research prunes away this layer
from the entire network to reduce computation time. The equation to evaluate a pooling
layer is given in Equation (9):

out(f0, x, y) = max
0≤(kx ,ky)<K

/average
(
in
(

f0, x + kx,y + ky
))

(9)

Sensors 2021, 21, 4412 14 of 44

where out(f0, x, y) is the output neurons at positions x and y, K is the number of feature
maps in x and y directions,

(
kx, ky

)
are kernel positions in x and y directions respectively

and f0 represents the output feature maps.

2.6.3. Normalization Layers

These layers inform competition between neurons at the same location but in different
feature maps. They perform a process very similar to lateral inhibition in biological neurons.
Their values may be evaluated from Equation (10). Some research works skip this layer in
DNN implementation to accelerate the entire network.

out(x, y) f =
in(x, y) f

(c+ ∝ ∑
min(N f−1, f+ k

2)

g=max(0, f− k
2)

(
∝ (x, y)g)2

)
β

(10)

where out(x, y) f are output neurons, in(x, y) f are input neurons, N f are the input features,
f and g are input and output feature maps respectively, k is the number of adjacent feature
maps, and c, α, and β are constants.

2.6.4. Fully-Connected Layers

These are layers where all the output features are fully connected to all the input
features using synaptic weights. Each output neuron is a weighted sum of all the input
neurons. Equation (11) describes the value of each output neuron. These layers are often
used for classification and output. Interestingly, because this layer is fed with the processed
output features of the previous layers, i.e., the Convolution, Pooling, and Normalization
layers, the input features are always lower than those for other layers i.e., they perform a
reduced amount of matrix multiplications. However, the full connection using synaptic
weights makes them very memory hungry as they make up for the largest share of all
synaptic weights:

out(j) = t
Ni

∑
i=0

wij ∗ in(i) (11)

where “t” is the non-linear activation function, Ni are the input features, wij are the synaptic
weights, i and j are the input and output feature maps respectively.

2.6.5. Fully-Connected Deep Neural Networks

DNNs are a class of neural networks that are used for speech recognition applications,
extracting high-level human behaviors, etc. The DNN architecture is such that all the
layers in the network are fully connected, and the output layer with the highest activation
value gives the required prediction. This characteristic feature makes them suitable for
learning from unstructured data. Owing to the full connectivity of all the layers in the
network, DNNs are computationally intensive than CNNs but highly memory intensive.
More explicitly, because they have to perform routine multiply-accumulate computations,
their computational logic is not complex but they require large enough memory to store
the synapses and activation functions. Therefore, optimizations for FC DNNs concern
more memory-centric thrusts like model compression, sparsity, pruning, and quantization.
In [113], DNN models are developed to be implemented in mobile devices by distributing
the computation across different processors within the mobile device. A fully connected
DNN is also referred to as a multilayer perceptron (MLP).

2.6.6. Convolutional Neural Networks

CNNs are a class of neural networks that are suitable for computer vision applications,
object recognition applications, etc. [114–116]. In ConvNets, key features in an image
are extracted then converted into complex representations using the pooling layer, and
subsequently, the fully-connected layers classify the image and identify the image appro-

Sensors 2021, 21, 4412 15 of 44

priately. The CNN architecture is primarily made up of a large portion of convolution
layers, followed by few fully connected layers. Some CNNs sometimes add pooling and
normalization layers in-between the convolution and fully connected layers. The presence
of convolution layers that perform kernel functions (vector-matrix multiplications) makes
CNNs very computation-intensive and less memory-hungry due to the few fully connected
layers. Therefore, optimizations for CNN models concern more computer-centric direc-
tions such as innovative hardware acceleration developments, processor technology, tiling,
and data reuse, reduced precision, quantization, etc. Popular CNNs are ResNets, LeNets,
AlexNets, GoogLeNets, VGGNets, etc. The computation and memory requirements of
some CNN models are given in Figure 2 and summarized in Table 10.

Sensors 2021, 21, x FOR PEER REVIEW 14 of 43

the synapses and activation functions. Therefore, optimizations for FC DNNs concern

more memory-centric thrusts like model compression, sparsity, pruning, and quantiza-

tion. In [113], DNN models are developed to be implemented in mobile devices by dis-

tributing the computation across different processors within the mobile device. A fully

connected DNN is also referred to as a multilayer perceptron (MLP).

2.6.6. Convolutional Neural Networks

CNNs are a class of neural networks that are suitable for computer vision applica-

tions, object recognition applications, etc. [114–116]. In ConvNets, key features in an im-

age are extracted then converted into complex representations using the pooling layer,

and subsequently, the fully-connected layers classify the image and identify the image

appropriately. The CNN architecture is primarily made up of a large portion of convolu-

tion layers, followed by few fully connected layers. Some CNNs sometimes add pooling

and normalization layers in-between the convolution and fully connected layers. The

presence of convolution layers that perform kernel functions (vector-matrix multiplica-

tions) makes CNNs very computation-intensive and less memory-hungry due to the few

fully connected layers. Therefore, optimizations for CNN models concern more computer-

centric directions such as innovative hardware acceleration developments, processor tech-

nology, tiling, and data reuse, reduced precision, quantization, etc. Popular CNNs are

ResNets, LeNets, AlexNets, GoogLeNets, VGGNets, etc. The computation and memory

requirements of some CNN models are given in Figure 2 and summarized in Table 10.

(a)

Sensors 2021, 21, x FOR PEER REVIEW 15 of 43

(b)

Figure 2. Description of a spectrum of certain CNN models to reveal their compute and memory

demand: (a) Describes the Memory Demand of these models in terms of the number of weight

parameters in (millions) (b) Computational Demand of these models in terms of their number of

operations (GOPs).

Table 10. Parameters for popular CNN models.

 CAFFENET [51] ZF VGG11 [51]

LAYER Weights FLOP Weights FLOP Weights FLOP

CONV1 30 K 210 M 10 K 340 M 0.00 170 M

CONV2 31 K 900 M 610 K 830 M 70 K 1850 M

CONV3 88 K 300 M 880 K 300 M 880 K 5550 M

CONV4 66 K 450 M 1330 K 450 M 3540 K 5550 M

CONV5 44 K 300 M 880 K 300 M 4720 K 1850 M

FC1 37.75 M 80 M 52.43 M 100 M 102.76 M 210 M

FC2 16.78 M 30 M 16.78 M 30 M 16.78 M 30 M

FC3 4.1 M 10 M 4.10 M 10 M 4.1 M 10 M

 VGG16 [51] VGG19 [51] ALEXNET

LAYER Weights FLOP Weights FLOP Weights FLOP

CONV1 40 K 3870 M 40 K 3870 M 35 K 211 M

CONV2 220 K 5550 M 220 K 5550 M 307 K 448 M

CONV3 1470 K 9250 M 2060 K 12950 M 885 K 299 M

CONV4 5900 K 9250 M 8260 K 12950 M 663 K 224 M

CONV5 7080 K 2310 M 9440 K 3700 M 442 K 150 M

FC1 102.76 M 210 M 102.76 M 210 M 38 M 75 M

FC2 16.78 M 30 M 16.78 M 30 M 17 M 34 M

FC3 4.1 M 10 M 4.10 M 10 M 4 M 8 M

2.6.7. Recurrent Neural Networks

RNNs are a class of Neural Networks used for natural language translation applica-

tions, speech recognition, etc. RNNs, unlike CNNs, process input data sequentially and

store the previous element. They thus retain and use past information which makes them

suitable for text prediction applications and also for suggesting words in a sentence. The

architecture of an RNN model is primarily made up of fully connected layers and normal-

ization layers. This organization makes RNNs memory-centric in operation since they

have to store weight synapses in available memory. A type of RNN referred to as Long

Figure 2. Description of a spectrum of certain CNN models to reveal their compute and memory
demand: (a) Describes the Memory Demand of these models in terms of the number of weight
parameters in (millions) (b) Computational Demand of these models in terms of their number of
operations (GOPs).

Sensors 2021, 21, 4412 16 of 44

Table 10. Parameters for popular CNN models.

CAFFENET [51] ZF VGG11 [51]

LAYER Weights FLOP Weights FLOP Weights FLOP
CONV1 30 K 210 M 10 K 340 M 0.00 170 M
CONV2 31 K 900 M 610 K 830 M 70 K 1850 M
CONV3 88 K 300 M 880 K 300 M 880 K 5550 M
CONV4 66 K 450 M 1330 K 450 M 3540 K 5550 M
CONV5 44 K 300 M 880 K 300 M 4720 K 1850 M

FC1 37.75 M 80 M 52.43 M 100 M 102.76 M 210 M
FC2 16.78 M 30 M 16.78 M 30 M 16.78 M 30 M
FC3 4.1 M 10 M 4.10 M 10 M 4.1 M 10 M

VGG16 [51] VGG19 [51] ALEXNET

LAYER Weights FLOP Weights FLOP Weights FLOP
CONV1 40 K 3870 M 40 K 3870 M 35 K 211 M
CONV2 220 K 5550 M 220 K 5550 M 307 K 448 M
CONV3 1470 K 9250 M 2060 K 12950 M 885 K 299 M
CONV4 5900 K 9250 M 8260 K 12950 M 663 K 224 M
CONV5 7080 K 2310 M 9440 K 3700 M 442 K 150 M

FC1 102.76 M 210 M 102.76 M 210 M 38 M 75 M
FC2 16.78 M 30 M 16.78 M 30 M 17 M 34 M
FC3 4.1 M 10 M 4.10 M 10 M 4 M 8 M

2.6.7. Recurrent Neural Networks

RNNs are a class of Neural Networks used for natural language translation appli-
cations, speech recognition, etc. RNNs, unlike CNNs, process input data sequentially
and store the previous element. They thus retain and use past information which makes
them suitable for text prediction applications and also for suggesting words in a sentence.
The architecture of an RNN model is primarily made up of fully connected layers and
normalization layers. This organization makes RNNs memory-centric in operation since
they have to store weight synapses in available memory. A type of RNN referred to as
Long Short Term Memory (LSTM) is gaining interest in recent times and process to be
more effective than conventional RNNs [117–120]. Khan et al. [121] developed a data
analytic framework with the real-world application using Spark Machine Learning and
LSTM techniques. There are great hardware acceleration opportunities in implementing
RNNs [122–124], and [23] explores the FPGA acceleration of an RNN. Table 11 describes
some of the DNN models and their architecture.

Table 11. Some DNN Optimization Schemes.

Ref. Embedded Architecture Model Optimization Techniques Application

[20] FPGA(Zedboard
development board) DNN(Mnist) Data Access Optimization,

Time-sharing computation Image Recognition

[22] Xilinx XC7Z2020 FPGA DNN(Mnist) Tiling and reuse techniques, FIFO
Buffering, Pipelining Image Recognition

[51] Xilinx Zynq ZC706 FPGA CNN(VGG16)
Simple Vector Decomposition,

Quantization, Tiling, and reuse,
Buffer Design

Image Classification

[112] Altera Stratix-V FPGA
(DE5-Net, P395-D8) CNN(AlexNet, VGG)

Number Precision, Throughput
optimization through design

space exploration.
Image classification

[25] Virtex7 VX485T FPGA CNN Loop unrolling, Pipelining, Tiling,
and data reuse Image classification

[111] Xilinx XC6VLX240T
FPGA

CNN(LeNet-5),
DNN(AlexNet)

Acceleration of Activation
function, Pipelining

Image recognition and
Classification

Sensors 2021, 21, 4412 17 of 44

Table 11. Cont.

Ref. Embedded Architecture Model Optimization Techniques Application

[27] Xilinx Vertex-7 FPGA CNN(AlexNet-5) Network Pruning, Quantization,
hardware acceleration Computer Vision

[125] Intel Core i7 CPU CNN(LeNet-5) Adaptive Quantization Image classification

[23] Xilinx Zynq ZC7020
FPGA RNN(LSTM) Data Access Optimization, reduced

precision, Buffer design Speech Recognition

3. Machine Learning in Resource-Constrained Environments

Machine learning techniques are currently targeting resource-scarce environments
such as mobile devices, embedded devices, and other internet of things devices. In
this section, we present an overview of different resource-limited environments like
microcontroller units (MCUs) and mobile devices. We also discuss the option of hard-
ware acceleration units used to speed up the execution of these algorithms in resource-
scarce environments.

3.1. Machine Learning Using Microcontrollers

Microcontrollers are at the front end of provisional hardware to implement diverse
embedded systems and other IoT applications [126]. An MCU consists of a microprocessor,
memory, I/O ports, and other peripherals all integrated into one chip. At the processor core
of MCUs are general-purpose CPUs for adequate computation. Table 12 describes a list of
popular MCUs using their compute and memory resources. From this list, we can observe
the resource limitation of most MCUs in terms of available power and on-chip memory
(flash + SRAM). This resource limitation is a critical drawback in the implementation
of machine learning models. For example, some typical CNN model sizes are AlexNet
(240 MB) [27], VGG 16 (528 MB) [127], VGG 19 (549 MB) [127], etc. Model size describes
the number of bytes required to store all the parameters of the model. In this study, we
survey techniques for compressing these models to fit into the available memory of MCUs
for efficient computation to be appropriately done.

Table 12. Microcontroller units comparison.

Ref. Name Processor Clock
Frequency Flash SRAM Current Consumption

(mA)

[128] Arduino Uno ATmega328P 16 MHz 32 KB 2 KB 12 mA
[129] Arduino Mega ATmega2560 16 MHz 256 KB 8 KB 6 mA
[129] Arduino Nano ATmega2560 16 MHz 26-32 KB 1-2 KB 6 mA
[130] STM32L0 ARM Cortex-M0 32 MHz 192 KB 20 KB 7 mA
[131] Arduino MKR1000 ARM Cortex-M0 48 MHz 256 KB 32 KB 4 mA
[132] Arduino Due ARM Cortex-M3 84 MHz 512 KB 96 KB 50 mA
[133] STM32F2 ARM Cortex-M3 120 MHz 1 MB 128 KB 21 mA
[134] STM32F4 ARM Cortex-M4 180 MHz 2 MB 384 KB 50 mA
[135] RPi A+ ARM Cortex-A7 700 MHz SD Card 256 MB 80 mA
[135] RPi Zero ARMV6 1 GHz SD Card 512 MB 80 mA
[135] RPi 3B ARM Cortex-A53 1.2 GHz SD Card 1 GB 260 mA
[136] BeagleVTM RISC-V U74 1.0 GHz SD Card 8 GB 3000 mA

Table 12 presents a list of different microcontrollers categorized using their clock
frequency, available flash memory, SRAM, and their current consumption. As can be
observed in this table, microcontrollers have very limited hardware resources. This scarcity
of resources makes them unsuitable for high-end machine learning applications, except the
machine learning models are heavily optimized to fit within this space [24].

Sensors 2021, 21, 4412 18 of 44

3.2. Machine Learning Using Hardware Accelerators

General-purpose CPU chipsets, although ubiquitous, do not possess enough compu-
tational ability to process compute-intensive ML algorithms. To address this drawback,
hardware acceleration units may be developed using GPUs, FPGAs, and even ASICs.
However, the most popular accelerators are FPGA-based accelerators owing to the pro-
grammability of FPGAs. Hardware acceleration is developed such that compute-intensive
segments of the ML algorithm, e.g., kernel operations, are offloaded to the specialized
accelerator, thereby relieving the CPU to process much simpler operations, improving the
overall computation speed of the system. Some machine learning accelerators are Arm
Ethos NPUs, Intel’s Movidus NCS, Nvidia’s Jetson nano, etc. Table 13 presents some of
these accelerators. A critical drawback in adopting these accelerators is cost. Also, some
works of literature have explored the development of FPGA-based accelerators for machine
learning algorithms. Wang et al. [22] proposed a scalable deep learning accelerator to
accelerate the kernel computations of deep learning. The authors introduce some optimiza-
tion schemes such as tiling techniques, pipelining, FIFO buffers, and data reuse to further
improved their proposed architecture.

Table 13. Machine learning accelerators.

Accelerator Processor Type RAM Flash Memory Power Application Maker

ARM Ethos NPU ARM ML
processor 1 GB - 4 TOPs/W Image processing,

voice recognition ARM

BeagleBone AI Cortex-A15,
Sitara AM5729 1 GB 16 GB 500 mW Computer vision Texas

Instruments

Google Coral Dev Board GPU, TPU, CPU 1 GB 8 GB (6–10) W Image Processing Google

Intel Movidus NCS VPU 1 GB 4 GB 500 mW Classification,
computer vision Intel

Mustang-F100-A10 Intel Arria 10
GX1150 FPGA 8 GB - 40 W Computer vision Intel

NVIDIA Jetson NANO GPU, CPU
4 GB 64 it
LPDDR4
25.6 GB/s

16 GB eMMC,
5.1 Flash (5–10) W Computer vision,

audio processing NVIDIA

3.3. Machine Learning in Mobile Devices

Machine learning techniques are gradually permeating mobile devices for applications
such as speech recognition, computer vision, etc. Mobile devices may be categorized under
resource-constrained systems owing to their limited computational and memory resources.
Hence, for machine learning algorithms to be successfully implemented within these
devices, appropriate optimizations must be carried out. Lane et al. [137] developed a
software accelerator for accelerating the execution of deep learning models within mobile
devices. We present a survey of some mobile machine learning applications in the literature
as tabulated in Table 14.

Table 14. Some literature on mobile machine learning.

Ref. Ml Algorithm Optimization Method Mobile Device Application

[138] GoogLeNet Layer slimming and fine-tuning with
model compression, Samsung Galaxy S5 Computer vision

[139] GMM
Combination of k-Nearest Neighbor

(kNN) and neural networks to improve
GMM algorithm.

MIT Mobile device Speaker Verification

[140] DNN Model Compression, reduced precision,
and Rescoring Techniques

Nexus 4 Android
Phone Speech recognition

Sensors 2021, 21, 4412 19 of 44

Table 14. Cont.

Ref. Ml Algorithm Optimization Method Mobile Device Application

[52] CNN(Vgg-F,
Vgg-M, Vgg-16)

GPU-based acceleration, branch
divergence, memory vectorization, and

half floating-point computation.

Samsung S5, Samsung
Note 4, Samsung S7 Computer Vision

[63] CNN Pointwise group convolution and
channel shuffling

ARM-based
Mobile Device

Image classification,
object detection

3.4. TinyML

Machine learning inference at the edge particularly within very low power MCUs is
gaining increased interest amongst the ML community. This interest pivots on creating
a suitable platform where ML models may be efficiently executed within IoT devices.
This has thus opened a growing research area in embedded machine learning termed
TinyML. TinyML is a machine learning technique that integrates compressed and optimized
machine learning to suit very low-power MCUs [141]. TinyML primarily differs from cloud
machine learning (where compute intensive models are implemented using high-end
computers in large datacenters like Facebook [142]), Mobile machine learning in terms of
their very low power consumption (averagely 0.1 W) as shown in Table 15. TinyML creates
a platform whereby machine learning models are pushed to user devices to inform good
user experience for diverse applications and it has advantages such as energy efficiency,
reduced costs, data security, low latency, etc., which are major concerns in contemporary
cloud computing technology [141]. Colby et al. [143] presented a survey where neural
network architectures (MicroNets) target commodity microcontroller units. The authors
efficiently ported MicroNets to MCUs using the TensorFlow Lite Micro platform. There
are different platforms developed to easily port ML algorithms to resource-constrained
environments. Table 16 presents a list of available TinyML frameworks commonly adopted
to push ML models into different compatible resource-limited devices.

Table 15. Comparison of CloudML and TinyML Platforms.

Computing
Technology Platform Architecture Memory Storage Power Ref.

CloudML
Nvidia V100 GPU Nvidia VoltaTM 16 GB 1 TBs-PBs 250 W [144]

Nvidia Titan RTX GPU Nvidia TuringTM 24 GB 1 TBs-PBs 280 W [145]
Nvidia V100S GPU Nvidia VoltaTM 32 GB 1 TBs-PBs 250 W [144]

TinyML
ST F446RE Arm M4 128 KB 0.5 MB 0.1 W [146]
ST F746ZG Arm M7 320 KB 1 MB 0.3 W [147]
ST F767ZI Arm M7 512 KB 2 MB 0.3 W [147]

1 Terabytes to Petabytes.

Table 16. TinyML Framework.

Framework Supported mL Algorithm Compatible Platforms Languages Main Developer

TensorFlow Lite Neural networks ARM Cortex-M C++11 Google

ELL Neural networks
ARM Cortex-A

Raspberry Pi Arduino
micro:bit

C
C++ Microsoft

ARM-NN Neural networks

ARM Cortex-A
ARM Mali

Graphics Processors
ARM Ethos Processor

ARM Cortex-M

C ARM

Sensors 2021, 21, 4412 20 of 44

Table 16. Cont.

Framework Supported mL Algorithm Compatible Platforms Languages Main Developer

CMSIS-NN Neural networks ARM Cortex-M C99 ARM

STM 32Cube. Al Neural networks STM32 C STMicroelectronics

AlfES Neural networks

Window [DLL]
Raspberry Pi

Arduino ATMega32U4
STM32 F4 Series
ARM Cortex-M4

C Fraunhofer IMS

NanoEdge Al Studio Unsupervised
learning ARM Cortex-M C Cartesian

MicroMLGen SVM
RVM

Arduino
ESP32

ESP8266
C Particular developer

Sklearnporter

SVM
Decision tree

Random Forest
Ada BoostClassifier

K-NN
Neural networks

Multiple constrained &
non-constrained platforms

C, GO
Java, JavaScript,

PHP, Ruby
Particular developer

m2cgen

Linear regression Logistic
regression Neural

networks SVM
Decision tree

Random Forest
LGBM classifier

Multiple constrained &
non-constrained platforms

C, C#, Dart
Go, Java

JavaScript
PHP, PowerShell,

Python, R
Visual Basic

Particular developer

Weka-porter Decision trees Multiple constrained &
non-constrained platforms

C, Java
JavaScript Particular developer

EmbML
Decision trees

Neural networks
SVM

Arduino Teensy C++ Research group

emlearn

Decision trees
Neural networks Naïve

Gaussian Bayes Random
forest

AVR ATmega
ESP8266

Linux
C Particular developer

uTensor Neural networks mBed boards C++11 Particular developer

TinyMLgen Neural networks ARM Cortex-M
ESP32 C Particular developer

4. Challenges and Optimization Opportunities in Embedded Machine Learning

Embedded computing systems are generally limited in terms of available compu-
tational power and memory requirements. Furthermore, they are required to consume
very low power and to meet real-time constraints. Thus, for these computationally inten-
sive machine learning models to be executed efficiently in the embedded systems space,
appropriate optimizations are required both at the hardware architecture and algorithm
levels [148,149]. In this section, we survey optimization methods to tackle bottlenecks in
terms of power consumption, memory footprint, latency concerns, and throughput and
accuracy loss.

4.1. Power Consumption

The total energy consumed by an embedded computing application is the sum of the
energy required to fetch data from the available memory storage and the energy required
to perform the necessary computation in the processor. Table 17 shows the energy required

Sensors 2021, 21, 4412 21 of 44

to perform different operations in an ASIC. It can be observed from Table 17 that the
amount of energy required to fetch data from the SRAM is much less, than when fetching
data from the off-chip DRAM and very minimal if the computation is done at the register
files. From this insight, we can conclude that computation should be done as close to the
processor as possible to save energy. However, this is a bottleneck because the standard
size of available on-chip memory in embedded architectures is very low compared to the
size of deep learning models [124]. Algorithmic-based optimization techniques for model
compression such as parameter pruning, sparsity, and quantization may be applied to
address this challenge [150]. Also, hardware design-based optimizations such as Tiling
and data reuse may be utilized [25]. The next section expatiates some of these optimization
methods in further detail. Furthermore, most machine-learning models, especially deep
learning models, require huge amounts of multiply and accumulate (MAC) operations
for effective training and inference. Figure 3 describes the power consumed by the MAC
unit as a function of the bit precision adopted by the system. We may observe that the
higher the number of bits, the higher the power consumed. Thus, to reduce the power
consumed during computation, reduced bit precision arithmetic and data quantization
may be utilized [151].

Table 17. Energy Consumption in (pJ) of performing operations.

Operation Energy (pJ)

8 bit int ADD 0.03
16 bit int ADD 0.05
32 bit int ADD 0.1

16 bit float ADD 0.4
32 bit float ADD 0.9

8 bit MULT 0.2
32 bit MULT 3.1

16 bit float MULT 1.1
32 bit float MULT 3.7

32 bit SRAM READ 5.0
32 bit DRAM READ 640

Source: Bill Dally, Cadence Embedded Neural Network Summit, 1 February 2017.

Sensors 2021, 21, x FOR PEER REVIEW 20 of 43

to the processor as possible to save energy. However, this is a bottleneck because the

standard size of available on-chip memory in embedded architectures is very low com-

pared to the size of deep learning models [124]. Algorithmic-based optimization tech-

niques for model compression such as parameter pruning, sparsity, and quantization may

be applied to address this challenge [150]. Also, hardware design-based optimizations

such as Tiling and data reuse may be utilized [25]. The next section expatiates some of

these optimization methods in further detail. Furthermore, most machine-learning mod-

els, especially deep learning models, require huge amounts of multiply and accumulate

(MAC) operations for effective training and inference. Figure 3 describes the power con-

sumed by the MAC unit as a function of the bit precision adopted by the system. We may

observe that the higher the number of bits, the higher the power consumed. Thus, to re-

duce the power consumed during computation, reduced bit precision arithmetic and data

quantization may be utilized [151].

Table 17. Energy Consumption in (pJ) of performing operations.

Operation Energy (pJ)

8 bit int ADD 0.03

16 bit int ADD 0.05

32 bit int ADD 0.1

16 bit float ADD 0.4

32 bit float ADD 0.9

8 bit MULT 0.2

32 bit MULT 3.1

16 bit float MULT 1.1

32 bit float MULT 3.7

32 bit SRAM READ 5.0

32 bit DRAM READ 640

Source: Bill Dally, Cadence Embedded Neural Network Summit, 1 February 2017.

Figure 3. This graph describes the energy consumption and prediction accuracy of a DNN as a func-

tion of the Arithmetic Precision adopted for a single MAC unit in a 45 nm CMOS [124]. It may be

deduced from the graph that lower number precisions consume less power than high precisions

with no loss in prediction accuracy. However, we can observe that when precision is reduced below

a particular threshold (16 bit fp), the accuracy of the model is greatly affected. Thus, quantization

Figure 3. This graph describes the energy consumption and prediction accuracy of a DNN as a
function of the Arithmetic Precision adopted for a single MAC unit in a 45 nm CMOS [124]. It may
be deduced from the graph that lower number precisions consume less power than high precisions
with no loss in prediction accuracy. However, we can observe that when precision is reduced below a
particular threshold (16 bit fp), the accuracy of the model is greatly affected. Thus, quantization may
be performed successfully to conserve energy but quantizing below 16-bit fp may require retraining
and fine-tuning to restore the accuracy of the model.

Sensors 2021, 21, 4412 22 of 44

4.2. Memory Footprint

The available on-chip and off-chip memory in embedded systems are very limited
compared to the size of ML parameters (synapses and activations) [27]. Thus, there is a
bottleneck for storing model parameters and activations within this constrained memory.
Network pruning (removing redundant parameters) [150] and data quantization [151]
(reducing the number of bits used to represent model parameters) are the primary opti-
mization techniques adopted to significantly compress the overall model size such that
they can fit into the standard memory sizes of embedded computers.

4.3. Latency and Throughput Concerns

Embedded systems are required to meet real-time deadlines. Thus, latency and overall
throughput can be a major concern as an inability to meet these tight constraints could
sometimes result in devastating consequences. The parameters of deep learning models
are very large and are often stored off-chip or in external SDCARDs, which introduces
latency concerns. Latency results from the time required to fetch model parameters from
off-chip DRAM or external SDCARDs before appropriate computation can be performed
on these parameters [150]. Thus, storing the parameters as close as possible to the compu-
tation unit using Tiling and data reuse, hardware-oriented direct memory access (DMA)
optimization techniques would reduce the latency and thus, inform high computation
speed [152]. In addition, because ML models require a high level of parallelism for effi-
cient performance, throughput is a major issue. Memory throughput can be optimized by
introducing pipelining [20].

4.4. Prediction Accuracy

Although deep learning models are tolerant of low bit precision [153], reducing the
bit precision below a certain threshold could significantly affect the prediction accuracy
of these models and introduce no little errors, which could be costly for the embedded
application. To address the errors which model compression techniques such as reduced
precision or quantization introduce, the compressed model can be retrained or fine-tuned
to improve precision accuracy [124,150,154,155].

4.5. Some Hardware-Oriented and Algorithm-Based Optimization Techniques

Hardware acceleration units may be designed using custom FPGAs or ASICs to inform
low latency and high throughput. These designs are such that they may optimize the data
access from external memory and/or introduce an efficient pipeline structure using buffers
to increase the throughput of the architecture. In sum, some hardware-based optimization
techniques are presented in this section to guide computer architects in designing and
developing highly efficient acceleration units to inform high performance

4.5.1. Tiling and Data Reuse

Tiling is a technique that involves decomposing a large volume of data into small
tiles that can be cached on-chip [25,156]. This technique targets the bottleneck of memory
footprint in resource-constrained environments. This technique also introduces scalability
to the entire architecture as different sizes of volume data can be easily broken down
into bits that may be stored on-chip. Much more, this technique reduces the latency
of the system as tiled inputs may easily be reused for computation without having to
re-fetch parameters from off-chip. Furthermore, since tiled data can be stored on-chip,
energy consumption is reduced. Hardware accelerators may be designed and developed to
integrate a tile unit to carry out the tiling process [22]. The pseudocode of the tiling process
is given in Algorithm 2.

Sensors 2021, 21, 4412 23 of 44

Algorithm 2 Pseudocode of the Tiling Process

Require:
Ni: the number of the input neurons
No: the number of the output neurons
Tile_Size: the tile size of the input data
batchsize: the batch size of the input data
for n = 0; n < batchsize; n ++ do
for k = 0; k < Ni; k+ = Tile_Size do
for j = 0; j < No; j ++ do
y[n][j] = 0;
for i = k; i < k + Tile_Size&&i < Ni; i ++ do
y[n][j] + = w[i][j] * x[n][i]
if i == Ni − 1 then
y[n][j] = f (y[n][j]);
end if
end for
end for
end for
end for

4.5.2. Direct Memory Access and On-Chip Buffers

More recent FPGA architectures owing to the limitation in computation and memory
of custom FPGAs, provide general-purpose processors and external memory to offload
computation from the FPGA processing logic to the CPU [157]. This architectural organiza-
tion if not properly utilized, can result in latency concerns. DMAs are units that transfer
data between the external memory and the on-chip buffers in the processing logic of the
FPGA [152]. Thus, optimizing this process would lead to an efficient performance in
execution speed.

4.5.3. Layer Acceleration

A deep learning network is made up of different kinds of layers (pooling, normaliza-
tion, fully connected, convolution, etc.). A technique for speeding up the rate of execution
of a network and saving memory storage is to design and develop specialized architec-
tures to accelerate particular layers in the network layer [26]. In [22], an accelerator is
designed using FPGA technology to accelerate certain parts of a deep neural network.
Also, in [51], an accelerator is designed to accelerate convolution layers in a CNN. Network
layer acceleration is a hardware-oriented optimization scheme and could pose challenges
such as hardware design and high time-to-market since specialized architectures are often
considered [148].

4.5.4. Network Pruning

Network pruning is concerned with the removal of certain parts of the network,
ranging from weights to layers that do not contribute to the overall efficiency of the
network [158]. It entails rounding off certain unused weights and activations to zero to
reduce the total memory and computation resource required for efficient computation.
These weights and activations are such that they would not alter the accuracy of the
execution of the model if avoided. Pruning can either be structured or unstructured [158].
In [124], the pruning technique is employed to compress a neural network within the
resource-constrained environments of embedded and mobile devices. The pruning entailed
removing i.e., set to zero, weights that are lower than a certain threshold value, and the
pruned network is then retrained to improve accuracy.

4.5.5. Reduced Precision

Machine learning algorithms, particularly deep learning models, were originally
implemented using a high floating-point number representation format [159,160]. The

Sensors 2021, 21, 4412 24 of 44

floating-point number system is made up of a sign, an exponent, and a mantissa [160]. A
single floating-point value can be computed using the formula presented in Equation (12).
The floating-point number system is, however, power-hungry and thus unsuitable for em-
bedded machine learning applications owing to the resource constraints [161,162]. More so,
floating-point arithmetic currently faces drawbacks like manipulating overflow, underflow,
and exceptions [163]. This has thus made the fixed-point number system a better alternative
owing to the reduced complexity and power consumption of its implementation with the
combined range given in Equation (13), [164,165]. Hwang and Sung [166] Investigate the
ternary quantization of a Feedforward deep neural network using fixed-point arithmetic.
Additionally, [167] considers training a deep network using 16-bit fixed-point arithmetic
with stochastic rounding to minimize accuracy loss. Although fixed point arithmetic is
power efficient, it is not suitable for representing deep learning parameters that are non-
linear. Gustafson and Yonemoto [168] present a new number system called Posit given
in Equation (14). Langroudi et al. [163] adopt the posit number system in training a deep
convolutional neural network.

value = (−1)sign ×
(

1 +
mantissa

223

)
× 2(exponent−127) (12)

where value is the floating-point value, sign is the sign bit, mantissa is the mantissa bit.

− 2QI−1 ≤ ∝ ≤
(

2QI−1 − 2−QF
)∣∣∣ε = 2−QF (13)

where ∝ represents the input integer, QI = # of integer bits and QF = # of fractional bits and
ε is the resolution of the fixed-point number.

X = (−1)sign × (useed)rvalue × 2exponent × (1 + f raction) (14)

where X represents the Posit value, rvalue represents the number regime and useed repre-
sents the scale factor.

4.5.6. Quantization

SVM and DNN model parameters are often represented using 32-bit floating-point
values [92,158], which are highly computationally and memory intensive. However, re-
search shows that these models can be implemented efficiently using low precision pa-
rameters (8-bit or 16-bit) with minimal accuracy loss [113,169]. Quantization describes
techniques aimed at reducing the bit width of the weights and activations of a machine-
learning model to reduce the memory storage and communication overhead required for
computation. This process thereby reduces the bandwidth required for communication,
overall power consumption, area, and circuitry required to implement the design. Many
research works have considered different quantization techniques for deep learning mod-
els. Courbariaux et al. [170] consider training a deep model using binary representation
(+1 and −1), of the model parameters using a binarization function given in Equation (15).
Also, [166] proposes a quantization scheme using ternary values (+1, 0, −1). The proposed
equation is given in Equations (16) and (17). Other quantization techniques involving
Bayesian quantization, weighted entropy-based quantization, vector quantization, and
two-bit networks are adopted in [50,51,158], and [171], respectively. Although quantization
techniques increase execution speed, the algorithm requires fine-tuning to avoid accuracy
loss [172,173]:

xb = Sign (x) =
{

+1 i f x ≥ 0,
−1 Otherwise

(15)

where xb is the binarized variable (weights and activations) and x is the real-valued variable.

wij, new = wij − α

(
δE

δwij

)
= wij − α

(
δiyj
)

(16)

Sensors 2021, 21, 4412 25 of 44

where wij is the new ternarized weight, α is the learning rate E is the output error, yj is the
output signal and δi is the error signal.

∅i(x) = ∅(x)(1−∅(x)) = y(1− y) (17)

where ∅(x) are the new ternarized activation functions and y is the output signal.

5. Areas of Applications of Intelligent Embedded Systems

Indeed, numerous application areas of embedded systems and the breakthrough of
machine learning methods have further widened and deepened the range of applications
where embedded systems and machine learning methods are currently actively adopted.
Some areas of applications we consider in this survey are intelligent sensor systems and
IoTs, deep learning in mobile devices, deep learning training using general-purpose GPUs,
deep learning in heterogeneous computing systems, Embedded field programmable gate
arrays, energy-efficient hardware design, and architectures.

5.1. Intelligent Sensor Systems and IoTs

There is a growing interest revolving around the efficient implementation of machine
learning algorithms within embedded environments of sensor networks and the internet.
Diverse machine learning algorithms such as SVMs, GMMs, and DNNs are finding useful
applications in cogent areas such as the network configuration of mobile networks, analysis
of sensor data, power consumption management, etc. A list of applications of machine
learning executed within these environments is presented in Table 18. Although machine
learning techniques have found useful applications in embedded systems domains, there
are major drawbacks that entail limited available computational and memory resources in
embedded computing systems.

5.2. Deep Learning In Mobile Devices

DNNs are finding very useful applications in mobile devices for speech recognition,
computer vision, and natural language processing, respectively, indoor navigation systems,
etc. A list of application areas of deep learning models in mobile devices is presented in
Table 19. The computational and memory demands required for training and inferencing
deep learning models make current mobile devices unsuitable for these models. Thus,
more research is being carried out towards the inferencing of the models on mobile devices.
There are a lot of energy-intensive applications on current mobile devices which compete
for the limited available power and thus, more research is being carried out to optimize
these deep learning models so they can efficiently fit within mobile devices.

Table 18. Intelligent sensor systems and IoTs.

Year Ref. Application Area Highlights Key Findings Limitations

2015 [2]
Mobile Adhoc

Networks
(MANETs)

This research investigates the
automatic configuration of the radio
and IP stack of a MANET at runtime
using machine learning techniques.
To achieve this, the SVM algorithm

was implemented within two
communication controllers with
general-purpose processors (the
ARMv7 and IBM PPC440GX).

To deploy the SVM efficiently,
certain optimizations were

carried out on the algorithm,
and the corresponding effect

of each optimization
technique was observed
whilst comparing each

ablation with a baseline. The
result of the proposed system

showed improved
performance reducing the
runtime of the system in

most cases.

In this research, accuracy was
traded off for execution speed.

The accuracy of SVM algorithms
depends on their floating-point

computations. However,
floating-point operations were
avoided by the optimization
scheme, thereby reducing the

overall accuracy. Also,
computationally intensive

machine learning methods are
often executed using hardware

acceleration units. This increases
the accuracy and execution speed

of the scheme.

Sensors 2021, 21, 4412 26 of 44

Table 18. Cont.

Year Ref. Application Area Highlights Key Findings Limitations

2016 [50]
Intelligent Sensor
Networks and the
Internet of things

This research work investigates the use
of a machine learning model deployed

in an embedded environment to analyze
sensor data at run time. The research

explored the use of a Gaussian mixture
model (GMM) on an FRDM-K64F

embedded board to achieve this. For
retrieving raw data intelligently, the

research employed the NXP intelligent
sensor framework (ISF), which collects
the raw sensor data and stores them for
sequel purposes. The GMM is then used

to analyze the huge amount of sensor
data for classification and clustering to

detect the required processes. The
intelligent sensor system is used to

monitor the conditions of an intelligent
stove and a water circulation system.

The GMM algorithm is
optimized using the

expectation-maximization (EM)
algorithm and implemented

using the minimum description
length (MDL) criterion due to
the intensive computational
vector and matrix operations

required and the limited
computational power available.

Furthermore, the fixed point
number representation was

used in the computation of the
sensor data, while the hardware
implementation was done using

the imperfect
floating-point unit.

The number representation
adopted improves the speed
of the implementation at the

expense of accuracy.
Although the analysis of raw

sensor data reduces the
network data traffic and
enhances data security,

employing the use of model
parameters to depict sensor

data reduces the effectiveness
of the GMM since the

accuracy of machine learning
models largely depends on

the volume of data for
appropriate training.

2017 [62]
Intelligent

Ultra-Low-Power
IoT Systems

This research considers the efficient
implementation of deep neural

networks across diverse low-power IoT
computing platforms. The different IoT
applications considered in this research

cut across voice, image, and activity
recognition. The work proposes a

fully-connected deep neural network for
training the different datasets and

consequently inferencing the trained
model using an SoC-based hardware

accelerator. A unique FC-NN topology
is modeled for each application for high

performance and trained using
preprocessed datasets as required by

the application.

The NN model is manually
mapped to the hardware

accelerator by extracting the
weights and biases and

converting them from 32-bit
floating-point to 16-bit

fixed-point values owing to the
accelerator constraints indicated
in the paper. The quantization
method introduced to reduce

the precision of the model
reduces the prediction accuracy
of the system which parameter
retraining would address. The
performance of this model was

measured using accuracy,
harmonic mean score, weighted

harmonic mean score, and
power consumption. The

results of the research show that
deep learning models can be

executed efficiently using
specialized

hardware processors

Model scalability and battery
life performance which are

major concerns in IoT
developments are not

considered in the research.

2018 [71] Intelligent
Wearable Systems

This research investigates the
integration of a machine learning
algorithm executed on a wearable

device to extract, analyze and classify
sensor data on the embedded device,
thereby saving the energy required to

send for centralized processing. To
achieve this, the research work entailed
(1) sampling the data generated to avoid
the generation of redundant input data,

(2) carrying out appropriate feature
extraction using the Integral of the

modulus of acceleration (IMA)
embedded machine learning method,
which avoids sending the raw sensor

data to a centralized processor for
knowledge extraction and (3) executing
the classification process using support
vector machines (SVM). This machine

learning sensing system was employed
for the energy-efficient long-term

monitoring of the physical activities of
house occupants.

The results obtained were
fascinating, revealing that

employing adequate machine
learning methods extends the

battery life of a wearable sensor
by 987 days when compared to

transferring raw sensor data
through the network. The
research makes use of an

SoC-based wearable sensor for
data collection.

Data sampling reduces
system accuracy because
machine learning models

depend on large sensor data
for effective training. Also,

SoCs are highly
energy-efficient and
demonstrate good

performance, and they
require a very high

time-to-market compared to
other embedded

architectures.

Sensors 2021, 21, 4412 27 of 44

Table 19. Deep learning in mobile devices.

Year Reference Application Area Highlights Key Findings Limitations

2018 [74] Image Processing

This research investigates an
adaptive machine learning

approach to selecting the most
optimal DNN for a given input,

thereby saving inference time. To
achieve this, the research work

trained an offline predictor
(premodel) using the K-nearest

neighbor classification models on
12 DNN models measuring the

predictions under two
metrics—response to the input

data and precision required. The
inference time for a DNN model

is a function of these
two parameters.

The premodel is then executed
on embedded hardware to
select from an option of 14

pre-trained CNN models, the
most optimal model to employ
for a particular input data and
precision requirement, thereby

reducing the inference time.
The ML system was

implemented on the NVIDIA
Jetson TX2 deep learning
platform, which had an

embedded GPU

GPUs provide the
necessary speed and

efficiency for deep learning
implementations but are
power-hungry, making

them unsuitable for
embedded applications.

2018 [138] Mobile Computing

This work investigates a novel
optimization method for

accelerating deep neural network
models for resource-constrained

environments like mobile devices.
The research exploits the

observation that deep learning
execution time is majorly slowed

by the non-tensor layers in the
model (pooling, LRN, and
normalization layers). An
optimization framework,

“DeepRebirth,” is proposed,
which targets the regeneration of
the non-tensor layers in the model
using either streamline or branch

slimming methods. The
optimization method involves

merging non-tensor layers with
bottom tensor units and further

fine-tuning the regenerated layer
in streamline streaming. Branch

slimming involves merging
non-tensor layers with tensor

units at the same level.

The performance of the
optimized model was measured

over the state of the art
networks like GoogLeNet,
AlexNet, and ResNet on

different high-end and low-end
mobile computing processors.

The results of DeepRebirth
reveal that the optimization

method yields faster execution
time, minimal accuracy loss,

and reduced power
consumption making the
technique appropriate for

heterogeneous mobile devices.

It is, however, observed
that the optimization
technique has little

influence on mainstream
ARM CPUs, which are the
most ubiquitous processors

in mobile devices. This
limits the impact of

optimization in the mobile
computing world. More so,
the inference was carried
out during airplane mode,

and thus, the metric for
power consumption on

mobile devices is not
accurately measured. This
metric is very important
because battery life is a
great concern in mobile

computing and can
constitute a major challenge

to deep learning
inferencing on mobile
computing platforms.

2018 [174] Indoor Navigation

A framework is presented in this
work to improve WiFi-based

fingerprinting indoor localization
using commodity smart mobile
devices. The research proposes

the utilization of a CNN model in
predicting the location of a user in
an indoor environment. The WiFi
access points are used in creating

the image database, which
models the different locations on

the navigation path, which are
then used to train the CNN model.

The real-time AP data are
subsequently used by CNN to

predict the location of the user at
run time.

The CNN model used in the
research “CNN-LOC”

eliminates the pooling layer
owing to the size of the grids,

thereby eliminating the need for
subsampling. This

consequently reduces the
training and inference times

and power consumption during
execution, making it suitable for

resource-constrained mobile
computing. The research also

introduces scalability by
proposing a hierarchal classifier
for large area localization. The
performance of this research is

measured by comparing the
prediction accuracy across other
indoor localization frameworks

using SVR, KNN, and DNN
approaches. The results show

that the CNN-LOC framework
outperforms the others.

However, the research
overlooks the limitation of
battery life in smartphones

during the execution of
computationally intensive
deep learning models like

CNN using WiFi APs. WiFi
has been observed to be one

of the applications
responsible for draining the

power in mobile devices,
thereby shortening the

battery life.

Sensors 2021, 21, 4412 28 of 44

Table 19. Cont.

Year Reference Application Area Highlights Key Findings Limitations

2018 [163] Energy Efficiency of
Embedded Devices

This work investigates a novel
low precision arithmetic approach

to optimize the power
consumption and memory

utilization of DCNN inferencing
in the embedded system domain.
To achieve this, the work explored

the use of the posit number
system over the contemporary

fixed and floating-point number
representation. The process

involves converting the posit
number to a decimal

floating-point number and
subsequently a binary

floating-point number for reading
and writing to memory and vice

versa during the
processing period.

The system is executed using
three datasets and compared to
a reference point which is the

single floating-point
representation. The results are
fascinating in terms of memory
utilization during inferencing,

and the accuracy obtained
despite using low

precision estimation

The hardware specifications
are not given in

the research.

5.3. Deep Learning Training Using Graphic Processors (GPUs)

DNNs are computationally intensive. State-of-the-art hardware for training deep
learning models are graphic processors because of their high-level parallel processing and
high floating-point capability. Deep learning algorithms are largely dependent on parallel
processing operations, which GPUs are adequately developed to target. Although GPGPUs
have very good performance, they are highly power-hungry and expensive to implement,
and this thus makes them unsuitable for embedded systems design and development.
This owes to the fact that a key design metric for embedded devices is that they must
consume very low power and must be economical. Table 20 presents an area of application
in training deep learning models on GPGPUs.

Table 20. Deep learning training in general purpose graphic processing units (GPGPUs).

Year Reference Application Area Highlights Key Findings Limitations

2019 [19] GPGPU based
CNN Training

GPUs are one of the major hardware
acceleration tools for Deep learning

algorithms owing to their suitability for
high thread-level parallelism. This

research Investigates an optimal system
configuration for GPGPUs in training
CNN models effectively. Two image

classification CNN models (LeNet and
MiniNet) are executed using different

GPU configurations to determine the most
optimal configuration. The research

employs GPGPU-sim, a GPU simulator, in
executing the CNN model whilst

observing the effect of modifying the
configuration of the GPU in terms of the

NoC architecture used, the size of the L1D
and the L2D caches, and network traffic

intensity on the different layers of the
CNNs (convolutional, pooling and fully

connected layers).

The result of the research
reveals that the Mesh

Network outperforms the
Perfect Network at the
fully connected layers.

Also, modification in the
size of the L1 affects the

performance of the CNN,
while changes in the L2
cache do not influence
the CNN performance.

Also, the network traffic
intensity differs across

the layers.

GPGPUs are very
cost-intensive and

energy-intensive. Thus,
they are unsuitable for

embedded applications.

5.4. Deep Learning Using Heterogeneous Computing Systems

Multicore and many-core architectural enhancement is a modification made by com-
puter architects to address the performance wall and memory wall facing CPU technology.
Multicore technology is also called homogenous computing systems, while many core
architectures are used in heterogeneous computing systems. Heterogeneous computing

Sensors 2021, 21, 4412 29 of 44

systems are systems with more than one type of processor core. Most heterogeneous
computing systems are used as acceleration units for offloading computationally intensive
operations from the CPU, thereby increasing the system’s overall execution speed. Table 21
presents an area of application of deep learning training in heterogeneous computing
systems. A critical drawback in heterogeneous computing systems pivots around the
sharing of memory resources, data bus, etc. If designed inefficiently, it can result in data
traffic and thus increase latency and power consumption.

Table 21. Deep Learning in heterogeneous computing systems.

Year Reference Application Area Highlights Key Findings Limitations

2015 [16]
Heterogeneous

multicore
Architecture

A Heterogeneous multi-core architecture to
facilitate the high-performance execution of
Machine learning algorithms is explored in

this research work. The middleware
platform called HeteroSpark involves the
integration of a GPU accelerator into an
already existing CPU-based architecture

(Spark) to accelerate computationally
intensive machine learning methods.

Employing Java virtual machines, data is
moved between the CPU and the GPU when

required for intensive computations. The
GPU is positioned in Spark’s worker nodes.
The GPU relieves the CPU of workload, thus
accelerating the entire computation process
due to GPUs’ thread-level parallelism. The
process is abstracted from the user through

user-friendly APIs.

The performance of the
proposed heterogeneous
framework is compared

to a baseline (Spark), and
the results were

fascinating, with GPU
acceleration yielding

18.6x when HeteroSpark
is scaled up to “32CPU

cores: 8 GPUs” and Spark
uses “32 Cores:

no GPUs”.

The research focuses on
a software approach to
the problem and not a
hardware perspective.

5.5. Embedded Field Programmable Gate Arrays (FPGAs)

FPGAs are gaining popular interest in the computing world due to their low cost, high
performance, energy efficiency, and flexibility. They are often used to design acceleration
units and pre-implement ASIC architectures. Table 22 presents certain areas of applications
where FPGA architectures are adopted to accelerate deep learning model execution. FPGAs,
although programmable and reconfigurable, are difficult to program. This is a critical
limitation to their ubiquitous utilization in the embedded computing design.

Table 22. Embedded FPGAs: optimization and throughput.

Year Reference Application Area Highlights Key Findings Limitations

2015 [25] CNN Optimization
using FPGAs

This work proposes a
development scheme to

accelerate the execution of
convolutional neural networks in
resource-constrained FPGAs by

exploring the design space of the
system. The roofline model,

which uses a computation and
communication approach to

measure the performance of the
system, was adopted to explore

the design space to affect the
optimization of the computation

and memory access process.

The computation process is accelerated by
loop unrolling, pipelining, and tile sizing

using a polyhedral-based optimization
technique. Memory access is optimized by

adopting loop promotion and
transformations for efficient data reuse.

Optimal parameters are first determined
for single convolutional layers and then
unified unroll factors are used for CNNs
with multiple convolutional layers. The

performance of the proposed architecture
is estimated by observing the

computational performance, resource
utilization, and power consumption. The
proposed scheme reveals brilliant results

in outperforming prior works.

The research, however,
focused on accelerating the

feedforward inference
process and optimized only

the convolutional layers
neglecting the pooling,

normalization, and fully
connected layers which are

required in real-world
scenarios. Besides, tiling

introduces some accuracy
loss to the model execution.

Sensors 2021, 21, 4412 30 of 44

Table 22. Cont.

Year Reference Application Area Highlights Key Findings Limitations

2015 [20] Deep Learning FPGA
Architecture

The acceleration of deep learning inference,
particularly to large-scale networks using
an FPGA, is considered in this work. The
research exploits the high performance,

reduced power consumption, and low-cost
advantages of employing the FPGA to

accelerate the prediction process of a DNN
model. The research was limited to the

prediction process. The Accelerator
Architecture proposed by the research

contained a direct memory access module,
a deep learning module with an ARM
Cortex CPU. To tackle the challenge of

mapping in large neural networks owing
to constrained computational resources, a
time-sharing computational technique is

adopted in the execution of data fragments
that have been previously partitioned

using the tiling technique.

The performance of the architecture
is improved by cache reuse effected

by introducing a Block RAM
module. Furthermore, the

throughput was increased by
incorporating a pipelining

methodology in the DL module. To
address the flexibility challenge of

the FPGAs, a software library is
proposed to make the system

user-accessible. The performance of
the proposed model is measured by

comparing the results with a
MATLAB-based Core2 CPU
baseline. The results show

improved performance in power
consumption and data throughput

The tiling technique
introduces some accuracy

errors in computation. The
research adopted a high

floating-point computation.
However, a low fixed-point
precision approximation of

the DNN model if
introduced, could further
save memory usage and
improve performance.

2016 [22]
Energy Efficient

Hardware
Acceleration

This work targets an FPGA-based
accelerator design to improve the training
and inference of computationally intensive

deep learning models. The research
proposes an architecture, “DLAU”,

pivoted on introducing scalability to
accommodate diverse network sizes of

deep learning models and employing the
tiling technique, which entails splitting the

large volume of data introduced into
smaller grids and distributing them to

effect the parallel computing technique,
which is suitable for deep learning models.
The DLAU Acceleration model exploits the
computational methods required by deep

learning models (matrix multiplication
and activation functions).

The architecture introduces three
fully pipelined processing units

(Tiled Matrix Multiplication Unit,
Part Sum Accumulation Unit, and
Activation Function Acceleration

Unit) to execute these kinds of
computations efficiently, thereby
offloading the main processor of

intensive computations increasing
overall execution speed and
throughput at low cost. The
performance and cost of the

proposed model are measured
using the execution speed, resource

utilization and power consumed.
The results reveal that the DLAU

accelerator outperforms other
acceleration techniques.

The research focuses on
hardware design alone.

However, FPGAs, although
flexible owing to their

reconfigurable characteristic,
are difficult to program

employing a
hardware/software

approach that is more
suitable for developers.

More so, power
consumption can be further
reduced by employing low

precision approximation
techniques for deep learning

models which are not
employed in the paper.

2016 [51] Embedded FPGA

A hardware/software co-design approach
to accelerate large-scale convolutional

neural networks in the embedded system
domain is considered in this work. The

framework proposed entails the
decomposition and quantization of

large-scale CNN models at the software
level and the design of an FPGA-based
CNN accelerator at the hardware level.
The optimization at the software level

targets the high memory space required by
fully-connected layers and high

computational demand required by the
convolutional layers in the CNN model,
while the hardware level optimization

entailed the design of an
application-specific FPGA architecture to

meet the computational and high memory
bandwidth required for the efficient

execution of the model. To achieve this, the
Singular Value Decomposition (SVD)

technique was adopted to accelerate the
fully connected layers, and

dynamic-precision quantization using
16-bit fixed-point representation was used

for the quantization process.

The hardware implementation
entailed the design of a

heterogeneous architecture of
general-purpose processors and an

FPGA consisting of appropriate
buffers, processors, and memories

to effect efficient parallel processing,
matrix multiplication, tiling, and

data reuse. The performance
metrics of the proposed model are

evaluated by implanting a very
deep VGG CNN and the results are
compared to CPU and GPU-based

architectures and other
FPGA-based CNN accelerators

demonstrating brilliant
performance.

The research, however,
considers the optimization
of convolutional and fully

connected layers neglecting
pooling and normalization
layers. Besides, tiling and
quantization techniques

introduce accuracy errors
which fine-tuning

techniques ought to address
but Parameter fine-tuning is

not considered in this
literature. Moreover, the

reconfigurable advantage of
FPGAs is not exploited in the

research. Also, embedded
platforms face battery life

constraints which is also not
considered in this research.

Sensors 2021, 21, 4412 31 of 44

Table 22. Cont.

Year Reference Application Area Highlights Key Findings Limitations

2016 [112]
OpenCL-based FPGA

Hardware
Acceleration

This work considers the acceleration of
large-scale convolutional neural networks

using an OpenCL-based FPGA Architecture
focusing on optimizing the rate at which data is
processed to improve throughput. To achieve
high throughput, a precision study is carried
out using the Caffe tool of two CNN models
(AlexNet and VGG) for the convolution and

fully connected layers to determine the optimal
precision at which inference can be carried to

avoid accuracy loss. At the hardware level,
scalable modules are designed using OpenCL

software design skit for accelerating each of the
different layers in the CNN (convolution,

pooling, normalization, and fully connected
layers). In the OpenCL implementation phase,

the convolution layer is accelerated by
developing a scalable convolution block that

performs the multiply and accumulates
operations required by the convolution layer.

The Normalization layer is accelerated by
developing a module that performs exponent

operations using a piece-wise linear
approximation function. The pooling and fully

connected layers are accelerated by
implementing single work-item kernels.

For appropriate hardware
resource utilization on the

FPGA, a design space
exploration is carried out using
a genetic algorithm in Matlab

to affect throughput. The
proposed architecture is used
to accelerate the AlexNet and

VGG CNN models on two
FPGA boards. The results are

compared with prior
FPGA-based architectures

outperforming them.

The research, however,
focused on optimizing

throughput and not memory
utilization which is a key

concern for embedded
platforms. Besides, power

consumption is a key
concern owing to the limited

battery of embedded
computing devices.

2016 [23]
FPGA based

Hardware
Acceleration

Hardware architecture for the efficient
execution of recurrent neural networks (RNN)

based on a long short term memory design
approach is proposed in this work. The
proposed solution targets the constraint

involving vanishing or exploding gradients
while executing RNNs by recommending a
variation to the LSTM design approach. The

recommended LSTM design method entails the
definition of three gates (input, forget, and

output) that learn to either remember, forget or
output a result. This LSTM architecture is
implemented using the FPGA which uses

fixed-point approximations for computations.
The matrix-vector multiplications are

implemented using Multiply Accumulate units
while the non-linear functions are computed
using a MAC unit and a comparator. Direct

memory access units are incorporated with a
stream synchronization module to foster

efficient communication of data between the
processing logic units and the external memory.

The module integrates a driver software to
incorporate data reuse to avoid constant

external memory accesses which
consumes power.

The proposed architecture is
implemented using Zedboard’s

FPGA with dual ARM
Cortex-A9 processor and

compared to platforms using
CPU and GPU computing

units for performance
evaluation

outperforming them.

However, fixed-point
representations introduce

accuracy errors to the results,
which parameter retraining
or model fine-tuning ought
to address. Besides, external
memory accesses consume a

lot of power owing to the
high bandwidth

requirement. Furthermore,
the research focuses on the

learning phase alone,
neglecting inferencing.

5.6. Energy Efficient Hardware Design and Architectures

The urgency for novel energy-efficient hardware designs cannot be overemphasized.
Table 23 presents different application-specific architectures and current research issues
involved in targeting the high-performance applications required in this big data era.
Application-Specific Architectures, although highly efficient, are difficult to design and
implement, having high time-to-market. Their good performance owing to their specificity
makes them very suitable for embedded and machine learning applications.

Sensors 2021, 21, 4412 32 of 44

Table 23. Energy-efficient hardware design and architectures.

Year Ref. Application Area Highlights Key Findings Limitations

2016 [175]
Layer based
Hardware

Acceleration

This work explores the design of
specialized hardware architecture to
accelerate the execution of Softmax

layers in deep learning applications. The
research targets mitigating the challenge
of employing existing direct-mapping
techniques used for accelerating the
hardware implementation of other
layers (convolution, pooling, and
normalization) of the CNN for the

Softmax layer. This challenge pivots on
the division and overflow problem

which introduces high latency and high
accuracy errors owing to the hardware

complexity and resource constraints,
respectively.

To overcome the division
problem, a domain

transformation which involves
the replacement of the complex

division operation with a
logarithmic subtraction

operation. This reduces the
complexity of hardware

implementation. Also, the
overflow problem is overcome,

downscaling is employed to
reduce the bit width of the

parameters. The downscaling
method also reduces the

complexity of the logarithmic
operations addressing the issue

of path delay, which informs
reduced latency.

The research considers
the hardware orientation

of the acceleration
process, neglecting the

software which is
sometimes required for
data reuse. Besides, the
research only considers
the optimization of the
Softmax layer; however,
the generic optimization
involving other layers is

not considered.

2017 [29]
Weight/Activation

based Hardware
Acceleration

This research Investigates a hardware
architecture aimed at accelerating the
execution of convolution layers in a

CNN by exploiting the zero weights and
activations. By omitting the

multiplication and accumulation of
computations containing zero weights

and activations often caused by pruning
techniques and much more the effect of
using the ReLU activation function, the
research targets power reduction and
faster speed in the execution of CNNs.

Unlike other zero-aware accelerator
architectures, to exploit both zero

weights and activations, each of the
Processing Elements (PE) of the

proposed architecture performs single
convolutions to avoid synchronicity.

The proposed architecture contains two
on-chip SRAMs (activation and weight),

a PE Array, and a ReLU module.

The research implemented two
architectures employing two

data widths (16 bit fixed point
and 5-bit logarithmic

quantization). The proposed
architecture introduces a

challenge involving latency
termed load imbalance which a

zero-aware kernel allocation
approach was used to resolve.

The results of the research
outperformed other non-zero
acceleration architectures and

partially zero-aware
acceleration architectures.

However, the research
only considered the

acceleration of
convolution layers.

On-chip SRAM may be
ineffective for large-scale
CNNs. Besides, reduced

precision and
quantization techniques

introduce accuracy errors
for large-scale networks.

2018 [111]

Activation
Function based

Hardware
Acceleration

A hardware architecture is designed and
implemented to accelerate the execution
of the activation function in deep neural

networks in this research work. The
proposed architecture introduces the
flexibility of selecting between four
activation functions (Sigmoid, Tanh,

ReLU, and Softmax function) using a
time multiplexing approach. The

architecture employs 16-bit fixed-point
precision arithmetic for computation

and bus width. Furthermore, the
piecewise linear interpolation method is

employed in the approximate
calculation of the activation function.

The approximation is carried out using
an on-chip lookup table designed using
ROM. An address generator module is

used to map the neuron data to the
Lookup Table using an address

mapping algorithm.

The hardware implementation
is carried out using a CPU and
GPU for training and an FPGA

for inference the proposed
architecture is used in

implementing two CNNs
(LeNets-5 and AlexNet) with
the results compared using
Matlab. The results of this

architecture reveal high
computation efficiency

and flexibility.

However, the architecture
is modeled for small
neural networks. The
on-chip lookup table

implemented increases
the on-chip memory
storage required thus

unsuitable for embedded
applications with

hardware
resource constrain.

Sensors 2021, 21, 4412 33 of 44

Table 23. Cont.

Year Ref. Application Area Highlights Key Findings Limitations

2020 [13]
Computer

Architecture and
Chip Design

This research surveys the influence
and consequence of deep learning
advances in computer architecture

and chip design. The research survey
points out the requirements of a

specialized hardware architecture for
deep learning implementation owing
to the peculiar mathematical methods
used in deep learning computations.
The current optimization trends in

general-purpose CPUs are not
appropriate for these mathematical
models more so as Moore’s law has

slowed down in recent times.

The research survey suggests
low precision approximations

for machine learning models to
enhance their execution and

reduce their power
consumption. Furthermore, the

research survey reveals how
machine learning techniques

could also be used in the
exploration of the design space

for ASIC development.

The research survey
focused on the hardware

perspective alone.
However, there are current

software and
hardware/software

co-design approaches to
enhance deep learning.
More so, Photonics is a

current promising research
thrust owing to the

promising characteristics of
photonics-based
architecture over
electronic-based

architecture.

6. Research Directions and Open Issues

Embedded machine learning research is still in its early days. Thus, there remains a
large range of opportunities to explore in this research direction, which is critical to the
development of IoT devices of the future. Some research directions in the areas of Computer
Architecture, Deep Learning Optimizations, Hardware Security, Energy Efficiency, and
Power Management are presented in Table 24. Additionally, the key lessons learned are
highlighted in Section 6.1.

Table 24. Future research directions.

S/N Key Areas for
Future Research Possible Research Focus

1 Computer Architecture

With the end of Dennard’s scaling and Moore’s law significantly slowing down, combined
with the performance wall of Silicon, there remains an urgent need for innovation in the

design and development of hardware architecture to meet the target for high-performance
computing that face us today. In this respect, [176] suggests domain-specific architectures in

the form of GPUs, FPGAs, TPUs, etc. as a research direction for future high-performance
architectures. DSAs are different from ASICs in that DSAs introduce flexibility to the design
due to their programmability. This is an open research area in computer architecture. Also, to
generate highly efficient application-specific ASIC architecture designs, the design space is
required to be explored efficiently, which is currently a stringent task carried out by human
experts. However, [177,178] presents a frontier of employing machine learning techniques in

exploring the design space at design time and runtime. Ruben et al. [179] proposed a
machine learning-based prediction for the dynamic, runtime, and architectural optimizations
of Embedded Systems. This is another open area of research—adopting machine learning in

efficient computer architecture design and development

2 Deep Learning
Optimizations

Deep learning models are computationally and memory intensive, and thus, implementing
them within resource-constrained environments is tasking. There is, therefore, an opportunity
for highly efficient optimization techniques to compress deep learning models efficiently with

minimal or no accuracy loss. Although many research works have explored optimization
techniques, optimization methods are infinite, and thus there remains an opportunity to

optimize deep learning models still. Some optimization techniques are but are not limited to
pruning, clustering, layer acceleration, quantization, and numeric precision. Some

optimizations combine one or more of these techniques to compress a model successfully.

3 Hardware Security

Software security has been greatly explored, but little work has been done in hardware
security which is a major concern in embedded systems development [180]. State-of-the-art
embedded hardware architectures are prone to Trojan attacks, and thus, this creates the need

for research in the design and development of secure embedded architectures for
embedded applications.

Sensors 2021, 21, 4412 34 of 44

Table 24. Cont.

S/N Key Areas for
Future Research Possible Research Focus

4 Energy Efficiency and
Power Management

Energy Efficiency is a critical issue in embedded computing systems because most embedded
devices run on a battery [181]. Thus, to effect the continuous functionality of embedded

devices, there remains the need to adequately design energy-efficient architectures and also
adopt innovative power management techniques. This is a crucial research thrust in

embedded computing technology, particularly to meet the requirements of high-performance
machine learning applications [182–184].

5 Silicon Photonics

Current Silicon technology is reaching its limit for performance and thus [185] surveys the
exploration of photonics-based architectures as a substitute for silicon technology owing to
the high bandwidth and data transfer speed of photonics-based architectures [186,187]. This

is a key research direction for high-performance architectures

6.1. Lessons Learned

In this section, we present a comprehensive summary of the lessons learned from
this survey. Our summary covers embedded systems computing architectures, machine
learning techniques, deep learning models, optimization techniques, and energy efficiency
and power management techniques.

Lesson one: As of today, even the most expensive embedded system platforms do
not have the computational and memory capacity to execute expensive machine learning
algorithms efficiently. Thus, to bring these models into the embedded space where it
becomes a part of our everyday life, which may be found in mobile devices and other
IoTs, huge hardware architectural modifications and algorithm optimizations, are required.
To approach the issue of overall efficiency properly, optimization approaches ought to
tackle the key performance constraints of embedded systems: low power consumption,
memory footprint, and latency and throughput concerns. Some optimization techniques
are network pruning, data quantization, tiling, layer acceleration, etc.

Lesson two: The hardware architectural modifications required to accelerate state-
of-the-art deep learning and other machine learning models greatly depend on the ML
Model architecture. For example, the CNN model architecture is such that is computation-
centric because there are many convolution layers in a CNN architecture, while a fully
connected DNN is memory-centric because the algorithm architecture is such that it places
great demand on the memory for both storage and throughput. Thus, when hardware
acceleration units are being developed, it must be done with a sound understanding of
the algorithm architecture to accelerate the right operations, whether vector products
(convolutions) or multiply and accumulate (fully connected). This improves the overall
efficiency of the hardware architecture.

Lesson three: Most machine learning models are much bigger than standard embedded
on-chip and off-chip memory sizes. Thus, to address the memory concern, optimizations
may be carried out using network model pruning to reduce the number of parameters, so
they can be stored within the available memory, data quantization, which reduces the bit
precision of the network parameters so they could fit into standard DRAM and SRAM sizes.
Also, direct memory access units may be adopted to reduce the latency of data transfer
from the external memory to the processing logic to inform high execution speeds.

Lesson four: To address the energy-efficiency bottleneck, which is primarily due to
the type of computation carried out, and the power required to fetch parameters from
off-chip memory, optimizations may involve reducing the total number of parameters of
the network so that computation may be done as close as possible to the compute unit.
Some techniques for compressing the model involve network pruning, clustering, and
data quantization. Also, bit reduction using quantization introduces accuracy errors to
the overall prediction process. It is worthy of note that precision should not be reduced
below a particular threshold which should preserve the model accuracy. To address the

Sensors 2021, 21, 4412 35 of 44

accuracy concerns, the quantized parameters of the model may be retrained and fine-tuned
to restore prediction confidence.

Lesson five: To tackle latency concerns that are a result of off-chip memory transfers,
optimizations may be carried out such that model parameters may be cache on-chip for
data reuse. This optimization can be done using techniques such as tiling or simple vector
decomposition, where input data may be partitioned into bits or tiles that can fit into
on-chip memory and may be reused for computation when required. This technique avoids
frequent off-chip memory transfers, which is a major concern for both latency and power
consumption. Hardware acceleration units may be designed to integrate a Tiling Unit
to carry out this operation at the hardware level. Some other techniques to inform high
throughput involve pipelining, on-chip buffer optimization, data access optimizations, etc.

Lesson six: Although hardware acceleration using custom FPGA logic, GPUs, or CPUs
addresses compute power demands, a most promising solution is to develop application-
specific architectures using ASICs. Interestingly, every processor architecture has its pros
and cons such as the energy efficiency and reconfigurability of FPGAs, but they are slow
and hard to program, the high performance of GPU processors but they are power-hungry,
the flexibility of general-purpose CPU architectures but are slow with ML computations,
etc. Of all these processor architectures, ASICs possess the best performance in terms of
energy efficiency because they are hardwired designs to target a specific application. They
consume very low power and incur very low costs too. They, however, trade-off flexibility
for performance and take a lot of time to market. ASICs are thus gaining renewed interest
in the design and development of application-specific machine learning architectures, with
Google TPU being a successful case study.

7. Conclusions

Machine learning models are fast proliferating embedded devices with limited com-
putational power and memory space. These machine learning models are compute and
memory intensive and thus, face the critical limitation of available hardware resources in
embedded and mobile devices. In this paper, optimization techniques and various applica-
tions of machine learning algorithms within resource-limited environments are presented.
We first survey the embedded machine learning space to determine the common machine
learning algorithms adopted and select key compute and memory-intensive models such as
HMMs, k-NNs, SVMs, GMMs, and DNNs. We survey specialized optimization techniques
commonly adopted to squeeze these algorithms within resource-limited environments.
Also, we present different hardware platforms such as microcontroller units, mobile devices,
accelerators, and even TinyML frameworks, which are used to port these algorithms to
resource-limited MCUs. Furthermore, we survey the challenges encountered in embedded
machine learning and present a more detailed exposition on certain hardware-oriented and
algorithm-oriented optimization schemes to address these bottlenecks. Additionally, an
exciting look is given to different hardware and algorithm-based optimization techniques,
including model pruning, data quantization, reduced precision, tiling, and others to deter-
mine which optimization technique best suits the different ML algorithms. Interesting and
viable application areas, open research issues, and key take-away lessons are presented in
this intersection of embedded systems and machine learning. Conclusively, this survey
attempts to create awareness for the passionately interested researcher to kick-start an
adventure into this promising landscape of embedded machine learning.

Author Contributions: T.S.A. and A.L.I. were responsible for the Conceptualization of the topic;
Article gathering and sorting were done by T.S.A. and A.L.I.; Manuscript writing and original drafting
and formal analysis were carried out by T.S.A. and A.L.I.; Writing of reviews and editing was done
by A.L.I. and A.A.A.; A.L.I. led the overall research activity. All authors have read and agreed to the
published version of the manuscript.

Funding: Agbotiname Lucky Imoize is supported by the Nigerian Petroleum Technology Devel-
opment Fund (PTDF) and the German Academic Exchange Service (DAAD) through the Nigerian-
German Postgraduate Program under Grant 57473408.

Sensors 2021, 21, 4412 36 of 44

Institutional Review Board Statement: This article does not contain any studies with human partic-
ipants or animals performed by any of the authors.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing does not apply to this article.

Acknowledgments: This work was carried out in collaboration with the IoT-enabled Smart and
Connected Communities (SmartCU) Research Cluster of Covenant University. The Article Processing
Charges is sponsored by Covenant University Centre for Research, Innovation, and Development
(CUCRID), Covenant University, Ota, Nigeria.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Abbreviation Full Meaning
ANN Artificial Neural Network
ASIC Application Specific Integrated Circuit
ASIP Application-Specific Instruction-set Processor
CPU Central Processing Unit
CNN Convolutional Neural Network
DCNN Deep Convolutional Neural Network
DMA Direct Memory Access
DNN Deep Neural Network
DSA Domain-Specific Architectures
DSP Digital Signal Processor
EML Embedded Machine Learning
FPAA Field Programmable Analog Array
FPGA Field Programmable Gate Array
FC Fully Connected
GPGPU General Purpose Graphic Processing Unit
GMM Gaussian Mixture Model
HMM Hidden Markov Model
IC Integrated Circuit
I/O Input/output
ISA Instruction Set Architecture
ISF Intelligent Sensor Framework
k-NN k-Nearest Neighbors
LRN Local Response Normalization
LSTM Long Short Term Memory
IoT Internet of Things
MANET Mobile Adhoc Network
MCU Microcontroller Unit
PE Processing Element
RAM Random Access Memory
RNN Recurrent Neural Network
SoC System on Chip
SVM Support Vector Machines
SDG Stochastic Descent Gradient
SVD Singular Value Decomposition
TPU Tensor Processing Unit
WSN Wireless Sensor Network

References
1. Wayne, W. Praise of High-Performance Embedded Computing: Architectures, Applications, and Methodologies; Morgan Kaupmann

Publishers: San Francisco, CA, USA, 2007.
2. Haigh, K.Z.; Mackay, A.M.; Cook, M.R.; Lin, L.G. Machine Learning for Embedded Systems: A Case Study; BBN Technologies:

Cambridge, MA, USA, 2015; Volume 8571, pp. 1–12.

Sensors 2021, 21, 4412 37 of 44

3. Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks Alex. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105.

4. Szegedy, C.; Liu, W.; Jia, P.Y.; Reed, S.S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions.
In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June
2015; pp. 1–9. [CrossRef]

5. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society
Conference Computer Vision Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

6. Real, E.; Moore, S.; Selle, A.; Saxena, S.; Suematsu, Y.L.; Tan, J.; Le, Q.V.; Kurakin, A. Large-scale evolution of image classifiers. In
Proceedings of the 34th International Conference Machine Learning ICML, Sydney, Australia, 6–11 August 2017; pp. 4429–4446.

7. Tan, M.; Le, Q.V. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th
International Conference Machine Learning ICML 2019, Long Beach, CA, USA, 10–15 June 2019; pp. 10691–10700.

8. Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.R.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.N.; et al.
Deep neural networks for acoustic modeling in speech recognition. IEEE Signal. Process. Mag. 2012, 29, 82–97. [CrossRef]

9. Chan, W.; Jaitly, N.; Le, Q.V.; Vinyals, O. Listen, attend and spell. In Proceedings of the 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016.

10. Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.; et al. Google’s
neural machine translation system: Bridging the Gap between human and machine translation. arXiv 2016, arXiv:1609.08144.

11. Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.; Kavukcuoglu, K.; Kuksa, P. Natural language processing (almost) from scratch.
J. Mach. Learn. Res. 2011, 12, 2493–2537.

12. Haj, R.B.; Orfanidis, C. A discreet wearable long-range emergency system based on embedded machine learning. In Proceedings
of the 2021 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops),
Kassel, Germany, 22–26 March 2021.

13. Dean, J. The deep learning revolution and its implications for computer architecture and chip design. In Proceedings of the 2020
IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 16–20 February 2020; pp. 8–14. [CrossRef]

14. Cui, X.; Liu, H.; Fan, M.; Ai, B.; Ma, D.; Yang, F. Seafloor habitat mapping using multibeam bathymetric and backscatter intensity
multi-features SVM classification framework. Appl. Acoust. 2020, 174, 107728. [CrossRef]

15. Khan, M.A.; Kim, J. Toward developing efficient Conv-AE-based intrusion detection system using heterogeneous dataset.
Electronics 2020, 9, 1771. [CrossRef]

16. Li, P.; Luo, Y.; Zhang, N.; Cao, Y. HeteroSpark: A heterogeneous CPU/GPU spark platform for machine learning algorithms. In
Proceedings of the 2015 IEEE International Conference Networking, Architecture Storage, NAS, Boston, MA, USA, 6–7 August
2015; pp. 347–348. [CrossRef]

17. Raparti, V.Y.; Pasricha, S. RAPID: Memory-aware NoC for latency optimized GPGPU architectures. IEEE Trans. Multi-Scale
Comput. Syst. 2018, 4, 874–887. [CrossRef]

18. Cheng, X.; Zhao, Y.; Robaei, M.; Jiang, B.; Zhao, H.; Fang, J. A low-cost and energy-efficient noc architecture for GPGPUs. J. Nat.
Gas Geosci. 2019, 4, 1–28. [CrossRef]

19. Zhang, L.; Cheng, X.; Zhao, H.; Mohanty, S.P.; Fang, J. Exploration of system configuration in effective training of CNNs on
GPGPUs. In Proceedings of the 2019 IEEE International Conferece Consumer Electronics ICCE, Las Vegas, NJ, USA, 11 January
2019; pp. 1–4. [CrossRef]

20. Yu, Q.; Wang, C.; Ma, X.; Li, X.; Zhou, X. A deep learning prediction process accelerator based FPGA. In Proceedings of the
2015 IEEE/ACM 15th International Symposium Cluster Cloud, Grid Computer CCGrid 2015, Shenzhen, China, 4–7 May 2015;
pp. 1159–1162. [CrossRef]

21. Noronha, D.H.; Zhao, R.; Goeders, J.; Luk, W.; Wilton, S.J.E. On-chip FPGA debug instrumentation for machine learning
applications. In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Seaside,
CA, USA, 24–26 February 2019. [CrossRef]

22. Wang, C.; Gong, L.; Yu, Q.; Li, X.; Xie, Y.; Zhou, X. DLAU: A scalable deep learning accelerator unit on FPGA. IEEE Trans. Comput.
Des. Integr. Circuits Syst. 2016, 36, 513–517. [CrossRef]

23. Chang, A.X.M.; Martini, B.; Culurciello, E. Recurrent Neural Networks Hardware Implementationon FPGA. Available online:
http://arxiv.org/abs/1511.05552 (accessed on 15 January 2021).

24. Branco, S.; Ferreira, A.G.; Cabral, J. Machine learning in resource-scarce embedded systems, FPGAs, and end-devices: A survey.
Electronics 2019, 8, 1289. [CrossRef]

25. Zhang, C.; Li, P.; Sun, G.; Guan, Y.; Xiao, B.; Cong, J. Optimizing FPGA-based accelerator design for deep convolutional neural
networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey,
CA, USA, 22–24 February 2015; pp. 161–170. [CrossRef]

26. Neshatpour, K.; Mokrani, H.M.; Sasan, A.; Ghasemzadeh, H.; Rafatirad, S.; Homayoun, H. Architectural considerations for FPGA
acceleration of machine learning applications in MapReduce. In Proceedings of the 18th International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation, Pythagorion, Greece, 15–19 July 2018. [CrossRef]

27. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level Accuracy With 50×
Fewer Parameters and <0.5 mb Model Size. Available online: http://arxiv.org/abs/1602.07360 (accessed on 15 February 2021).

http://doi.org/10.1109/CVPR.2015.7298594
http://doi.org/10.1109/CVPR.2016.90
http://doi.org/10.1109/MSP.2012.2205597
http://doi.org/10.1109/ISSCC19947.2020.9063049
http://doi.org/10.1016/j.apacoust.2020.107728
http://doi.org/10.3390/electronics9111771
http://doi.org/10.1109/NAS.2015.7255222
http://doi.org/10.1109/TMSCS.2018.2871094
http://doi.org/10.1109/ANCS.2019.8901890
http://doi.org/10.1109/ICCE.2019.8661931
http://doi.org/10.1109/CCGrid.2015.114
http://doi.org/10.1145/3289602.3293922
http://doi.org/10.1109/TCAD.2016.2587683
http://arxiv.org/abs/1511.05552
http://doi.org/10.3390/electronics8111289
http://doi.org/10.1145/2684746.2689060
http://doi.org/10.1145/3229631.3229639
http://arxiv.org/abs/1602.07360

Sensors 2021, 21, 4412 38 of 44

28. Deng, Y. Deep learning on mobile devices: A review. In Proceedings of the SPIE 10993, Mobile Multimedia/Image Processing,
Security, and Applications 2019, 109930A, Baltimore, ML, USA, 14–18 April 2019. [CrossRef]

29. Kim, D.; Ahn, J.; Yoo, S. A novel zero weight/activation-aware hardware architecture of convolutional neural network. In
Proceedings of the 2017 Design, Automation and Test in Europe DATE 2017, Lausanne, Switzerland, 27–31 March 2017;
pp. 1462–1467. [CrossRef]

30. Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
31. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef]
32. Jawandhiya, P. Hardware design for machine learning. Int. J. Artif. Intell. Appl. 2018, 9, 1–6. [CrossRef]
33. Chen, J.; Ran, X. Deep learning with edge computing: A review. Proc. IEEE 2019, 107, 1655–1674. [CrossRef]
34. Frank, M.; Drikakis, D.; Charissis, V. Machine-learning methods for computational science and engineering. Computation

2020, 8, 15. [CrossRef]
35. Xiong, Z.; Zhang, Y.; Niyato, D.; Deng, R.; Wang, P.; Wang, L.C. Deep reinforcement learning for mobile 5G and beyond:

Fundamentals, applications, and challenges. IEEE Veh. Technol. Mag. 2019, 14, 44–52. [CrossRef]
36. Carbonell, J.G. Machine learning research. ACM SIGART Bull. 1981, 18, 29. [CrossRef]
37. Jadhav, S.D.; Channe, H.P. Comparative STUDY of K-NN, naive bayes and decision tree classification techniques. Int. J. Sci. Res.

2016, 5, 1842–1845.
38. Chapter 4 Logistic Regression as a Classifier. Available online: https://www.cs.cmu.edu/~{}kdeng/thesis/logistic.pdf (accessed

on 29 December 2020).
39. Salvadori, C.; Petracca, M.; del Rincon, J.M.; Velastin, S.A.; Makris, D. An optimisation of Gaussian mixture models for integer

processing units. J. Real Time Image Process. 2017, 13, 273–289. [CrossRef]
40. Das, A.; Borisov, N.; Caesar, M. Do you hear what i hear? Fingerprinting smart devices through embedded acoustic components.

In Proceedings of the ACM Conference on Computer, Communication and Security, Scottsdale, AZ, USA, 3–7 November 2014;
pp. 441–452. [CrossRef]

41. Bojinov, H.; Michalevsky, Y.; Nakibly, G.; Boneh, D. Mobile Device Identification via Sensor Fingerprinting. Available online:
http://arxiv.org/abs/1408.1416 (accessed on 12 January 2021).

42. Huynh, M.; Nguyen, P.; Gruteser, M.; Vu, T. Mobile device identification by leveraging built-in capacitive signature. In Proceedings
of the ACM Conference on Compututer, Communication and Security, Denver, CO, USA, 12–16 October 2015; pp. 1635–1637.
[CrossRef]

43. Dhar, S.; Sreeraj, K.P. FPGA implementation of feature extraction based on histopathalogical image and subsequent classification
by support vector machine. IJISET Int. J. Innov. Sci. Eng. Technol. 2015, 2, 744–749.

44. Yu, L.; Ukidave, Y.; Kaeli, D. GPU-accelerated HMM for speech recognition. In Proceedings of the International Conference
Parallel Processing Work, Minneapolis, MN, USA, 9–12 September 2014; pp. 395–402. [CrossRef]

45. Zubair, M.; Yoon, C.; Kim, H.; Kim, J.; Kim, J. Smart wearable band for stress detection. In Proceedings of the 2015 5th International
Conference IT Converg. Secur. ICITCS, Kuala Lumpur, Malaysia, 24–27 August 2015; pp. 1–4. [CrossRef]

46. Razavi, A.; Valkama, M.; Lohan, E.S. K-means fingerprint clustering for low-complexity floor estimation in indoor mobile
localization. In Proceedings of the 2015 IEEE Globecom Work. GC Wkshps 2015, San Diego, CA, USA, 6–10 December 2015.
[CrossRef]

47. Bhide, V.H.; Wagh, S. I-learning IoT: An intelligent self learning system for home automation using IoT. In Proceedings of the 2015
International Conference Communication Signalling Process. ICCSP 2015, Melmaruvathur, India, 2–4 April 2015; pp. 1763–1767.
[CrossRef]

48. Munisami, T.; Ramsurn, M.; Kishnah, S.; Pudaruth, S. Plant Leaf recognition using shape features and colour histogram with
K-nearest neighbour classifiers. Proc. Comput. Sci. 2015, 58, 740–747. [CrossRef]

49. Sowjanya, K.; Singhal, A.; Choudhary, C. MobDBTest: A machine learning based system for predicting diabetes risk using mobile
devices. In Proceedings of the Souvenir 2015 IEEE Int. Adv. Comput. Conference IACC 2015, Banglore, India, 12–13 June 2015;
pp. 397–402. [CrossRef]

50. Lee, J.; Stanley, M.; Spanias, A.; Tepedelenlioglu, C. Integrating machine learning in embedded sensor systems for Internet-of-
Things applications. In Proceedings of the 2016 IEEE International Symposium on Signal Processing and Information Technology
(ISSPIT), Limassol, Cyprus, 12–14 December 2016; pp. 290–294. [CrossRef]

51. Qiu, J.; Wang, J.; Yao, S.; Guo, K.; Li, B.; Zhou, E.; Yu, J.; Tang, T.; Xu, N.; Song, S.; et al. Going deeper with embedded
FPGA platform for convolutional neural network. In Proceedings of the FPGA 2016ACM/SIGDA International Symposium
Field-Programmable Gate Arrays, Monterey, CA, USA, 21–23 February 2016; pp. 26–35. [CrossRef]

52. Huynh, L.N.; Balan, R.K.; Lee, Y. DeepSense: A GPU-based deep convolutional neural network framework on commodity mobile
devices. In Proceedings of the Workshop on Wearable Systems and Application Co-Located with MobiSys 2016, Singapore,
30 June 2016; pp. 25–30. [CrossRef]

53. Tuama, A.; Comby, F.; Chaumont, M. Camera model identification based machine learning approach with high order statistics
features. In Proceedings of the 24th European Signal Processing Conference (EUSIPCO), Budapest, Hungary, 29 August–2
September 2016; pp. 1183–1187. [CrossRef]

54. Kurtz, A.; Gascon, H.; Becker, T.; Rieck, K.; Freiling, F. Fingerprinting Mobile Devices Using Personalized Configurations. Proc.
Priv. Enhanc. Technol. 2016, 1, 4–19. [CrossRef]

http://doi.org/10.1117/12.2518469
http://doi.org/10.23919/DATE.2017.7927222
http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://doi.org/10.1016/j.neunet.2014.09.003
http://doi.org/10.5121/ijaia.2018.9105
http://doi.org/10.1109/JPROC.2019.2921977
http://doi.org/10.3390/computation8010015
http://doi.org/10.1109/MVT.2019.2903655
http://doi.org/10.1145/1056743.1056744
https://www.cs.cmu.edu/~{}kdeng/thesis/logistic.pdf
http://doi.org/10.1007/s11554-014-0402-5
http://doi.org/10.1145/2660267.2660325
http://arxiv.org/abs/1408.1416
http://doi.org/10.1145/2810103.2810118
http://doi.org/10.1109/ICPPW.2014.59
http://doi.org/10.1109/ICITCS.2015.7293017
http://doi.org/10.1109/GLOCOMW.2015.7414026
http://doi.org/10.1109/ICCSP.2015.7322825
http://doi.org/10.1016/j.procs.2015.08.095
http://doi.org/10.1109/IADCC.2015.7154738
http://doi.org/10.1109/ISSPIT.2016.7886051
http://doi.org/10.1145/2847263.2847265
http://doi.org/10.1145/2935643.2935650
http://doi.org/10.1109/EUSIPCO.2016.7760435
http://doi.org/10.1515/popets-2015-0027

Sensors 2021, 21, 4412 39 of 44

55. Mohsin, M.A.; Perera, D.G. An FPGA-based hardware accelerator for k-nearest neighbor classification for machine learning on
mobile devices. In Proceedings of the ACM International Conference Proceeding Series, HEART 2018, Toronto, ON, Canada,
20–22 June 2018; pp. 6–12. [CrossRef]

56. Patil, S.S.; Thorat, S.A. Early detection of grapes diseases using machine learning and IoT. In Proceedings of the 2016 Second
International Conference on Cognitive Computing and Information Processing (CCIP), Mysuru, India, 12–13 August 2016.
[CrossRef]

57. Ollander, S.; Godin, C.; Campagne, A.; Charbonnier, S. A comparison of wearable and stationary sensors for stress detection. In
Proceedings of the IEEE International Conference System Man, and Cybernetic SMC 2016, Budapest, Hungary, 9–12 October
2016; pp. 4362–4366. [CrossRef]

58. Moreira, M.W.L.; Rodrigues, J.J.P.C.; Oliveira, A.M.B.; Saleem, K. Smart mobile system for pregnancy care using body sensors. In
Proceedings of the International Conference Sel. Top. Mob. Wirel. Networking, MoWNeT 2016, Cairo Egypt, 11–13 April 2016;
pp. 1–4. [CrossRef]

59. Shapsough, S.; Hesham, A.; Elkhorazaty, Y.; Zualkernan, I.A.; Aloul, F. Emotion recognition using mobile phones. In Proceedings
of the 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom), Munich,
Germany, 14–16 September 2016; pp. 276–281. [CrossRef]

60. Hakim, A.; Huq, M.S.; Shanta, S.; Ibrahim, B.S.K.K. Smartphone based data mining for fall detection: Analysis and design. Proc.
Comput. Sci. 2016, 105, 46–51. [CrossRef]

61. Ronao, C.A.; Cho, S.B. Recognizing human activities from smartphone sensors using hierarchical continuous hidden Markov
models. Int. J. Distrib. Sens. Netw. 2017, 13, 1–16. [CrossRef]

62. Kodali, S.; Hansen, P.; Mulholland, N.; Whatmough, P.; Brooks, D.; Wei, G.Y. Applications of deep neural networks for ultra
low power IoT. In Proceedings of the 35th IEEE International Conference on Computer Design ICCD 2017, Boston, MA, USA,
5–8 November 2017; pp. 589–592. [CrossRef]

63. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An extremely efficient convolution neural network for mobile devices. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018;
pp. 6848–6856. [CrossRef]

64. Baldini, G.; Dimc, F.; Kamnik, R.; Steri, G.; Giuliani, R.; Gentile, C. Identification of mobile phones using the built-in magnetome-
ters stimulated by motion patterns. Sensors 2017, 17, 783. [CrossRef] [PubMed]

65. Azimi, I.; Anzanpour, A.; Rahmani, A.M.; Pahikkala, T.; Levorato, M.; Liljeberg, P.; Dutt, N. HiCH: Hierarchical fog-assisted
computing architecture for healthcare IoT. ACM Trans. Embed. Comput. Syst. 2017, 16, 1–20. [CrossRef]

66. Pandey, P.S. Machine Learning and IoT for prediction and detection of stress. In Proceedings of the 17th International Conference
on Computational Science and Its Applications ICCSA 2017, Trieste, Italy, 3–6 July 2017. [CrossRef]

67. Sneha, H.R.; Rafi, M.; Kumar, M.V.M.; Thomas, L.; Annappa, B. Smartphone based emotion recognition and classification. In
Proceedings of the 2nd IEEE International Conference on Electrical, Computer and Communication Technology ICECCT 2017,
Coimbatore, India, 22–24 February 2017. [CrossRef]

68. Al Mamun, M.A.; Puspo, J.A.; Das, A.K. An intelligent smartphone based approach using IoT for ensuring safe driving. In
Proceedings of the 2017 International Conference on Electrical Engineering and Computer Science (ICECOS), Palembang,
Indonesia, 22–23 August 2017; pp. 217–223. [CrossRef]

69. Neyja, M.; Mumtaz, S.; Huq, K.M.S.; Busari, S.A.; Rodriguez, J.; Zhou, Z. An IoT-based e-health monitoring system using ECG
signal. In Proceedings of the IEEE Global Communications Conference GLOBECOM 2017, Singapore, 4–8 December 2017; pp. 1–6.
[CrossRef]

70. Gupta, C.; Suggala, A.S.; Goyal, A.; Simhadri, H.V.; Paranjape, B.; Kumar, A.; Goyal, S.; Udupa, R.; Varma, M.; Jain, P. ProtoNN:
Compressed and accurate kNN for resource-scarce devices. In Proceedings of the 34th International Conference on Machine
Learning, Sydney, Australia, 6–11 August 2017; pp. 1331–1340.

71. Fafoutis, X.; Marchegiani, L.; Elsts, A.; Pope, J.; Piechocki, R.; Craddock, I. Extending the battery lifetime of wearable sensors with
embedded machine learning. In Proceedings of the IEEE World Forum on Internet Things, WF-IoT 2018, Singapore, 5–8 February
2018; pp. 269–274. [CrossRef]

72. Damljanovic, A.; Lanza-Gutierrez, J.M. An embedded cascade SVM approach for face detection in the IoT edge layer. In
Proceedings of the IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA,
21–23 October 2018; pp. 2809–2814. [CrossRef]

73. Hochstetler, J.; Padidela, R.; Chen, Q.; Yang, Q.; Fu, S. Embedded deep learning for vehicular edge computing. In Proceedings of
the 3rd ACM/IEEE Symposium on Edge Computing SEC 2018, Seattle, WA, USA, 25–27 October 2018; pp. 341–343. [CrossRef]

74. Taylor, B.; Marco, V.S.; Wolff, W.; Elkhatib, Y.; Wang, Z. Adaptive deep learning model selection on embedded systems. ACM
SIGPLAN Not. 2018, 53, 31–43. [CrossRef]

75. Strielkina, A.; Kharchenko, V.; Uzun, D. A markov model of healthcare internet of things system considering failures of
components. CEUR Workshop Proc. 2018, 2104, 530–543.

76. Vhaduri, S.; van Kessel, T.; Ko, B.; Wood, D.; Wang, S.; Brunschwiler, T. Nocturnal cough and snore detection in noisy
environments using smartphone-microphones. In Proceedings of the IEEE International Conference on Healthcare Informatics,
ICHI 2019, Xi’an, China, 10–13 June 2019. [CrossRef]

http://doi.org/10.1145/3241793.3241810
http://doi.org/10.1109/CCIP.2016.7802887
http://doi.org/10.1109/SMC.2016.7844917
http://doi.org/10.1109/MoWNet.2016.7496609
http://doi.org/10.1109/HealthCom.2016.7749470
http://doi.org/10.1016/j.procs.2017.01.188
http://doi.org/10.1177/1550147716683687
http://doi.org/10.1109/ICCD.2017.102
http://doi.org/10.4324/9780203491348
http://doi.org/10.3390/s17040783
http://www.ncbi.nlm.nih.gov/pubmed/28383482
http://doi.org/10.1145/3126501
http://doi.org/10.1109/ICCSA.2017.8000018
http://doi.org/10.1109/ICECCT.2017.8117872
http://doi.org/10.1109/ICECOS.2017.8167137
http://doi.org/10.1109/GLOCOM.2017.8255023
http://doi.org/10.1109/WF-IoT.2018.8355116
http://doi.org/10.1109/IECON.2018.8591634
http://doi.org/10.1109/SEC.2018.00038
http://doi.org/10.1145/3299710.3211336
http://doi.org/10.1109/ICHI.2019.8904563

Sensors 2021, 21, 4412 40 of 44

77. Sattar, H.; Bajwa, I.S.; Amin, R.U.; Sarwar, N.; Jamil, N.; Malik, M.A.; Mahmood, A.; Shafi, U. An IoT-based intelligent wound
monitoring system. IEEE Access 2019, 7, 144500–144515. [CrossRef]

78. Mengistu, D.; Frisk, F. Edge machine learning for energy efficiency of resource constrained IoT devices. In Proceedings of the
Fifth International Conference on Smart Portable, Wearable, Implantable and Disabilityoriented Devices and Systems, SPWID
2019, Nice, France, 28 July–1 August 2019; pp. 9–14.

79. Wang, S.; Tuor, T.; Salonidis, T.; Leung, K.K.; Makaya, C.; He, T.; Chan, K. Adaptive Federated Learning in Resource Constrained
Edge Computing Systems. IEEE J. Sel. Areas Commun. 2019, 37, 1205–1221. [CrossRef]

80. Suresh, P.; Fernandez, S.G.; Vidyasagar, S.; Kalyanasundaram, V.; Vijayakumar, K.; Archana, V.; Chatterjee, S. Reduction of
transients in switches using embedded machine learning. Int. J. Power Electron. Drive Syst. 2020, 11, 235–241. [CrossRef]

81. Giri, D.; Chiu, K.L.; di Guglielmo, G.; Mantovani, P.; Carloni, L.P. ESP4ML: Platform-based design of systems-on-chip for
embedded machine learning. In Proceedings of the 2020 Design, Automation and Test in European Conference Exhibition DATE
2020, Grenoble, France, 9–13 March 2020; pp. 1049–1054. [CrossRef]

82. Tiku, S.; Pasricha, S.; Notaros, B.; Han, Q. A hidden markov model based smartphone heterogeneity resilient portable indoor
localization framework. J. Syst. Archit. 2020, 108, 101806. [CrossRef]

83. Mazlan, N.; Ramli, N.A.; Awalin, L.; Ismail, M.; Kassim, A.; Menon, A. A smart building energy management using internet of
things (IoT) and machine learning. Test. Eng. Manag. 2020, 83, 8083–8090.

84. Cornetta, G.; Touhafi, A. Design and evaluation of a new machine learning framework for iot and embedded devices. Electronics
2021, 10, 600. [CrossRef]

85. Rabiner, L.; Juang, B. An introduction to hidden Markov models. IEEE ASSP Mag. 1986, 3, 4–16. [CrossRef]
86. Degirmenci, A. Introduction to hidden markov models. Harv. Univ. 2014, 3, 1–5. Available online: http://scholar.harvard.edu/

files/adegirmenci/files/hmm_adegirmenci_2014.pdf (accessed on 10 October 2016).
87. Tóth, B.; Németh, G. Optimizing HMM speech synthesis for low-resource devices. J. Adv. Comput. Intell. Intell. Inform. 2012, 16,

327–334. [CrossRef]
88. Fu, R.; Zhao, Z.; Tu, Q. Reducing computational and memory cost for HMM-based embedded TTS system. Commun. Comput. Inf.

Sci. 2011, 224, 602–610. [CrossRef]
89. Baoli, L.; Shiwen, Y.; Qin, L. An improved K-nearest neighbor algorithm for text categorization. Dianzi Yu Xinxi Xuebao J. Electron.

Inf. Technol. 2005, 27, 487–491.
90. Norouzi, M.; Fleet, D.J.; Salakhutdinov, R. Hamming distance metric learning. Adv. Neural Inf. Process. Syst. 2012, 2, 1061–1069.
91. Saikia, J.; Yin, S.; Jiang, Z.; Seok, M.; Seo, J.S. K-nearest neighbor hardware accelerator using in-memory computing SRAM.

In Proceedings of the 2019 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), Lausanne,
Switzerland, 29–31 July 2019. [CrossRef]

92. Pedersen, R.; Schoeberl, M. An embedded support vector machine. In Proceedings of the 2006 International Workshop on
Intelligent Solutions in Embedded Systems, Vienna, Austria, 30 June 2006; pp. 79–89. [CrossRef]

93. You, Y.; Fu, H.; Song, S.L.; Randles, A.; Kerbyson, D.; Marquez, A.; Yang, G.; Hoisie, A. Scaling support vector machines on
modern HPC platforms. J. Parallel Distrib. Comput. 2015, 76, 16–31. [CrossRef]

94. Boni, A.; Pianegiani, F.; Petri, D. Low-power and low-cost implementation of SVMs for smart sensors. IEEE Trans. Instrum. Meas.
2007, 56, 39–44. [CrossRef]

95. Afifi, S.M.; Gholamhosseini, H.; Sinha, R. Hardware implementations of SVM on FPGA: A state-of-the-art review of current
practice. Int. J. Innov. Sci. Eng. Technol. 2015, 2, 733–752.

96. Zeng, Z.Q.; Yu, H.B.; Xu, H.R.; Xie, Y.Q.; Gao, J. Fast training support vector machines using parallel sequential minimal
optimization. In Proceedings of the 2008 3rd International Conference on Intelligent System and Knowledge Engineering, Xiamen,
China, 17–19 November 2008; pp. 997–1001. [CrossRef]

97. Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; Reyes-Ortiz, J.L. Human activity recognition on smartphones using a multiclass
hardware-friendly support vector machine. Lect. Notes Comput. Sci. 2012, 7657, 216–223. [CrossRef]

98. Kudo, T.; Matsumoto, Y. Chunking with support vector machines. In Proceedings of the Second Meeting of the North American
Chapter of the Association for Computational Linguistics 2001, Pittsburgh, PA, USA, 2–7 June 2001; pp. 1–8. [CrossRef]

99. Osuna, E.; Freund, R.; Girosi, F. Improved training algorithm for support vector machines. Neural Networks for Signal Processing
VII. In Proceedings of the 1997 IEEE Signal Processing Society Workshop, Amelia Island, FL, USA, 24–26 September 1997;
pp. 276–285. [CrossRef]

100. Lee, Y.J.; Mangasarian, O. RSVM: Reduced Support vector machines. In Proceedings of the Proceedings of the 2001 SIAM
International Conference on Data Mining, Chicago, IL, USA, 5–7 April 2001; pp. 1–17. [CrossRef]

101. Anguita, D.; Ghio, A.; Pischiutta, S.; Ridella, S. A hardware-friendly support vector machine for embedded automotive
applications. In Proceedings of the 2007 International Joint Conference on Neural Networks, Orlando, FL, USA, 12–17 August
2007; pp. 1360–1364. [CrossRef]

102. Anguita, D.; Bozza, G. The effect of quantization on support vector machines with Gaussian kernel. In Proceedings of the 2005
IEEE International Joint Conference on Neural Networks, Montreal, QC, Canada, 31 July–4 August 2005. [CrossRef]

103. Khan, F.M.; Arnold, M.G.; Pottenger, W.M. Hardware-based support vector machine classification in logarithmic number systems.
In Proceedings of the 2005 IEEE International Symposium on Circuits and Systems, Kobe, Japan, 23–26 May 2005; pp. 5154–5157.
[CrossRef]

http://doi.org/10.1109/ACCESS.2019.2940622
http://doi.org/10.1109/JSAC.2019.2904348
http://doi.org/10.11591/ijpeds.v11.i1.pp235-241
http://doi.org/10.23919/DATE48585.2020.9116317
http://doi.org/10.1016/j.sysarc.2020.101806
http://doi.org/10.3390/electronics10050600
http://doi.org/10.1109/MASSP.1986.1165342
http://scholar.harvard.edu/files/adegirmenci/files/hmm_adegirmenci_2014.pdf
http://scholar.harvard.edu/files/adegirmenci/files/hmm_adegirmenci_2014.pdf
http://doi.org/10.20965/jaciii.2012.p0327
http://doi.org/10.1007/978-3-642-23214-5_78
http://doi.org/10.1109/ISLPED.2019.8824822
http://doi.org/10.1109/WISES.2006.237155
http://doi.org/10.1016/j.jpdc.2014.09.005
http://doi.org/10.1109/TIM.2006.887319
http://doi.org/10.1109/ISKE.2008.4731075
http://doi.org/10.1007/978-3-642-35395-6_30
http://doi.org/10.3115/1073336.1073361
http://doi.org/10.1109/nnsp.1997.622408
http://doi.org/10.1137/1.9781611972719.13
http://doi.org/10.1109/IJCNN.2007.4371156
http://doi.org/10.1109/IJCNN.2005.1555933
http://doi.org/10.1109/ISCAS.2005.1465795

Sensors 2021, 21, 4412 41 of 44

104. Anguita, D.; Pischiutta, S.; Ridella, S.; Sterpi, D. Feed-forward support vector machine without multipliers. IEEE Trans. Neural
Netw. 2006, 17, 1328–1331. [CrossRef]

105. Reynolds, D. Gaussian mixture models. Encycl. Biometr. 2009, 741, 659–663. [CrossRef]
106. Gorur, P.; Amrutur, B. Speeded up Gaussian mixture model algorithm for background subtraction. In Proceedings of the

2011 8th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Klagenfurt, Austria,
30 August–2 September 2011; pp. 386–391. [CrossRef]

107. Shen, Y.; Hu, W.; Liu, J.; Yang, M.; Wei, B.; Chou, C.T. Efficient background subtraction for real-time tracking in embedded
camera networks. In Proceedings of the 10th ACM Conference on Embedded Networked Sensor System, Toronto, ON, Canada,
6–9 November 2012; pp. 295–308. [CrossRef]

108. Bottou, L. Stochastic Gradient Descent Tricks. In Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science; Montavon,
G., Orr, G.B., Müller, K.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012. [CrossRef]

109. Johnson, R.; Zhang, T. Accelerating stochastic gradient descent using predictive variance reduction. Adv. Neural Inf. Process. Syst.
2013, 1, 1–9.

110. Bottou, L. Stochastic gradient learning in neural networks, Proc. Neuro-Nımes 1991, 8, 1–12.
111. Li, L.; Zhang, S.; Wu, J. An efficient hardware architecture for activation function in deep learning processor. In Proceedings

of the 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC), Chongqing, China, 27–29 June 2018;
pp. 911–918. [CrossRef]

112. Suda, N.; Chandra, V.; Dasika, G.; Mohanty, A.; Ma, Y.; Vrudhula, S.; Seo, J.S.; Cao, Y. Throughput-optimized OpenCL-based
FPGA Accelerator for large-scale convolutional neural networks. In Proceedings of the ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, Monterey, CA, USA, 21–23 February 2016; pp. 16–25. [CrossRef]

113. Learning, S.D. Smartphones devices. IEEE Pervasive Comput. 2017, 16, 82–88.
114. Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017

International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6. [CrossRef]
115. O’Shea, K.; Nash, R. An Introduction to Convolutional Neural Networks. Available online: http://arxiv.org/abs/1511.08458

(accessed on 2 March 2021).
116. Lawrence, S.; Giles, L.; Tsoi, C.; Back, A. Face recognition: A convolutional neural-network approach. IEEE Trans. Neural Netw.

1997, 8, 98–112. [CrossRef]
117. Hochreiter, S.; Schmidhuber, J. Long Short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
118. Shah, S.; Haghi, B.; Kellis, S.; Bashford, L.; Kramer, D.; Lee, B.; Liu, C.; Andersen, R.; Emami, A. Decoding kinematics from

human parietal cortex using neural networks. In Proceedings of the 2019 9th International IEEE/EMBS Conference on Neural
Engineering (NER), San Francisco, CA, USA, 20–23 March 2019; pp. 1138–1141. [CrossRef]

119. Lee, D.; Lim, M.; Park, H.; Kang, Y.; Park, J.S.; Jang, G.J.; Kim, J.H. Long short-term memory recurrent neural network-based
acoustic model using connectionist temporal classification on a large-scale training corpus. Chin. Commun. 2017, 14, 23–31.
[CrossRef]

120. Yu, Y.; Si, X.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019, 31,
1235–1270. [CrossRef] [PubMed]

121. Khan, M.A.; Karim, M.R.; Kim, Y. A two-stage big data analytics framework with real world applications using spark machine
learning and long short-term memory network. Symmetry 2018, 10, 485. [CrossRef]

122. Jouppi, N.P.; Young, C.; Patil, N.; Patterson, D. A domain-specific architecture for deep neural networks. Commun. ACM 2018, 61,
50–59. [CrossRef]

123. Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. Lect. Notes Comput. Sci. 2014, 8689, 818–833.
[CrossRef]

124. Han, S.; Pool, J.; Tran, J.; Dally, W.J. Learning both weights and connections for efficient neural networks. In Proceedings of the
NIPS’15: Proceedings of the 28th International Conference on Neural Information Processing Systems; ACM: New York, NY, USA, 2015;
Volume 1, pp. 1135–1143.

125. Khoram, S.; Li, J. Adaptive quantization of neural networks. In Proceedings of the 6th International Conference on Learning
Representations (ICLR 2018), Vancouver, BC, Canada, 30 April–3 May 2018; pp. 1–13.

126. Al-Kofahi, M.M.; Al-Shorman, M.Y.; Al-Kofahi, O.M. Toward energy efficient microcontrollers and Internet-of-Things systems.
Comput. Electr. Eng. 2019, 79. [CrossRef]

127. Keras, A. Keras API Reference/Keras Applications. Available online: https://keras.io/api/applications/ (accessed on
14 March 2021).

128. Atmel. ATMEL—ATmega48P/88P/168P/328P. Available online: https://www.sparkfun.com/datasheets/Components/SMD/
ATMega328.pdf (accessed on 14 March 2021).

129. Atmel Corporation. ATMEL—ATmega640/V-1280/V-1281/V-2560/V-2561/V. Available online: https://ww1.microchip.com/
downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf (accessed on
14 March 2021).

130. STMicroelectronics. STM32L073x8 STM32L073xB. Available online: https://www.st.com/resource/en/datasheet/stm32l073v8
.pdf (accessed on 15 March 2021).

http://doi.org/10.1109/TNN.2006.877537
http://doi.org/10.1007/978-0-387-73003-5_196
http://doi.org/10.1109/AVSS.2011.6027356
http://doi.org/10.1145/2426656.2426686
http://doi.org/10.1007/978-3-642-35289-8_25
http://doi.org/10.1109/ICIVC.2018.8492754
http://doi.org/10.1145/2847263.2847276
http://doi.org/10.1109/ICEngTechnol.2017.8308186
http://arxiv.org/abs/1511.08458
http://doi.org/10.1109/72.554195
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1109/NER.2019.8717137
http://doi.org/10.1109/CC.2017.8068761
http://doi.org/10.1162/neco_a_01199
http://www.ncbi.nlm.nih.gov/pubmed/31113301
http://doi.org/10.3390/sym10100485
http://doi.org/10.1145/3154484
http://doi.org/10.1007/978-3-319-10590-1_53
http://doi.org/10.1016/j.compeleceng.2019.106457
https://keras.io/api/applications/
https://www.sparkfun.com/datasheets/Components/SMD/ATMega328.pdf
https://www.sparkfun.com/datasheets/Components/SMD/ATMega328.pdf
https://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf
https://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf
https://www.st.com/resource/en/datasheet/stm32l073v8.pdf
https://www.st.com/resource/en/datasheet/stm32l073v8.pdf

Sensors 2021, 21, 4412 42 of 44

131. Atmel Corporation. 32-Bit ARM-Based Microcontrollers SAM D21E/SAM D21G/SAM D21J Summary. Available online:
www.microchip.com (accessed on 15 March 2021).

132. Atmel. SAM3X / SAM3A Series datasheet. Available online: http://www.atmel.com/Images/Atmel-11057-32-bit-Cortex-M3
-Microcontroller-SAM3X-SAM3A_Datasheet.pdf (accessed on 15 March 2021).

133. STMicroelectronics. STM32F215xx STM32F217xx. Available online: https://www.st.com/resource/en/datasheet/stm32f215re.
pdf (accessed on 15 March 2021).

134. STMicroelectronics. STM32F469xx. Available online: https://www.st.com/resource/en/datasheet/stm32f469ae.pdf (accessed
on 15 March 2021).

135. Raspberry Pi Dramble. Power Consumption Benchmarks. Available online: https://www.pidramble.com/wiki/benchmarks/
power-consumption (accessed on 15 March 2021).

136. The First Affordable RISC-V Computer Designed to Run Linux. Available online: https://www.seeedstudio.com/blog/2021/01/
13/meet-beaglev-the-first-affordable-risc-v-single-board-computer-designed-to-run-linux/ (accessed on 20 April 2021).

137. Lane, N.D.; Bhattacharya, S.; Georgiev, P.; Forlivesi, C.; Jiao, L.; Qendro, L.; Kawsar, F. DeepX: A Software accelerator for
low-power deep learning inference on mobile devices. In Proceedings of the 2016 15th ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN), Vienna, Austria, 11–14 April 2016. [CrossRef]

138. Li, D.; Wang, X.; Kong, D. DeepRebirth: Accelerating deep neural network execution on mobile devices. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2017; pp. 2322–2330.

139. Ren, T.I.; Cavalcanti, G.D.C.; Gabriel, D.; Pinheiro, H.N.B. A Hybrid GMM Speaker Verification System for Mobile Devices in
Variable Environments. In Intelligent Data Engineering and Automated Learning—IDEAL 2012; Lecture Notes in Computer Science;
Yin, H., Costa, J.A.F., Barreto, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2012. [CrossRef]

140. Lei, X.; Senior, A.; Gruenstein, A.; Sorensen, J. Accurate and compact large vocabulary speech recognition on mobile devices. In
Proceedings of the Annual Conference of the International Speech Communication Association INTERSPEECH, Lyon, France,
25–29 August 2013; pp. 662–665.

141. Sanchez-Iborra, R.; Skarmeta, A.F. TinyML-enabled frugal smart objects: Challenges and opportunities. IEEE Circuits Syst. Mag.
2020, 20, 4–18. [CrossRef]

142. Park, J.; Naumov, M.; Basu, P.; Deng, S.; Kalaiah, A.; Khudia, D.; Law, J.; Malani, P.; Malevich, A.; Nadathur, S.; et al. Deep
learning inference in facebook data centers: Characterization, performance optimizations and hardware implications. arXiv 2018,
arXiv:1811.09886.

143. Banbury, C.; Zhou, C.; Fedorov, I.; Matas, R.; Thakker, U.; Gope, D.; Janapa Reddi, V.; Mattina, M.; Whatmough, P. MicroNets:
Neural network architectures for deploying TinyML Applications on commodity microcontrollers. In Proceedings of the 4th
MLSys Conference, San Jose, CA, USA, 4–7 April 2021. Available online: https://proceedings.mlsys.org/paper/2021/file/a3c6
5c2974270fd093ee8a9bf8ae7d0b-Paper.pdf (accessed on 20 April 2021).

144. NVIDIA. NVIDIA V100 Tensor Core GPU. Available online: https://www.nvidia.com/en-us/data-center/v100/ (accessed on
20 February 2021).

145. NVIDIA. The Ultimate PC GPU Nvidia Titan RTX. Available online: https://www.nvidia.com/content/dam/en-zz/Solutions/
titan/documents/titan-rtx-for-creators-us-nvidia-1011126-r6-web.pdf (accessed on 16 February 2021).

146. ST Microelectronics. STM32F745xx STM32F746xx Datasheet. Available online: http://www.st.com/content/ccc/resource/
technical/document/datasheet/96/ed/61/9b/e0/6c/45/0b/DM00166116.pdf/files/DM00166116.pdf/jcr:content/translations/
en.DM00166116.pdf (accessed on 22 January 2021).

147. ST Microelectronics Inc. STM32F765xx, STM32F767xx Datasheet. Available online: https://pdf1.alldatasheet.com/datasheet-
pdf/view/933989/STMICROELECTRONICS/STM32F767ZI.html (accessed on 17 January 2021).

148. Capra, M.; Bussolino, B.; Marchisio, A.; Shafique, M.; Masera, G.; Martina, M. An Updated survey of efficient hardware
architectures for accelerating deep convolutional neural networks. Future Internet 2020, 12, 113. [CrossRef]

149. Sun, S.; Cao, Z.; Zhu, H.; Zhao, J. A survey of optimization methods from a machine learning perspective. IEEE Trans. Cybern.
2020, 50, 3668–3681. [CrossRef] [PubMed]

150. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and
Huffman coding. In Proceedings of the 4th International Conference on Learning Representations, San Juan, Puerto Rico,
2–4 May 2016; pp. 1–14. Available online: https://arxiv.org/abs/1510.00149 (accessed on 17 January 2021).

151. Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Quantized neural networks: Training neural networks with low
precision weights and activations. J. Mach. Learn. Res. 2018, 18, 1–30.

152. Tanaka, K.; Arikawa, Y.; Ito, T.; Morita, K.; Nemoto, N.; Miura, F.; Terada, K.; Teramoto, J.; Sakamoto, T. Communication-
efficient distributed deep learning with GPU-FPGA heterogeneous computing. In Proceedings of the 2020 IEEE Symposium on
High-Performance Interconnects (HOTI), Piscataway, NJ, USA, 19–21 August 2020; pp. 43–46. [CrossRef]

153. Lane, N.; Bhattacharya, S.; Georgiev, P.; Forlivesi, C. Squeezing deep learning into mobile and embedded devices. IEEE Pervasive
Comput. 2017, 16, 82–88. [CrossRef]

154. Gysel, P. Ristretto: Hardware-Oriented Approximation of Convolutional Neural Networks. Available online: http://arxiv.org/
abs/1605.06402 (accessed on 20 February 2021).

www.microchip.com
http://www.atmel.com/Images/Atmel-11057-32-bit-Cortex-M3-Microcontroller-SAM3X-SAM3A_Datasheet.pdf
http://www.atmel.com/Images/Atmel-11057-32-bit-Cortex-M3-Microcontroller-SAM3X-SAM3A_Datasheet.pdf
https://www.st.com/resource/en/datasheet/stm32f215re.pdf
https://www.st.com/resource/en/datasheet/stm32f215re.pdf
https://www.st.com/resource/en/datasheet/stm32f469ae.pdf
https://www.pidramble.com/wiki/benchmarks/power-consumption
https://www.pidramble.com/wiki/benchmarks/power-consumption
https://www.seeedstudio.com/blog/2021/01/13/meet-beaglev-the-first-affordable-risc-v-single-board-computer-designed-to-run-linux/
https://www.seeedstudio.com/blog/2021/01/13/meet-beaglev-the-first-affordable-risc-v-single-board-computer-designed-to-run-linux/
http://doi.org/10.1109/IPSN.2016.7460664
http://doi.org/10.1007/978-3-642-32639-4_55
http://doi.org/10.1109/MCAS.2020.3005467
https://proceedings.mlsys.org/paper/2021/file/a3c65c2974270fd093ee8a9bf8ae7d0b-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/a3c65c2974270fd093ee8a9bf8ae7d0b-Paper.pdf
https://www.nvidia.com/en-us/data-center/v100/
https://www.nvidia.com/content/dam/en-zz/Solutions/titan/documents/titan-rtx-for-creators-us-nvidia-1011126-r6-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/titan/documents/titan-rtx-for-creators-us-nvidia-1011126-r6-web.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/96/ed/61/9b/e0/6c/45/0b/DM00166116.pdf/files/DM00166116.pdf/jcr:content/translations/en.DM00166116.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/96/ed/61/9b/e0/6c/45/0b/DM00166116.pdf/files/DM00166116.pdf/jcr:content/translations/en.DM00166116.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/96/ed/61/9b/e0/6c/45/0b/DM00166116.pdf/files/DM00166116.pdf/jcr:content/translations/en.DM00166116.pdf
https://pdf1.alldatasheet.com/datasheet-pdf/view/933989/STMICROELECTRONICS/STM32F767ZI.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/933989/STMICROELECTRONICS/STM32F767ZI.html
http://doi.org/10.3390/fi12070113
http://doi.org/10.1109/TCYB.2019.2950779
http://www.ncbi.nlm.nih.gov/pubmed/31751262
https://arxiv.org/abs/1510.00149
http://doi.org/10.1109/HOTI51249.2020.00021
http://doi.org/10.1109/MPRV.2017.2940968
http://arxiv.org/abs/1605.06402
http://arxiv.org/abs/1605.06402

Sensors 2021, 21, 4412 43 of 44

155. Moons, B.; Goetschalckx, K.; van Berckelaer, N.; Verhelst, M. Minimum energy quantized neural networks. In Proceed-
ings of the 2017 51st Asilomar Conference on Signals, Systems, and Computers ACSSC 2017, Pacific Grove, CA, USA,
29 October–1 November 2017; pp. 1921–1925. [CrossRef]

156. Xu, C.; Kirk, S.R.; Jenkins, S. Tiling for performance tuning on different models of GPUs. In Proceedings of the 2009 Second
International Symposium on Information Science and Engineering ISISE 2009, Shanghai, China, 26–28 December 2009; pp. 500–504.
[CrossRef]

157. Sun, F.; Li, X.; Wang, Q.; Tang, C. FPGA-based embedded system design. In Proceedings of the IEEE Asia-Pacific Conference
Circuits Systems APCCAS, Macao, China, 30 November–3 December 2008. [CrossRef]

158. Roth, W.; Schindler, G.; Zöhrer, M.; Pfeifenberger, L.; Peharz, R.; Tschiatschek, S.; Fröning, H.; Pernkopf, F.; Ghahramani, Z.
Resource-Efficient Neural Networks for Embedded Systems. Available online: http://arxiv.org/abs/2001.03048 (accessed on
27 March 2021).

159. Courbariaux, M.; Bengio, Y.; David, J.P. Low Precision Storage for Deep Learning. Available online: http://arxiv.org/abs/1511.0
0363%5Cnhttp://arxiv.org/abs/1412.7024 (accessed on 10 February 2021).

160. Courbariaux, M.; David, J.P.; Bengio, Y. Training deep neural networks with low precision multiplications. In Proceedings of
the 3rd International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–10. Available online:
https://arxiv.org/abs/1412.7024 (accessed on 20 February 2021).

161. Tong, J.Y.F.; Nagle, D.; Rutenbar, R.A. Reducing power by optimizing the necessary precision/range of floating-point arithmetic.
IEEE Trans. Very Large Scale Integr. Syst. 2000, 8, 273–286. [CrossRef]

162. Tagliavini, G.; Mach, S.; Rossi, D.; Marongiu, A.; Benin, L. A transprecision floating-point platform for ultra-low power
computing. In Proceedings of the 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany,
19–23 March 2018; pp. 151–1056. [CrossRef]

163. Langroudi, S.H.F.; Pandit, T.; Kudithipudi, D. Deep Learning inference on embedded devices: Fixed-point vs posit. In Proceedings
of the 2018 1st Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications (EMC2),
Williamsburg, VA, USA, 25–25 March 2018; pp. 19–23. [CrossRef]

164. Oberstar, E. Fixed-Point Representation & Fractional Math. Available online: http://www.superkits.net/whitepapers/Fixed%20
Point%20Representation%20&%20Fractional%20Math.pdf (accessed on 2 February 2021).

165. Yates, R. Fixed-point arithmetic: An introduction. Technical Reference. Available online: https://courses.cs.washington.edu/
courses/cse467/08au/labs/l5/fp.pdf (accessed on 15 February 2021).

166. Hwang, K.; Sung, W. Fixed-point feedforward deep neural network design using weights +1, 0, and −1. In Proceedings of the
2014 IEEE Workshop on Signal Processing Systems (SiPS), Belfast, UK, 20–22 October 2014. [CrossRef]

167. Gupta, S.; Agrawal, A.; Gopalakrishnan, K.; Narayanan, P. Deep learning with limited numerical precision. In Proceedings of the
32nd International Conference on Machine Learning ICML 2015, Lille, France, 6–11 July 2015; pp. 1737–1746.

168. Gustafson, J.L.; Yonemoto, I. Beating floating point at its own game: Posit arithmetic. Supercomput. Front. Innov. 2017, 4, 71–86.
169. Hammerstrom, D. A VLSI architecture for high-performance, low-cost, on-chip learning. In Proceedings of the IJCNN. Interna-

tional JT Conference Neural Network, San Diego, CA, USA, 17–21 June 1990; pp. 537–544. [CrossRef]
170. Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized Neural Networks: Training Deep Neural Networks

with Weights and Activations Constrained to +1 or −1. Available online: http://arxiv.org/abs/1602.02830 (accessed on
22 January 2021).

171. Meng, W.; Gu, Z.; Zhang, M.; Wu, Z. Two-Bit Networks for Deep Learning on Resource-Constrained Embedded Devices.
Available online: http://arxiv.org/abs/1701.00485 (accessed on 3 February 2021).

172. Park, E.; Ahn, J.; Yoo, S. Weighted-entropy-based quantization for deep neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5456–5464. [CrossRef]

173. Burrascano, P. Learning vector quantization for the probabilistic neural network. IEEE Trans. Neural Netw. 1991, 2, 458–461.
[CrossRef]

174. Mittal, A.; Tiku, S.; Pasricha, S. Adapting convolutional neural networks for indoor localization with smart mobile devices. In
Proceedings of the 2018 on Great Lakes Symposium on VLSI, 2018; GLSVLSI’18, Chicago, IL, USA, 23–25 May 2018; pp. 117–122.
[CrossRef]

175. Hu, R.; Tian, B.; Yin, S.; Wei, S. Efficient hardware architecture of softmax layer in deep neural network. In Proceedings of the
2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai, China, 19–21 November 2018; pp. 323–326.
[CrossRef]

176. Hennessy, J.L.; Patterson, D.A. A new golden age for computer architecture. Commun. ACM 2019, 62, 48–60. [CrossRef]
177. Kim, R.G.; Doppa, J.R.; Pande, P.P.; Marculescu, D.; Marculescu, R. Machine learning and manycore systems design: A

Serendipitous symbiosis. Computer 2018, 51, 66–77. [CrossRef]
178. Kim, R.G.; Doppa, J.R.; Pande, P.P. Machine learning for design space exploration and optimization of manycore systems. In

Proceedings of the 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Diego, CA, USA,
5–8 November 2018. [CrossRef]

179. Vazquez, R.; Gordon-Ross, A.; Stitt, G. Machine learning-based prediction for dynamic architectural optimizations. In Proceedings
of the 10th International Green and Sustainability Computing Conference IGSC 2019, Alexandria, VA, USA, 21–24 October 2019;
pp. 1–6. [CrossRef]

http://doi.org/10.1109/ACSSC.2017.8335699
http://doi.org/10.1109/ISISE.2009.60
http://doi.org/10.1109/APCCAS.2008.4746128
http://arxiv.org/abs/2001.03048
http://arxiv.org/abs/1511.00363%5Cnhttp://arxiv.org/abs/1412.7024
http://arxiv.org/abs/1511.00363%5Cnhttp://arxiv.org/abs/1412.7024
https://arxiv.org/abs/1412.7024
http://doi.org/10.1109/92.845894
http://doi.org/10.23919/DATE.2018.8342167
http://doi.org/10.1109/EMC2.2018.00012
http://www.superkits.net/whitepapers/Fixed%20Point%20Representation%20&%20Fractional%20Math.pdf
http://www.superkits.net/whitepapers/Fixed%20Point%20Representation%20&%20Fractional%20Math.pdf
https://courses.cs.washington.edu/courses/cse467/08au/labs/l5/fp.pdf
https://courses.cs.washington.edu/courses/cse467/08au/labs/l5/fp.pdf
http://doi.org/10.1109/SiPS.2014.6986082
http://doi.org/10.1109/ijcnn.1990.137621
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1701.00485
http://doi.org/10.1109/CVPR.2017.761
http://doi.org/10.1109/72.88165
http://doi.org/10.1145/3194554.3194594
http://doi.org/10.1109/ICDSP.2018.8631588
http://doi.org/10.1145/3282307
http://doi.org/10.1109/MC.2018.3011040
http://doi.org/10.1145/3240765.3243483
http://doi.org/10.1109/IGSC48788.2019.8957207

Sensors 2021, 21, 4412 44 of 44

180. Papp, D.; Ma, Z.; Buttyan, L. Embedded systems security: Threats, vulnerabilities, and attack taxonomy. In Proceedings of the
2015 13th Annual Conference on Privacy, Security and Trust (PST), Izmir, Turkey, 21–23 July 2015; pp. 145–152. [CrossRef]

181. Ogbebor, J.O.; Imoize, A.L.; Atayero, A.A.-A. Energy Efficient Design Techniques in Next-Generation Wireless Communication
Networks: Emerging Trends and Future Directions. Wirel. Commun. Mob. Comput. 2020, 2020, 19. [CrossRef]

182. Imoize, A.L.; Ibhaze, A.E.; Atayero, A.A.; Kavitha, K.V.N. Standard Propagation Channel Models for MIMO Communication
Systems. Wirel. Commun. Mob. Comput. 2021, 2021, 36. [CrossRef]

183. Popoola, S.I.; Jefia, A.; Atayero, A.A.; Kingsley, O.; Faruk, N.; Oseni, O.F.; Abolade, R.O. Determination of neural network
parameters for path loss prediction in very high frequency wireless channel. IEEE Access 2019, 7, 150462–150483. [CrossRef]

184. Faruk, N.; Popoola, S.I.; Surajudeen-Bakinde, N.T.; Oloyede, A.A.; Abdulkarim, A.; Olawoyin, L.A.; Ali, M.; Calafate, C.T.;
Atayero, A.A. Path loss predictions in the VHF and UHF bands within urban environments: Experimental investigation of
empirical, heuristics and geospatial models. IEEE Access 2019, 7, 77293–77307. [CrossRef]

185. Pasricha, S.; Nikdast, M. A Survey of Silicon Photonics for Energy-Efficient Manycore Computing. IEEE Des. Test 2020, 37, 60–81.
[CrossRef]

186. Soref, R. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 1678–1687. [CrossRef]
187. Chittamuru, S.V.R.; Dang, D.; Pasricha, S.; Mahapatra, R. BiGNoC: Accelerating big data computing with application-specific

photonic network-on-chip architectures. IEEE Trans. Parallel Distrib. Syst. 2018, 29, 2402–2415. [CrossRef]

http://doi.org/10.1109/PST.2015.7232966
http://doi.org/10.1155/2020/7235362
http://doi.org/10.1155/2021/8838792
http://doi.org/10.1109/ACCESS.2019.2947009
http://doi.org/10.1109/ACCESS.2019.2921411
http://doi.org/10.1109/MDAT.2020.2982628
http://doi.org/10.1109/JSTQE.2006.883151
http://doi.org/10.1109/TPDS.2018.2833876

	Introduction
	Embedded Machine Learning Techniques
	Scope of ML Techniques Overview
	Hidden Markov Models
	The HMM Algorithm
	Some HMM Optimization Schemes

	k-Nearest Neighbours
	The k-NN Algorithm
	Some k-NN Optimization Schemes

	Support Vector Machines
	The SVM Algorithm
	Some SVM Optimizations Schemes

	Gaussian Mixture Model
	The GMM Algorithm
	Some GMM Optimization Schemes

	Deep Learning Models
	Convolution Layers
	Pooling Layers
	Normalization Layers
	Fully-Connected Layers
	Fully-Connected Deep Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks

	Machine Learning in Resource-Constrained Environments
	Machine Learning Using Microcontrollers
	Machine Learning Using Hardware Accelerators
	Machine Learning in Mobile Devices
	TinyML

	Challenges and Optimization Opportunities in Embedded Machine Learning
	Power Consumption
	Memory Footprint
	Latency and Throughput Concerns
	Prediction Accuracy
	Some Hardware-Oriented and Algorithm-Based Optimization Techniques
	Tiling and Data Reuse
	Direct Memory Access and On-Chip Buffers
	Layer Acceleration
	Network Pruning
	Reduced Precision
	Quantization

	Areas of Applications of Intelligent Embedded Systems
	Intelligent Sensor Systems and IoTs
	Deep Learning In Mobile Devices
	Deep Learning Training Using Graphic Processors (GPUs)
	Deep Learning Using Heterogeneous Computing Systems
	Embedded Field Programmable Gate Arrays (FPGAs)
	Energy Efficient Hardware Design and Architectures

	Research Directions and Open Issues
	Lessons Learned

	Conclusions
	References

